
The mglTEX package∗

Diego Sejas Viscarra
dsejas.mathematics@gmail.com

January 28, 2016

Abstract

MathGL is a fast and efficient library by Alexey Balakin for the creation of
high-quality publication-ready scientific graphics. Although it defines inter-
faces for many programming languages, it also implements its own scripting
language, called MGL, which can be used independently. With the package
mglTEX, MGL scripts can be embedded within any LATEX document, and
the corresponding images are automatically created and included.

This manual documents the use of the commands and environments
of mglTEX.

Contents

1 Introduction 2
1.1 Conventions and notations . 2

2 Usage 3
2.1 Warning for the user . 5
2.2 Environments for MGL code embedding 6
2.3 Fast creation of graphics . 7
2.4 Verbatim-like environments . 8
2.5 Working with external scripts . 10
2.6 Additional commands . 10
2.7 Advanced setup commands . 12
2.8 User-definable macros . 14

3 Behavior of mglTEX 15
3.1 Creation and inclusion of MGL scripts and graphics 15
3.2 Recompilation-decision algorithm 16

4 Acknowledgements 18

5 Redistributing and modifying 18

∗This document corresponds to mglTEX v4.1, dated 2016/01/28.

1

6 Implementation 18
6.1 Initialization . 19
6.2 Anatomy of environments and commands 27
6.3 Environments for MGL code embedding 32
6.4 Fast creation of graphics . 38
6.5 Verbatim-like environments . 41
6.6 Commands for external scripts . 45
6.7 Additional commands . 49
6.8 Final adjustments . 53

1 Introduction

MathGL is a fast and efficient library by Alexey Balakin for the creation of high-
quality publication-ready scientific graphics. It implements more than 50 different
types of graphics for 1d, 2d and 3d large sets of data. It supports exporting
images to bitmap formats (PNG, JPEG, BMP, etc.), or vector formats (EPS,
TEX, SVG, etc.), or 3d image formats (STL, OBJ, XYZ, etc.), and even its own
native 3d format, MGLD. MathGL also defines its own vector font specification
format, and supports UTF-16 encoding with TEX-like symbol parsing. It supports
various kinds of transparency and lighting, textual formula evaluation, arbitrary
curvilinear coordinate systems, loading of subroutines from .dll or .so libraries,
and many other useful features.

MathGL has interfaces for a wide variety of programming languages, such as
C/C++, Fortran, Python, Octave, Pascal, Forth, and many others, but it also
defines its own scripting language, called MGL, which can be used to generate
graphics independently of any programming language. The mglTEX package adds
support to embed MGL code inside LATEX documents, which is automatically
extracted and executed, and the resulting images are included in the document.

Besides the obvious advantage of having available all the useful features of
MathGL, mglTEX facilitates the maintenance of your document, since both code
for text and code for graphics are contained in a single file.

1.1 Conventions and notations

For what’s left of this manual, the symbols “〈” and “〉” will enclose the description
of an object that should be placed in that location; this is called a meta-variable.
For example, 〈text〉 is a meta-variable that indicates that in that location should
be placed any form of text.

In order to save space and time, some special conventions should be applied to
meta-variables:

1. Any meta-variable that contain the word directory indicates the name of a
directory, in the form of an absolute or relative path, ending with the slash
(“/”) character.

2

2. Any meta-variable that contain the word subdirectory indicates a relative
path ending with the slash (“/”) character.

3. 〈x1|x2| . . . |xn〉 indicates that any of the values x1, x2, . . . , xn can be placed
there.

4. A meta-variable of the form 〈list of something〉 or 〈something list〉 indicate
a comma-separated list of values of type 〈something〉; if only one value is
used, no comma is needed.

5. A meta-variable with underscores (“ ”) in its description indicate that spaces
should not be used in that location.

6. 〈key-val list〉 refers to a list of 〈key〉=〈value〉 pairs of options, where 〈key〉
is a keyword name for an option and 〈value〉 is a value assigned to it.

As is conventional for LATEX packages, the commands and environments of
mglTEX accept optional commands inside brackets and mandatory arguments in-
side curly braces.

2 Usage

The simplest way to load mglTEX to a LATEX document is to write the command

\usepackage{mgltex}

in the preamble. Alternatively, one can pass a number of options to the package
by means of the syntax

\usepackage[〈options list〉]{mgltex},

where 〈options list〉 can contain one or more of the following options:

• draft: The generated images won’t be included in the document. This
option is useful when fast compilation of the document is needed.

• final: Overrides the draft option.

• on: To rewrite, recompile and include the changed MGL scripts and/or
corresponding graphics.

• off: To avoid creation, compilation and/or inclusion of the MGL scripts
and corresponding images.

• comments: To allow the contents of the mglcomment environments to be
shown in the LATEX document.

• nocomments: To avoid showing the contents of the mglcomment environments
in the LATEX document.

3

• 1x, . . . , 9x: To specify the scale for the creation of graphics (1x is normal
scaling, 2x is twice as bigger, etc).

• 0q, . . . , 8q: To specify the quality for the creation of graphics. An info
message indicating the characteristics of the chosen quality is printed in the
.log file according to the following table:

Quality Description

0 No face drawing (fastest)
1 No color interpolation (fast)
2 High quality (normal)
3 High quality with 3d primitives (not implemented yet)
4 No face drawing, direct bitmap drawing (low memory usage)
5 No color interpolation, direct bitmap drawing (low memory usage)
6 High quality, direct bitmap drawing (low memory usage)
7 High quality with 3d primitives, direct bitmap drawing

(not implemented yet)
8 Draw dots instead of primitives (extremely fast)

• png, jpg, jpeg: To export images to a bitmap format.

• eps, epsz: To export to uncompressed/compressed vectorial EPS format.

• bps, bpsz: To export to uncompressed/compressed bitmap EPS format.

• pdf: To export to 3D PDF format.

• tex: To export to LATEX/tikz document.

If two or more mutually exclusive options are specified, only the last one will be
used by mglTEX. For example, if one specifies the options 0q, 3q and 8q—in that
order—, then the quality will be set to 8.

Observe the off option is similar to the draft option, with the exception
that draft deactivates inclusion of graphics for the mglTEX and graphicx packages
simultaneously, while the off option only deactivates mglTEX functionalities (cre-
ation and/or inclusion of scripts and graphics), not affecting graphicx. This could
be useful to recognize which images are created with MGL, and which are only
included. Another possible use for this option is to avoid recompilation of scripts
when they must be constantly changed until their final version.1

There are two ways to compile a document with mglTEX: The first way is to
run

latex --shell-escape 〈document〉.tex
1mglTEX has a convinient recompilation-decision algorithm that enables recompilation for

changed scripts only (see subsection 3.2).

4

three times, since the first run will detect changes in the scripts; the second run
will extract the MGL code, execute it and include some of the resulting graphics,
while the third run will include the remaining graphics. The second way is to run

latex 〈document〉.tex

twice to detect changes in MGL code and to extract it, then compile the gen-
erated scripts with the program mglconv (part of MathGL bundle), and exe-
cute latex 〈document〉.tex once more to include the graphics.2 (More on the
recompilation-decision mechanism of mglTEX can be found in subsection 3.2.)

2.1 Warning for the user

Before we continue the description of the package, it must be pointed out that
mglTEX assummes that the command \end{〈MGL environment〉}, that ends the
corresponding 〈MGL environment〉, occupies its own physical line of LATEX code.
So the correct forms of use of environments are the following:

\begin{〈MGL environment〉}
〈contents of the environment〉
\end{〈environment〉}

and

\begin{〈MGL environment〉}〈contents of the environment〉
\end{〈environment〉}

The following form will cause problems:

\begin{〈MGL environment〉}〈contents of the environment〉\end{〈MGL
environment〉}

mglTEX depends on the verbatim package to define its environments. One of the
characteristics of verbatim is that it transcripts everything contained between the
begining and the end of an environment, including spaces before an \end{〈MGL
environment〉} command. This should not be a problem, except for the fact
that mglTEX has a mechanism to detect changes in MGL scripts in order to re-
compile them (see subsection 3.2), and the mentioned spaces in the scripts and
their counterparts in the LATEX document can’t be recognized properly as identi-
cal when compared, causing the package to recompile the scripts even when they
haven’t changed, rendering the mechanism useless.3 In order to avoid this glitch,
the facilities provided by verbatim have been adapted to ignore everything before
\end{〈MGL environment〉}, including spaces and, unfortunately, MGL code.

It should also be pointed out that the default behavior of the verbatim package
makes the following form to ignore the 〈text〉 after the \end〈MGL environment〉,
issuing a warning.

2If no changes were made to scripts intended to create graphics, only one LATEX run is needed.
3It is currently unknown for the author why this spaces aren’t detected properly. Help would

be appreciated.

5

\begin{〈MGL environment〉}
〈contents of the environment〉
\end{〈MGL environment〉}〈text〉

2.2 Environments for MGL code embedding

The main environment defined by mglTEX is mgl. It extracts its contents to amgl

main script, called 〈main script name〉.mgl, where 〈main script name〉 stands for
a name specified by the user with the \mglname command (see below), or the
name of the LATEX document being executed otherwise; this script is compiled,
and the corresponding image is included.

\begin{mgl}[〈key-val list〉]
〈MGL code〉

\end{mgl}

Here, 〈key-val list〉 can have the same optional arguments as the \includegraphics
command from the graphicx package, plus two additional ones, imgext, which can
be used to specify the extension to save the graphic, and label, which can be
used to indicate a name for the corresponding graphic (otherwise, an automatic
naming will be applied). The 〈MGL code〉 doesn’t need to contain any specific
instruction to create the image since mglTEX takes care of that.

This environment adds its contents to the document’s main script, but itmgladdon

doesn’t produce any image. It doesn’t require any kind of arguments. It is useful
to add “complementary code”, like loading of dynamic libraries, set default size
for the graphics, etc.

\begin{mgladdon}

〈MGL code〉
\end{mgladdon}

Is used to define MGL functions within the document’s main script. It takesmglfunc

one mandatory argument, which is the name of the function, plus one optional
argument, which specifies the number of arguments of the function (the default
is 0). The environment needs to contain only the body of the function, since the
lines “func 〈function name〉 〈number of arguments〉” and “return” are appended
automatically at the beginning and the end, respectively. The resulting code is
written at the end of the document’s main script, after the stop command, which
is also written automatically.

\begin{mglfunc}[〈number of arguments〉]{〈function name〉}
〈MGL function body〉

\end{mglfunc}

6

It has the same function as the mgl environment, but the corresponding codemglcode

is written to a separate script, whose name is specified as mandatory argument. It
accepts the same optional arguments as mgl, except, of course, the label option.

\begin{mglcode}[〈key-val list〉]{〈script name〉}
〈MGL code〉

\end{mglcode}

The code within mglscript is written to a script whose name is specifiedmglscript

as mandatory argument, but no image is produced. It is useful for creation of
MGL scripts which can be later post-processed by another package, like listings or
pygments.

\begin{mglscript}{〈script name〉}
〈MGL code〉

\end{mglscript}

This is used to create a common “setup” script to define constants, parameters,mglcommon

etc. that will be available to the others.

\begin{mglcommon}

〈MGL code〉
\end{mglcommon}

If called more than once, it will overwrite the setup code. Also note that it
should be used only to define constants, parameters and things like that, but
not graphical objects like axis or grids, because the mgl environment clears every
graphical object before creating the image.4

For example, one could write

\begin{mglcommon}

define gravity 9.81 # [m/s^2]

\end{mglcommon}

to make the constant gravity available to every script.

2.3 Fast creation of graphics

mglTEX defines a convenient way to work with many graphics that have exactly
the same settings (same rotation angles, same type of grid, same lighting, etc.):
instead of writing repetitive code every time it’s needed, it can be stored inside
a mglsetup environment, and then can be used when needed with the \mglplot

command.

7

This environment is defined as a special case of the mglfunc environment. Itmglsetup

accepts one mandatory argument, which is a keyword (name) associated to the
corresponding block of code (MGL function body).

\begin{mglsetup}{〈key word〉}
〈MGL code〉

\end{mglsetup}

This command is used for fast generation of graphics with default settings, and\mglplot

can be used in parallel with the mglsetup environment. It accepts one mandatory
argument which consists of MGL instructions, separated by the symbol “:”, and
can span through various text lines. It accepts the same optional arguments as
the mgl environment, plus two additional ones, called setup and separator. The
setup option specifies a keyword associated to a mglsetup block, which will be
executed before the code in the mandatory argument. The separator option
specifies a text symbol that will break the code in the mandatory argument into
a new physical line in the main script every time is encountered.

\mglplot[〈key-val list〉]{〈MGL code〉}

2.4 Verbatim-like environments

The main purpose of these environments is to typeset their contents to the LATEX
document, elegantly separated from the rest of the text. They have two versions:
an unstarred version which can be listed later with the \listofmglscripts com-
mand (see below), and a starred version which won’t be listed.

Although these environments are intended to mimic the behavior of the
verbatim environment from LATEX, there is an important difference, namely, long
lines will be broken when the page margin is reached. This intended behavior is set
because a language like MGL can easily have very long lines of code, like textual
formulas, vectors input as lists of values, etc. Of course, no hyphenation will be
performed, but the code will be indented in the second, third, etc. continuation
lines by an amount specified by \mglbreakindent (see below).

Besides typesetting its contents to the document, mglblock creates a scriptmglblock

mglblock* whose name is specified as mandatory argument. It also accepts one optional argu-
ment, called lineno, whose default value is true, used to activate (lineno=true)
or deactivate (lineno=false) line numbering inside the environment. The default
behavior is to number each line of code.

\begin{mglblock}[〈key-val list〉]{〈script name〉}
〈MGL code〉

\end{mglblock}

4This problem occurs only with the mgl environment, so you could use mglcommon to create
many graphics with the same axis, grid, etc., with environments like mglcode, but in that case
the best option is to use the mglsetup environment together with the \mglplot command.

8

\begin{mglblock*}[〈key-val list〉]{〈script name〉}
〈MGL code〉

\end{mglblock*}

The ouput looks like this:

example_script.mgl

1. new x 50 40 ’0.8*sin(pi*x)*sin(pi*(y+1)/2)’

2. new y 50 40 ’0.8*cos(pi*x)*sin(pi*(y+1)/2)’

3. new z 50 40 ’0.8*cos(pi*(y+1)/2)’

4. title ’Parametric surface’ : rotate 50 60 : box

5. surf x y z ’BbwrR’

This environment only typesets its contents to the LATEX document withoutmglverbatim

mglverbatim* creating any script. It accepts the lineno option, with default value true, plus
an one called label, intended to specify a name associated to the corresponding
code. The default behavior is to number each line of code.

\begin{mglverbatim}[〈key-val list〉]
〈MGL code〉

\end{mglverbatim}

\begin{mglverbatim*}[〈key-val list〉]
〈MGL code〉

\end{mglverbatim*}

The output looks like this without label:

1. new x 50 40 ’0.8*sin(pi*x)*sin(pi*(y+1)/2)’

2. new y 50 40 ’0.8*cos(pi*x)*sin(pi*(y+1)/2)’

3. new z 50 40 ’0.8*cos(pi*(y+1)/2)’

4. title ’Parametric surface’ : rotate 50 60 : box

5. surf x y z ’BbwrR’

If a label is specified, the output will look exactly as that of the mglblock envi-
ronment.

This environment is used to embed commentaries in the LATEX document. Themglcomment

commentary won’t be visible in the case of the user passing the option nocomments

to the package, but it will be typeset verbatim to the document if the user passes
the option comments.

9

\begin{mglcomment}

〈Commentary〉
\end{mglcomment}

If the user requests visible commentaries, this will result in the appearance of
something like the following in the LATEX document:

< - - - - - - - - - - - - - - - MGL commentary - - - - - - - - - - - - - - - >

This is a MGL commentary

< - - - - - - - - - - - - - - - MGL commentary - - - - - - - - - - - - - - - >

2.5 Working with external scripts

External scripts exist in their own files, independently of the LATEX document —for
example, a script sent by a colleague, a script created before the actual writing of
the LATEX document, etc. mglTEX provides convenient ways to deal with external
scripts, as if they were embedded. It must be noted, however, that the package
works on the suposition that these scripts are in their final version, so no change
detection is performed on them. If a external script is changed, the corresponding
graphic must be manually deleted in oreder to force recompilation.

This command is the equivalent of the mglverbatim environment for external\mglinclude

\mglinclude* scripts. It takes one mandatory argument, which is the name of a MGL script,
which will be automatically transcript verbatim on the LATEX document. It accepts
the same optional arguments as the \mglgraphics command, plus the lineno

option to activate/deactivate line numbering. There are unstarred version of this
command will be listed if \listofmglscripts is used, while the starred version
won’t.

\mglinclude{〈script name〉}[〈key-val list〉]

\mglinclude*{〈script name〉}[〈key-val list〉]

This takes one mandatory argument, which is the name of an external MGL\mglgraphics

script, which will be automatically executed, and the resulting image will be in-
cluded. The same optional arguments as the \includegraphics command are
accepted, plus the imgext option to specify the extension of the resulting graphic,
and an additional option, path, which can be used to specify the location of the
script.

\mglgraphics[〈key-val list〉]{〈script name〉}

2.6 Additional commands

This command can be used in the preamble of the document to indicate the\mglname

name of the main script, passed as mandatory argument. If used after the

10

\begin{document} command, it will force the closure of the current main script,
create the corresponding graphics, and start a new script with the specified name.

\mglname{〈main script name〉}

The use of this command is encouraged when writing large documents, like
books or thesis, to create a main script per document block (section, chapter,
part, etc.). Since the mgl environment and the \mglplot command use an internal
counter to automatically name scripts, unless the label option is used; if a new
script is added this way to the document, it will alter the original numbering,
causing mglTEX to recompile the scripts from that point on (for more details, read
subsection 3.2). If the \mglname command is used, only the scripts of the current
document block will be recompiled.

Can be used to specify the extension to save graphics. Its effect is local,\mglimgext

meaning that the new quality will be applied from the point this command is
used on.

\mglimgext{〈image extension〉}

The default quality for the creation of MGL graphics can be specified locally\mglquality

with this command. An info message will be printed in the .log file indicating
the characteristics of the chosen value, according to the following table:

Quality Description

0 No face drawing (fastest)
1 No color interpolation (fast)
2 High quality (normal)
3 High quality with 3d primitives (not implemented yet)
4 No face drawing, direct bitmap drawing (low memory usage)
5 No color interpolation, direct bitmap drawing (low memory usage)
6 High quality, direct bitmap drawing (low memory usage)
7 High quality with 3d primitives, direct bitmap drawing

(not implemented yet)
8 Draw dots instead of primitives (extremely fast)

If a non available quality is chosen, it will be changed to 2 (the default), and a
warning message will be issued for the user.

\mglquality{〈0|1|. . . |8 〉}

Can be used to specify the default scaling for the creation of MGL graphics\mglscale

(1 is normal scaling, 2 is twice as bigger, etc.). Its effect is local, meaning that
the new scaling will be applied from the point this command is used on. Any non
negative value can be specified.

\mglscale{〈1|2|. . . |9 〉}

11

This command is equivalent to the package options on and off, depending on\mglswitch

the argument passed, but it’s effect is local.

\mglswitch{〈on|off 〉}

Observe that \mglswitch{on} and \mglswitch{off} can be used to save time
when writing a document, wrapping a section with them, avoiding recompilation
of the corresponding scripts.

This command is equivalent to the package options comments and nocomments,\mglcomments

depending on the argument passed, but its effect is local.

\mglcomments{〈on|off|true|false〉}

Opens a new section or chapter—depending on the LATEX class used—, where\listofmglscripts

all the scripts that have been transcript in the document with the unstarred ver-
sions of the mglblock and mglverbatim environments, and the \mglinclude com-
mand, are listed. In case a mglverbatim is used, but no label is specified, the
default name to display is specified by the \mglverbatimname macro (see below),
otherwise, the corresponding label is typeset.

\listofmglscripts

The output is like this:

List of MGL scripts

1. example_script.mgl . 9
2. (Unnamed MGL verbatim script) 9

This command just pretty-prints the name of the package; if followed by an\mglTeX

\mglTeX* asterisk, it will also print the version, separated with an unbreakable space.

\mglTeX

\mglTeX*

2.7 Advanced setup commands

Although mglTEX is completely functional without any further set up, there are
some parameters of its behavior that could be useful to modify. The following
commands must be used in the preamble of the document only, since the first
MGL script is created at the moment of the \begin{document} command, and
otherwise they could create weird errors during compilation; trying to use them
somewhere else will produce an error.

This command can be used to specify the main working directory for mglTEX.\mgldir

Inside it, the scripts, backup files and graphics will be created, or can be sepa-
rated inside subdirectories. This is useful, for example, to avoid many scripts and
graphics from polluting the directory where the LATEX document is.

12

\mgldir{〈main directory〉}

It specifies the subdirectory inside mglTEX’s 〈main directory〉 where the MGL\mglscriptsdir

scripts will be created.

\mglscriptsdir{〈scripts subdirectory〉}

It specifies the subdirectory inside mglTEX’s 〈main directory〉 where the MGL\mglgraphicsdir

graphics will be created, including the ones from external scripts (not embedded
inside the LATEX document).

\mglgraphicsdir{〈graphics subdirectory〉}

It specifies the subdirectory inside mglTEX’s 〈main directory〉 where backups\mglbackupsdir

for the MGL scripts will be created.

\mglbackupsdir{〈backups subdirectory〉}

The above commands can be used in various combinations. For exam-
ple, if none of them is used, the scripts, graphics and backups will be cre-
ated inside the same path where the LATEX document is being compiled; if
only \mgldir is used, they will be created inside 〈main directory〉; if only
\mgldir and \mglscriptsdir are used, the scripts will be created inside
〈main directory〉〈scripts subdirectory〉, while the graphics and backups will be in-
side 〈main directory〉 only; if \mgldir isn’t used, but the other commands are, the
〈scripts subdirectory〉, 〈graphics subdirectory〉 and 〈backups subdirectory〉 folders
will be inside the folder where the LATEX document is being compiled.

In case of having external MGL scripts, it is not recommended to place them\mglpaths

inside the same location as where the embedded scripts are extracted, since they
could be accidentally overwritten or deleted by the user; they should be separated
in a folder which can be specified in the form of an absolute or relative path using
this command.

\mglpaths{〈directory list〉}

This command can be used many times or can be used to specify many paths at
once. In the case of using it many times, each call will add the new directory or
directories to the list of searching paths.

This command has been added for the confort of the user, since it handles allmglsettings

of the basic and advanced settings of mglTEX, as an alternative to some package
options and commands. It takes one mandatory argument which should be a list
of 〈key〉=〈value〉 pairs, according to the following table:

13

Key Value Description

dir 〈main directory〉 The main working directory
scriptsdir 〈scripts subdirectory〉 The subdirectory for scripts creation
graphicsdir 〈graphics subdirectory〉 The subdirectory for graphics creation
backupsdir 〈backups subdirectory〉 The subdirectory for backups creation
paths 〈directory list〉 Paths to external scripts
quality 〈0|1|. . . |8 〉 Quality for creation of graphics
scale 〈1|2|. . . |9 〉 Scale for creation of graphics
imgext 〈image extension〉 Extension for creation of graphics

\mglsettings{〈key-val list〉}

2.8 User-definable macros

There are macros that the user is allowed to modify in order to customize some
aspects of the behavior of mglTEX. For example, if writing in spanish, french or
russian, the user would like to modify the name of the common script, the words
typeset in the separator lines of MGL commentaries, the name of the list of MGL
scripts, etc.

It is the name for the common script that takes the contents of the mglcommon\mglcommonscriptname

environment. The default name is defined by

\def\mglcommonscriptname{MGL_common_script}

This macro expands to the words typeset before and after a MGL commentary,\mglcommentname

in the middle of the separator lines. The default words are set by

\def\mglcommentname{MGL commentary}

This is the name of the section/chapter created by the command \listofmglscripts.\listofmglscriptsname

The default is set by

\def\listofmglscriptsname{List of MGL scripts}

This is the default name to be printed in the list of MGL scripts for scripts\mglverbatimname

created with the unstarred version of mglverbatim, for which a label hasn’t been
specified. The default is

\def\mglverbatimname{(Unnamed MGL script)}

Indicates the style for typeseting the line numbers inside the mglblock and\mgllinenostyle

mglverbatim environments, and the \mglinclude command. The default is

\def\mgllinenostyle{\footnotesize}

The dashes of the separator lines for the mglcomment environment are con-\mgldashwidth

tained inside boxes whose width is specified by this macro. For practical purposes,
this dimension can be used to increase/decrease the space between the dashes. The
default is

14

\mgldashwidth=0.75em

It is recommended to use font-dependent units for this dimension, like em, just in
case the font is changed later, so it adapts to the new metric.5

It is the thickness of the separator lines for the mglblock and mglverbatim\mgllinethickness

environments, and the \mglinclude command. The default is

\mgllinethickness=0.25ex

It is also recommended to use font-dependent units for this dimension, like ex.
mglTEX allows line breaking inside verbatim-like environments and commands.\mglbreakindent

When a line of code is broken, \mglbreakindent is the indentation of the second,
third, etc. continuation lines. The default is

\mglbreakindent=1em

Once more, font-dependent units are encourage.

3 Behavior of mglTEX

mglTEX has many convenient features designed for the comfort of the user, and to
reduce the possibility of unintentional malfunction.

3.1 Creation and inclusion of MGL scripts and graphics

All environments and commands for MGL code embedding check for multiple
scripts with the same name. This detection is performed in order to avoid uninten-
tionally overwriting scripts, or creating confusion with different verbatim chunks
of code with the same name. If such multiple naming is found a warning will be
issued. However, external scripts are supposed to be responsibility of the user, so
no detection of multiple naming will be performed on them.

When mglTEX is unable to find a graphic that is supposed to include, instead
of producing an error, it will warn the user about it, and will display a box in the
corresponding position of the document like the one shown in figure 1. Notice that
the first time or even the second time LATEX is executed, many of these boxes will
appear in the document, because the first run detects changes on scripts, while
the second run creates the graphics, but not all of them are included, until LATEX
is run for the third time.

Likewise, when a script isn’t found, a warning will be issued for the user,
and, if that script was meant to be included in the document by a \mglinclude

command, the box shown in figure 2 will be displayed instead.
When mglTEX is off no MGL graphics will be generated nor will be included,

but instead, a box like the one of figure 3 will be shown.

5A rule of thumb is to use em units for horizontal dimensions, and ex units for vertical
dimensions.

15

MGL
image
not

found
Figure 1: This box is shown by mglTEX instead of a graphic that should be in-
cluded, but can’t be found.

MGL
script
not

found
Figure 2: This box is shown by mglTEX instead of a script that should be included,
but can’t be found.

mglTEX
is off;

no image
included

Figure 3: This box is shown instead of an image when mglTEX is off.

3.2 Recompilation-decision algorithm

mglTEX has the builtin capacity of detecting changes in MGL scripts, so that a
script is recompiled only when it has changed, not every time LATEX is executed.

16

This saves a lot of time, since most of the compilation time of a document is spent
on the creation (and conversion to another format, if necessary) of the graphics.

This is how the recompilation-decision is performed: When mglTEX finds an
environment or command meant to create a script/graphic, it checks if the com-
mand \MGL@@@〈script〉 is defined, where 〈script〉 is the name of the script. If the
command is undefined, this means the script has changed, so the corresponding
code is transcript to the file 〈script〉.mgl, and the command \MGL@@@〈script〉 is de-
fined. If the command is already defined, this means the script has been created
on a previous LATEX run, so this time the embedded code is compared against the
contents of the script; if they are equal, then \MGL@@@〈script〉 is defined again,
otherwise, it is undefined, so the next LATEX run will rewrite/recompile the code.
This process is schematically represented in figure 4.

Start

Find
\MGL@@@<script>

Is it
defined?

Compare
script vs. code

Rewrite/recompile
script

Undefine
\MGL@@@<script>

Define
\MGL@@@<script>

End

Are
they

equal?

Yes

Yes No

No

Figure 4: The algorithm used by mglTEX to decide which scripts re-
cereate/recompile.

The recompilation-decision mechanism can be fooled, however. The mgl envi-
ronment and \mglplot command have the ability to automatically name scripts
by means of the use of an internal counter, unless the label option is specified.
Suppose the user wants to add a new mgl environment or \mglplot command
exactly after the (n− 1)th script, so the nth script will be the newly added, while
the old nth will be the new (n + 1)th, and so on, altering the original numbering.

17

This will cause mglTEX to compare the old nth script with the old (n + 1)th, and
so on, deciding they are different, so they will be recompiled.

There are two ways to avoid this problem: The first one is to use the label op-
tion on the newly arrived; the second is to wrap a complete block of the document
with the \mglswitch{off} and \mglswitch{on} commands, avoiding recompi-
lation and saving time. This last option will avoid the inclusion of the MGL
graphics, so it is only recommended in case of the wrapped scripts being in their
final version (not needing further modification), so there is no need of updating
the corresponding graphics; then, when the document is compiled in its final ver-
sion, the \mglswitch{off} and \mglswitch{on} can be removed. However, the
most recommended way of proceeding is to use the \mglname command to create
a separated main script per document block (section, chapter, part, etc.), so that,
if a new script disrupts the original numbering, mglTEX will recompile only the
scripts of the current block.

There are situations when recompilation of a script has to be forced. For ex-
ample, if the default quality has changed, but the script hasn’t, mglTEX won’t
recreate the corresponding graphic by its own initiative, because it won’t detect
any changes in the code. In order to force recompilation, the image of the corre-
sponding script can be deleted: mglTEX will detect this abscence in the next LATEX
run and recompile.

4 Acknowledgements

mglTEX was born as a small personal project. It has grown and mature under the
constant suggestions and requests from Prof. Alexey Balakin.

5 Redistributing and modifying

The source code of mglTEX (.sty, .dtx, and .ins files) can be redistributed and/or
modified under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at your option)
any later version. The documentation of mglTEX (.dvi, .ps, .pdf and other files)
is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License.

6 Implementation

This section documents the complete implementation of mglTEX. It’s main purpose
is to facilitate the understanding and maintanance of the package’s code. For the
following, we use “@” in the name of macros the user should not modify; the prefix
“MGL” is used to simulate a namespace, so the macros from mglTEX won’t interfere
with the ones from other packages.

18

6.1 Initialization

We first define some macros that will serve different purposes on different parts of
the package.

\MGL@TeX@ext Is used to determine whether the user has chosen to save graphics in LATEX/Tikz
format.

1 \def\MGL@TeX@ext{.tex}

The macros \MGL@switch@on and \MGL@switch@off are called when the pack-
age options on and off are passed, respectively.

\MGL@switch@on (Re)defines the commands to open, read, write and close scripts, and the command
that includes MGL graphics.

2

3 \def\MGL@switch@on{%

\MGL@openout Opens a script for writing. It takes two arguments, the first being an output
stream number, allocate by \newwrite (TEX command), and the second being
the path to the script.

4 \def\MGL@openout##1##2{%

5 \immediate\openout##1="##2"%

6 }%

\MGL@openin Opens a script for reading. It takes two arguments, the first being an input stream
number, allocate by \newread (TEX command), and the second being the path to
the script.

7 \def\MGL@openin##1##2{%

8 \immediate\openin##1="##2"%

9 }%

\MGL@write Writes to a script opened with \MGL@openout. Its first argument is the output
stream number of the script, and the second is the text to write.

10 \def\MGL@write##1##2{%

11 \immediate\write##1{##2}%

12 }%

\MGL@read Reads one line from a script opened with \MGL@openin. Its first argument is the
input stream number of the script, and the second is a variable where the read text
will be stored. The variable is first initialized as empty; if the end of the script has
been reached, then there is nothing to read, so it remains empty; otherwise, one
line is read and stored in the variable, locally supressing any end line character
(\endlinechar=-1).

13 \def\MGL@read##1##2{%

14 \def##2{}%

15 \ifeof##1\else%

16 \bgroup%

17 \endlinechar=-1%

18 \immediate\global\read##1 to ##2%

19

19 \egroup%

20 \fi%

21 }%

\MGL@closeout Closes a script opened with \MGL@openout, whose stream number is passed as
argument.

22 \def\MGL@closeout##1{%

23 \immediate\closeout##1%

24 }

\MGL@closein Closes a script opened with \MGL@openin, whose stream number is passed as
argument.

25 \def\MGL@closein##1{%

26 \immediate\closein##1%

27 }

\MGL@includegraphics This is a quite sophisticated command. It is in charge of including the graphics
created by mglTEX.

28 \def\MGL@includegraphics{%

First checks if the image exists. Note the \MGL@dir and \MGL@graphics@dir

macros are set by the user with the \mgldir and \mglgraphicsdir commands,
respectively, while \MGL@script@name stores the name of the script —and thus
the image— executed, and \MGL@graph@ext is the extension chosen by the user
to save the graphics.

29 \IfFileExists{\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext}{%

If the chosen extension is .tex, a LATEX/Tikz file has been created, which has to
be simply included in the document; it will be automatically compiled by LATEX.
(Observe we use the \MGL@TeX@ext macro defined above.)

30 \ifx\MGL@graph@ext\MGL@TeX@ext%

31 \include{\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext}%

If the chosen extension is not .tex, a normal visual image has been created, so
the \includegraphics command is invoked to deal with it. The options for this
command (like scale, angle, etc.) are stored in the \MGL@graph@keys macro,
which is defined by every environment or command that creates and compiles
MGL scripts, according to the optional arguments the user has passed.

32 \else%

33 \expandafter\includegraphics\expandafter[\MGL@graph@keys]{%

34 \MGL@dir\MGL@graphics@dir\MGL@script@name%

35 }%

36 \fi%

37 }{%

If the requested image doesn’t exist, the issue a warning message for the user, and
print a warning framed box (“MGL image not found”) in the place the image
should occupy.

38 \PackageWarning{mgltex}{MGL image "\MGL@script@name" not found}%

39 \fbox{%

20

40 \centering%

41 \bfseries\Huge%

42 \begin{tabular}{c}MGL\\image\\not\\found\end{tabular}%

43 }%

44 }%

45 }%

And here ends the \MGL@switch@on command.

46 }

\MGL@switch@off (Re)defines the same commands as \MGL@switch@on in such a way they accept
the same arguments, but do nothing. The exception is \MGL@includegraphics

which, instead of doing nothing, prints a warning framed box (“mglTEX is off;
no image included”).

47 \def\MGL@switch@off{%

48 \PackageWarning{mgltex}{mglTeX is off}%

49 \def\MGL@openout##1##2{}%

50 \def\MGL@openin##1##2{}%

51 \def\MGL@write##1##2{}%

52 \def\MGL@read##1##2{}%

53 \def\MGL@closeout##1{}

54 \def\MGL@closein##1{}

55 \def\MGL@includegraphics{%

56 \fbox{%

57 \centering%

58 \bfseries\Huge%

59 \begin{tabular}{c}\mglTeX\\is off;\\no image\\included\end{tabular}%

60 }%

61 }%

62 }

\@MGL@comments@on

\@MGL@comments@off

We will need a boolean switch to activate/deactivate commentaries later.

63

64 \def\@MGL@comments@on{\let\if@MGL@comments@\iftrue}

65 \def\@MGL@comments@off{\let\if@mglcomments@\iffalse}

\mglscale

\MGL@scale

\mglscale sets the value of the \MGL@scale macro, which is used later to specify
the default scaling for graphics. It only accepts integer values from 1 to 9, otherwise
it issues a warning and restarts the scaling to 1. In order to be able to check the
validity of the value passed by the user, we first set the \MGL@scale macro to that
value and test it with the \ifcase conditional; if the value is valid, we do nothing,
but if it is invalid, we issue a warning and overwrite \MGL@scale to 1.

66

67 \def\mglscale#1{

68 \def\MGL@scale{#1}%

69 \ifcase\MGL@scale\or\or\or\or\or\or\or\or\else%

70 \PackageWarning{mgltex}{%

71 Scaling value of \MGL@scale\space not allowed; using default (1)%

72 }%

21

73 \def\MGL@scale{1}%

74 \fi%

75 }

\mglquality

\MGL@quality

\mglquality sets the value of the \MGL@quality macro, which is used later to
specify the default quality for graphics. It only accepts integer values from 0 to 8
(the only ones defined by MathGL), otherwise it issues a warning and restarts to
2 (the default for MathGL). In order to be able to check the validity of the value
passed by the user, we first set the \MGL@quality macro to that value and test
it with the \ifcase conditional; if the value is valid, we print an info message to
the .log file about the characteristics of the chosen quality, but if it is invalid, we
issue a warning and overwrite \MGL@scale to 2.

76

77 \def\mglquality#1{%

78 \def\MGL@quality{#1}%

79 \ifcase\MGL@quality%

80 \PackageInfo{mgltex}{%

81 Quality 0: No face drawing (fastest)%

82 }%

83 \or%

84 \PackageInfo{mgltex}{%

85 Quality 1: No color interpolation (fast)%

86 }%

87 \or%

88 \PackageInfo{mgltex}{%

89 Quality 2: High quality (normal)%

90 }%

91 \or%

92 \PackageInfo{mgltex}{%

93 Quality 3: High quality with 3d primitives (not implemented yet)%

94 }%

95 \or%

96 \PackageInfo{mgltex}{%

97 Quality 4: No face drawing, direct bitmap drawing (low memory usage)%

98 }%

99 \or%

100 \PackageInfo{mgltex}{%

101 Quality 5: No color interpolation, direct bitmap drawing (low memory usage)%

102 }%

103 \or%

104 \PackageInfo{mgltex}{%

105 Quality 6: High quality, direct bitmap drawing (low memory usage)%

106 }%

107 \or%

108 \PackageInfo{mgltex}{%

109 Quality 7: High quality with 3d primitives, direct bitmap drawing (not implemented yet)%

110 }%

111 \or%

112 \PackageInfo{mgltex}{%

22

113 Quality 8: Draw dots instead of primitives (extremely fast)%

114 }%

115 \else%

116 \PackageWarning{mgltex}{%

117 Quality #1 not available; using default (2)%

118 }%

119 \def\MGL@quality{2}%

120 \fi%

121 }

Now we declare the options final and draft, which are simply passed to the
graphicx package.

122

123 \DeclareOption{draft}{%

124 \PassOptionsToPackage{\CurrentOption}{graphicx}%

125 }

126 \DeclareOption{final}{%

127 \PassOptionsToPackage{\CurrentOption}{graphicx}%

128 }

Now we can declare the package options on and off so that they execute
\MGL@switch@on and \MGL@switch@off, respectively.

129 \DeclareOption{on}{\MGL@switch@on}

130 \DeclareOption{off}{\MGL@switch@off}

Now, the options call the respective commands.

131 \DeclareOption{nocomments}{\@MGL@comments@off}

132 \DeclareOption{comments}{\@MGL@comments@on}

The pacakage options 1x, . . . , 9x just call \mglscale with the appropiate value.

133 \DeclareOption{1x}{\mglscale{1}}

134 \DeclareOption{2x}{\mglscale{2}}

135 \DeclareOption{3x}{\mglscale{3}}

136 \DeclareOption{4x}{\mglscale{4}}

137 \DeclareOption{5x}{\mglscale{5}}

138 \DeclareOption{6x}{\mglscale{6}}

139 \DeclareOption{7x}{\mglscale{7}}

140 \DeclareOption{8x}{\mglscale{8}}

141 \DeclareOption{9x}{\mglscale{9}}

The package options 0q, . . . , 8q just call \mglquality with the appropiate value.

142 \DeclareOption{0q}{\mglquality{0}}

143 \DeclareOption{1q}{\mglquality{1}}

144 \DeclareOption{2q}{\mglquality{2}}

145 \DeclareOption{3q}{\mglquality{3}}

146 \DeclareOption{4q}{\mglquality{4}}

147 \DeclareOption{5q}{\mglquality{5}}

148 \DeclareOption{6q}{\mglquality{6}}

149 \DeclareOption{7q}{\mglquality{7}}

150 \DeclareOption{8q}{\mglquality{8}}

23

\MGL@graph@ext The following options set the default graphics extension, which is stored in the
\MGL@graph@ext macro for later use.

151

152 \DeclareOption{eps}{\def\MGL@graph@ext{.eps}}

153 \DeclareOption{epsz}{\def\MGL@graph@ext{.epsz}}

154 \DeclareOption{epsgz}{\def\MGL@graph@ext{.eps.gz}}

155 \DeclareOption{bps}{\def\MGL@graph@ext{.bps}}

156 \DeclareOption{bpsz}{\def\MGL@graph@ext{.bpsz}}

157 \DeclareOption{bpsgz}{\def\MGL@graph@ext{.bps.gz}}

158 \DeclareOption{pdf}{\def\MGL@graph@ext{.pdf}}

159 \DeclareOption{png}{\def\MGL@graph@ext{.png}}

160 \DeclareOption{jpg}{\def\MGL@graph@ext{.jpg}}

161 \DeclareOption{jpeg}{\def\MGL@graph@ext{.jpeg}}

162 \DeclareOption{gif}{\def\MGL@graph@ext{.gif}}

163 \DeclareOption{tex}{\def\MGL@graph@ext{.tex}}

Any other option passed by the user is invalid, so an error message is issued.

164

165 \DeclareOption*{\@unknownoptionerror}

We now declare the default package options, and, finally, process the options
the user specifies in the order they are introduced.

166

167 \ExecuteOptions{final,on,nocomments,1x,2q,eps}

168 \ProcessOptions*

mglTEX requires the keyval package to define 〈key〉=〈value〉 options for the en-
vironments and commands; the graphicx package apports the facilities for inclusion
of graphics, and the verbatim package is used as engine for the environments.

169

170 \RequirePackage{keyval}

171 \RequirePackage{graphicx}

172 \RequirePackage{verbatim}

\MGL@graph@keys The main family of 〈key〉=〈value〉 pairs is defined. These pairs are common to
every environment or command that produces graphics. Most of the 〈key〉’s are
redefinitions of the optional arguments for the \includegraphics commands, so
they are stored inside the \MGL@graph@keys macro, which is later passed to that
command as optional argument by \MGL@includegraphics.

173

174 \define@key{MGL@keys}{bb}{\g@addto@macro\MGL@graph@keys{bb=#1,}}

175 \define@key{MGL@keys}{bbllx}{\g@addto@macro\MGL@graph@keys{bbllx=#1,}}

176 \define@key{MGL@keys}{bblly}{\g@addto@macro\MGL@graph@keys{bblly=#1,}}

177 \define@key{MGL@keys}{bburx}{\g@addto@macro\MGL@graph@keys{bburx=#1,}}

178 \define@key{MGL@keys}{bbury}{\g@addto@macro\MGL@graph@keys{bbury=#1,}}

179 \define@key{MGL@keys}{natwidth}{\g@addto@macro\MGL@graph@keys{natwidth=#1,}}

180 \define@key{MGL@keys}{natheight}{\g@addto@macro\MGL@graph@keys{natheight=#1,}}

181 \define@key{MGL@keys}{hiresbb}{\g@addto@macro\MGL@graph@keys{hiresbb=#1,}}

182 \define@key{MGL@keys}{viewport}{\g@addto@macro\MGL@graph@keys{viewport=#1,}}

24

183 \define@key{MGL@keys}{trim}{\g@addto@macro\MGL@graph@keys{trim=#1,}}

184 \define@key{MGL@keys}{angle}{\g@addto@macro\MGL@graph@keys{angle=#1,}}

185 \define@key{MGL@keys}{origin}{\g@addto@macro\MGL@graph@keys{origin=#1,}}

186 \define@key{MGL@keys}{width}{\g@addto@macro\MGL@graph@keys{width=#1,}}

187 \define@key{MGL@keys}{height}{\g@addto@macro\MGL@graph@keys{height=#1,}}

188 \define@key{MGL@keys}{totalheight}{\g@addto@macro\MGL@graph@keys{totalheight=#1,}}

189 \define@key{MGL@keys}{keepaspectratio}[true]{%

190 \g@addto@macro\MGL@graph@keys{keepaspectratio=#1,}%

191 }

192 \define@key{MGL@keys}{scale}{\g@addto@macro\MGL@graph@keys{scale=#1,}}

193 \define@key{MGL@keys}{clip}[true]{\g@addto@macro\MGL@graph@keys{clip=#1,}}

194 \define@key{MGL@keys}{draft}[true]{\g@addto@macro\MGL@graph@keys{draft=#1,}}

195 \define@key{MGL@keys}{type}{\g@addto@macro\MGL@graph@keys{type=#1,}}

196 \define@key{MGL@keys}{ext}{\g@addto@macro\MGL@graph@keys{ext=#1,}}

197 \define@key{MGL@keys}{read}{\g@addto@macro\MGL@graph@keys{read=#1,}}

198 \define@key{MGL@keys}{command}{\g@addto@macro\MGL@graph@keys{command=#1,}}

\MGL@graph@ext Stores the default extension for the creation of the graphics.

199 \define@key{MGL@keys}{imgext}{\def\MGL@graph@ext{.#1}}

\@MGL@lineno@ The only 〈key〉=〈value〉 pair needed for verbatim-like environments and commands
is the one for the lineno option, which sets the value of the \@MGL@lineno@

boolean macro.

200

201 \newif\if@MGL@lineno@

202 \define@key{MGL@verb@keys}{lineno}[true]{\csname @MGL@lineno@#1\endcsname}

\MGL@dir This is the mglTEX main working directory. By default, it is defined to empty, so
it points to the path of the LATEX document.

203

204 \def\MGL@dir{}

\MGL@scripts@dir The subdirectory inside \MGL@dir where all MGL scripts will be created.

205 \def\MGL@scripts@dir{}

\MGL@graphics@dir The subdirectory inside \MGL@dir where all MGL graphics will be created.

206 \def\MGL@graphics@dir{}

\MGL@backups@dir The subdirectory inside \MGL@dir where all backups of scripts will be created.

207 \def\MGL@backups@dir{}

\MGL@paths This is a list of paths where extracted and external scripts will be searched for by
the \mglgraphics and \mglinclude commands. Since extracted scripts are cre-
ated inside \MGL@dir\MGL@scripts@dir and \MGL@dir\MGL@backups@dir, this
directories are included.

208 \def\MGL@paths{\MGL@dir\MGL@scripts@dir,\MGL@dir\MGL@backups@dir}

25

\mglsettings First, we define a 〈key〉=〈value〉 family, MGL@sett@keys, for the \mglsettings

command.

209 \define@key{MGL@sett@keys}{dir}{\def\MGL@dir{#1}}

210 \define@key{MGL@sett@keys}{scriptsdir}{\def\MGL@scripts@dir{#1}}

211 \define@key{MGL@sett@keys}{graphicsdir}{\def\MGL@graphics@dir{#1}}

212 \define@key{MGL@sett@keys}{backupsdir}{\def\MGL@backups@dir{#1}}

213 \define@key{MGL@sett@keys}{paths}{\g@addto@macro\MGL@paths{,#1}}

214 \define@key{MGL@sett@keys}{quality}{\mglquality{#1}}

215 \define@key{MGL@sett@keys}{scale}{\mglscale{#1}}

216 \define@key{MGL@sett@keys}{imgext}{\def\MGL@graph@ext{.#1}}

The command receives and executes the 〈key〉=〈value〉 pairs for MGL@sett@keys.
This is an only-preamble command.

217 \def\mglsettings#1{\setkeys{MGL@sett@keys}{#1}}

218 \@onlypreamble\mglsettings

\MGL@main@script@name This macro stores the name of the of the document’s main script. It is initialized
to the name of the LATEX document.

219

220 \edef\MGL@main@script@name{\jobname}

We set some additional staff that will be used later.

\MGL@main@stream The output stream for the document’s main script.

221

222 \newwrite\MGL@main@stream

\MGL@out@stream The output stream for scripts other than the main one.

223 \newwrite\MGL@out@stream

\MGL@in@stream The input stream for scripts other than the main one.

224 \newread\MGL@in@stream

MGL@script@no The internal counter used by environments like mgl and commands like \mglplot

to automatically name scripts.

225 \newcounter{MGL@script@no}

MGL@line@no The counter used for verbatim-like environments and commands to numerate the
lines of code.

226 \newcounter{MGL@line@no}

MGL@verb@script@no The counter used to numerate verbatim-written scripts with the \listofmglscripts
command.

227 \newcounter{MGL@verb@script@no}

\@MGL@list@script@ The boolean switch used to determine whether to add a verbatim-written script
to the list of MGL scripts.

228 \newif\if@MGL@list@script@

26

\l@MGL@script The style for the leaders associating script name and page number in the list of
MGL scripts.

229 \def\l@MGL@script{\@dottedtocline{1}{0em}{1.5em}}

Finally, the supported graphic formats are declared, and the \verbatim@finish

command from the verbatim package is disabled to avoid it from writing a blank
line at the end of every script (see subsection 2.1).

230 \DeclareGraphicsExtensions{%

231 .eps,.epsz,.eps.gz,.bps,.bpsz,.bps.gz,.pdf,.png,.jpg,.jpeg,.gif%

232 }

233 \let\verbatim@finish\relax

6.2 Anatomy of environments and commands

Many of the environments and commands defined by mglTEX are based on the
same pieces of code. So, in order to avoid repetition of commands, we use the
concept of anatomy of environments and commands, which is basically the idea of
taking repetitive pieces of code and enclose them into macros which can later be
used.

\MGL@setkeys This command receives two arguments: a family of 〈key〉=〈value〉 pairs, like
MGL@keys, and a list of such pairs. It first cleans the \MGL@graph@keys macro,
and the process the list of pairs.

234

235 \def\MGL@setkeys#1#2{%

236 \def\MGL@graph@keys{}%

237 \setkeys{#1}{#2}%

238 }

\MGL@codes This macro changes the category codes of all special characters (like \, $, etc.)
to 12 (other), so they don’t have any special meaning and can be processed as
normal text. The exception is the new line character (^^M), which is kept active
for compatibility with the verbatim package.

239

240 \def\MGL@codes{%

241 \let\do\@makeother\dospecials%

242 \catcode‘\^^M\active%

243 }

\MGL@document@scripts A macro to store the names of the scripts created or compiled in the document.

244

245 \def\MGL@document@scripts{}

\MGL@set@script@name

\MGL@script@name

\MGL@set@script@name receives the name of a script without extension as ar-
gument, defines \MGL@script@name as that name, and checks if it has already
been created or compiled, by comparing it with the names already stored in

27

\MGL@document@scripts; if it’s there already, warns the user. Finally, adds the
name of the script to \MGL@document@scripts.

246 \def\MGL@set@script@name#1{%

247 \edef\MGL@script@name{#1}%

248 \@for\MGL@temp@a:=\MGL@document@scripts\do{%

249 \ifx\MGL@temp@a\MGL@script@name%

250 \PackageWarning{mgltex}{Multiple MGL scripts named "\MGL@script@name.mgl"}%

251 \fi%

252 }%

253 \g@addto@macro\MGL@document@scripts{\MGL@script@name,}%

254 }

\MGL@unchanged This command defines the “switch” \MGL@@@〈script〉, where 〈script〉 is passed as
argument, which indicates the script 〈script〉.mgl has not changed. This command
has to be written to the .aux file to be preserved from compilation to compilation.

255

256 \def\MGL@unchanged#1{%

257 \global\@namedef{MGL@@@#1}{}%

258 }

\MGL@process@script It checks whether the “switch” \MGL@@@\MGL@script@name is undefined, in which
case executes its first argument. If the switch is defined, it checks if the corre-
sponding image has been created; if so, it executes its second argument; otherwise,
the first one.

259

260 \def\MGL@process@script#1#2{%

261 \@ifundefined{MGL@@@\MGL@script@name}{%

262 #1%

263 }{%

264 \IfFileExists{\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext}{%

265 #2%

266 }{%

267 #1%

268 }%

269 }%

270 }

\MGL@def@for@loop

\MGL@for

\MGL@def@for@loop defines the command \MGL@for which is similar to the \@for
command from the LATEX kernel, with the only exception that, instead of iterating
over comma-separated lists, it can iterate over lists of items with any kind of
separator, which is passed as argument of \MGL@def@for@loop. The body of this
command is copied from the definition code of \@for, extracted from The LATEX 2ε
Sources document, replacing the “,” by “#1”. Note that \MGL@for is used only
by the \mglplot command, but it has been included as part of the anatomy of
environments and commands to keep cleanness because it is quite long code.

271

272 \def\MGL@def@for@loop#1{%

273 \long\def\MGL@for##1:=##2\do##3{%

28

274 \expandafter\def\expandafter\@fortmp\expandafter{##2}%

275 \ifx\@fortmp\@empty\else%

276 \expandafter\MGL@forloop##2#1\@nil#1\@nil\@@##1{##3}%

277 \fi%

278 }%

279 \long\def\MGL@forloop##1#1##2#1##3\@@##4##5{%

280 \def##4{##1}%

281 \ifx##4\@nnil\else%

282 ##5\def##4{##2}%

283 \ifx##4\@nnil\else%

284 ##5\MGL@iforloop##3\@@##4{##5}%

285 \fi%

286 \fi%

287 }%

288 \long\def\MGL@iforloop##1#1##2\@@##3##4{%

289 \def##3{##1}%

290 \ifx##3\@nnil%

291 \expandafter\@fornoop%

292 \else%

293 ##4\relax\expandafter\MGL@iforloop%

294 \fi%

295 ##2\@@##3{##4}%

296 }%

297 }

The default \MGL@for loop iterates over ^^J-separated lists, i.e, 〈new line〉-
character-lists.

298 \MGL@def@for@loop{^^J}

\MGL@compare@code \MGL@compare@code is in charge of comparing the user’s MGL code, embedded
within mglTEX environments, with its corresponding extracted script. For that
purpose, the \verbatim@processline and \verbatim@finish commands from
the verbatim package are redefined.

299

300 \def\MGL@compare@code#1{%

\MGL@next This macro is called at the end of environments that use the \MGL@compare@code

macro, and performs the ending actions of the comparision process, which are clos-
ing the \MGL@in@stream and writing the \MGL@unchanged{\MGL@script@name} to
the .aux file. If during the comparison process a difference in the code is found,
\MGL@next is redefined to only close the \MGL@in@stream.

301 \def\MGL@next{%

302 \MGL@closein\MGL@in@stream%

303 \MGL@write\@auxout{\string\MGL@unchanged{\MGL@script@name}}%

304 }%

The \verbatim@processline command is redefined to read from the input stream
to a temporary variable (\MGL@temp@a), and compare it with one line of code in the
LATEX document, which is stored in another temporary variable (\MGL@temp@b).

29

In case they are not equal, the \MGL@next macro is redefined to only close the
input stream, and \verbatim@processline is redefine again to do nothing (a
little speed-up).

305 \def\verbatim@processline{%

306 \MGL@read\MGL@in@stream{\MGL@temp@a}%

307 \edef\MGL@temp@b{\the\verbatim@line}%

308 \ifx\MGL@temp@a\MGL@temp@b\else%

309 \def\MGL@next{\MGL@closein\MGL@in@stream}%

310 \def\verbatim@processline{}%

311 \fi%

312 }%

The \verbatim@finish macro, which is called at the end of the environment, is
also redefined to perform one last read of the input stream, and then check if the
end of file has been reached; if it hasn’t, then, despite the end of the environment
has been reached —thus the end of code—, there is still code inside the script,
so there are differences between them, and \MGL@next has to be redefined to do
nothing but close the input stream.

313 \def\verbatim@finish{%

314 \MGL@read\MGL@in@stream{\MGL@temp@a}%

315 \ifeof\MGL@in@stream\else%

316 \def\MGL@next{\MGL@closein\MGL@in@stream}%

317 \fi%

318 }%

Finally, the input stream is opened, and the comparison is started by calling
\verbatim@start.

319 \MGL@openin\MGL@in@stream{#1}%

320 \verbatim@start%

321 }

\MGL@write@funcs This macro is used only by the mglfunc environment. Its only purpose is to store
the commands to insert MGL functions in the main script, and is called at the
end of the document or when the \mglname command is used. For now, we only
ask it to write the stop command6 that separates the section of scripts from the
section of functions in the main script.

322

323 \def\MGL@write@funcs{\MGL@write\MGL@main@stream{stop^^J}}

\MGL@func This is the command that writes the MGL functions. It is intended to be stored
inside \MGL@write@funcs. It opens the backup file of the MGL function whose
name is passed as argument (and has been created by a mglfunc environment),
and then calls \MGL@@func to transcript from that file, line by line, to the main
script.

324 \def\MGL@func#1{%

325 \MGL@openin\MGL@in@stream{\MGL@dir\MGL@backups@dir#1.mgl}%

6Note the stop command is unnecesary in newer versions of the MGL language, but it is kept
in mglTEX for compatibility and for elegance.

30

326 \MGL@@func%

327 }

\MGL@@func This command transcripts only one line from backup file of a MGL function to
the main script. It calls itself recursively until the end of the backup.

328 \def\MGL@@func{%

It first reads from the input stream to the \MGL@temp@a temporary variable.

329 \MGL@read\MGL@in@stream{\MGL@temp@a}%

If the end of the file has been reached, the stream is closed.

330 \ifeof\MGL@in@stream%

331 \MGL@closein\MGL@in@stream%

If the end of file hasn’t been reached, \MGL@temp@a is written to the main script,
and \MGL@@func is called recursively.

332 \else%

333 \MGL@write\MGL@main@stream{\MGL@temp@a}%

334 \expandafter\MGL@@func%

335 \fi%

336 }

\MGL@set@verbatim@code This command sets the parameters for verbatim-like environments and commands.

337

338 \def\MGL@set@verbatim@code{%

The following is standard stuff for verbatim-like environments and commands.

339 \if@minipage\else\vskip\parskip\fi%

340 \leftskip\@totalleftmargin\rightskip\z@skip%

341 \parindent\z@\parfillskip\@flushglue\parskip\z@%

342 \@@par%

343 \def\par{%

344 \if@tempswa%

345 \leavevmode\null\@@par\penalty\interlinepenalty%

346 \else%

347 \@tempswatrue%

348 \ifhmode\@@par\penalty\interlinepenalty\fi%

349 \fi%

350 }%

351 \obeylines%

352 \let\do\@makeother\dospecials%

353 \verbatim@font%

354 \frenchspacing%

355 \everypar\expandafter{\the\everypar\unpenalty}%

If there are no lines of MGL code, instead of issuing an error, we display a package
warning.

356 \def\@noitemerr{\PackageWarning{mglTeX}{Empty MGL script}}%

The space between the end of the label box and the text of the first item
(\labelsep) is set to 1em, while the separation between items (\itemsep) is set
to zero.

31

357 \labelsep1em%

358 \itemsep\z@%

Since we want the lines of code to be broken between words, but verbatim spaces
are unbreakable, we trick LATEX by inserting a breakable spaces (\space) instead.

359 \def\@xobeysp{\space}\@vobeyspaces%

However, LATEX still resists breaking lines as much as possible in order to preserve
the shape of paragraphs, so we tell it it’s OK not to do so by setting the badness
tolerance before hyphenation (\pretolerance) and the badness above which bad
hboxes will be shown (\hbadness) to the maximum value of 10000 (\@M).

360 \pretolerance\@M%

361 \hbadness\@M%

In order to achieve the desired indentation of broken lines, we use the follow-
ing trick: We increase the \leftskip parameter by the amount specified by
\mglbreakindent, so that lines will be indented; but then we decrease the
\itemindent parameter by the same amount so the first line won’t be indented.

362 \advance\leftskip\mglbreakindent%

363 \itemindent-\mglbreakindent%

364 }

\MGL@line@sep This is the separator displayed at the beginning and ending of the mglblock and
mglverbatim environments, to distinguish the MGL code from the normal text.
Its definition is similar to the one of the \dotfill command, which can be found in
The LATEX 2ε Sources document, but \nopagebreak commands have been added
to avoid unaesthetic page breaking before and after the separators.

365

366 \def\MGL@line@sep{%

367 \nopagebreak%

368 \leavevmode\cleaders\hrule height\mgllinethickness\hfill\kern\z@%

369 \nopagebreak%

370 }

\MGL@dash@sep This is the separator displayed at the beginning and ending of the mglcomments

environment, when it is allowed to be displayed.

371 \def\MGL@dash@sep{%

372 \nopagebreak%

373 \leavevmode\cleaders\hb@xt@\mgldashwidth{\hss-\hss}\hfill\kern\z@%

374 \nopagebreak%

375 }

6.3 Environments for MGL code embedding

For the following, we agree that if a macro is required by an environment, and it
hasn’t been already defined, it will be defined between the commands that start
and end such environment; also the command’s name will have the environment’s
name as prefix.

32

mgl This environment has to transcript its contents to the document’s main script, and
create a backup of the code simultaneously; the backup is used to detect changes
in following compilations.

\mgl The command that starts the mgl environment. It is called by the \begin{mgl}

command.

376

377 \newcommand\mgl[1][]{%

We define an additional 〈key〉=〈value〉 pair in the main family of pairs, correspond-
ing to the label option for this environment. This definition is local because we
don’t want to be valid outside the environment.

378 \define@key{MGL@keys}{label}{\def\MGL@script@name{##1}}%

The list of comma-separated options is processed.

379 \MGL@setkeys{MGL@keys}{#1}%

If the user hasn’t used the label option, the automatic naming mechanism is
called. Note that \MGL@main@script@name is set using the \mglname command.

380 \@ifundefined{MGL@script@name}{%

381 \stepcounter{MGL@script@no}%

382 \edef\MGL@script@name{\MGL@main@script@name-MGL-\arabic{MGL@script@no}}%

383 }{}%

We use the \MGL@set@script@name to test whether the given name has already
been used.

384 \MGL@set@script@name{\MGL@script@name}%

\MGL@codes is used to change the codes of special characters.

385 \MGL@codes%

\MGL@process@script is used to test whether the code has changed or not the last
time LATEX has been executed. If it has changed, we call the \MGL@write@script

command to (re)write the code; otherwise, the code is scanned again by asking
\MGL@compare@code to perform a comparison on the backup file, in order to de-
termine whether the code has changed now.

386 \MGL@process@script{%

387 \MGL@write@script%

388 }{%

389 \MGL@compare@code{\MGL@dir\MGL@backups@dir\MGL@script@name.mgl}%

390 }%

391 }

\MGL@write@script (Re)writes the contents of the mgl environment.

392 \def\MGL@write@script{%

\MGL@next It contains the actions to perform immediately after the end of \MGL@write@script.
They are close the output stream; write in the main script the commands to save
the image, and to reset the initial values for all MGL parameters and clear the
image; finally, write \MGL@unchanged{\MGL@script@name} in the .aux file.

33

393 \def\MGL@next{%

394 \MGL@closeout\MGL@out@stream%

395 \MGL@write\MGL@main@stream{%

396 write ’\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext’^^J%

397 ^^Jreset^^J%

398 }%

399 \MGL@write\@auxout{\string\MGL@unchanged{\MGL@script@name}}%

400 }%

Now we redefine the \verbatim@processline macro to write \the\verbatim@line
to the main script and to the backup file.

401 \def\verbatim@processline{%

402 \MGL@write\MGL@main@stream{\the\verbatim@line}%

403 \MGL@write\MGL@out@stream{\the\verbatim@line}%

404 }%

Before writing the MGL code of the environment, we set the default quality.

405 \MGL@write\MGL@main@stream{quality \MGL@quality}%

We open the backup file in the output stream.

406 \MGL@openout\MGL@out@stream{\MGL@dir\MGL@backups@dir\MGL@script@name.mgl}%

The transcription process starts by calling the \verbatim@start command.

407 \verbatim@start%

408 }

\endmgl The command that ends the mgl evironment. It is called by the \end{mgl} com-
mand. It simply calls \MGL@next to execute the final actions, and \MGL@includegraphics

to insert the corresponding image. Note that \MGL@next performs different ac-
tions depending on whether \MGL@process@script calls \MGL@write@script or
\MGL@compare@code, both of which define \MGL@next differently.

409 \def\endmgl{%

410 \MGL@next%

411 \MGL@includegraphics%

412 }

mgladdon This environment only writes its contents to the document’s main script, so no
backup is created, nor compilation or inclusion of graphics.

\mgladdon Since this environment doesn’t produce any output in the LATEX document,
we start a space hack by calling \@bsphack. We set the appropiate category
codes with \MGL@codes; the \verbatim@processline is redefined to transcript
\the\verbatim@line to the main script; finally, the \verbatim@start command
starts the transcription process.

413

414 \def\mgladdon{%

415 \@bsphack%

416 \MGL@codes%

417 \def\verbatim@processline{%

418 \MGL@write\MGL@main@stream{\the\verbatim@line}%

34

419 }%

420 \verbatim@start%

421 }

\endmgladdon The environment ends by closing the space hack with \@esphack.

422 \def\endmgladdon{\@esphack}

mglfunc This environment is used to define MGL functions inside the document’s main
script. Instead of writing directly to the main script, which would cause the MGL
parser to end the execution of that script, it writes to a backup file which is later
transcript before closing the main script.

\mglfunc It starts the mglfunc environment.

423

424 \newcommand\mglfunc[2][0]{%

Once again, since this command doesn’t produce any output in the LATEX docu-
ment, we use a space hack.

425 \@bsphack%

Although MGL functions and normal scripts are diferent in nature, in the sense
that the first don’t produce graphics by themselves, we have to check whether the
function is being named as another script, because otherwise we run the risk of
overwriting a backup file or confusing the parser.

426 \MGL@set@script@name{#2}%

The instruction to transcript from the backup file to the main stream is stored in
\MGL@write@funcs (see subsection 6.2).

427 \g@addto@macro\MGL@write@funcs{\MGL@func{#2}}%

The codes for special characters are set.

428 \MGL@codes%

The \verbatim@processline command is redefined to write \the\verbatim@line
to the backup file.

429 \def\verbatim@processline{\MGL@write\MGL@out@stream{\the\verbatim@line}}%

The backup file is opened for writing.

430 \MGL@openout\MGL@out@stream{\MGL@dir\MGL@backups@dir\MGL@script@name.mgl}%

The head of the function is written.

431 \MGL@write\MGL@out@stream{func ’\MGL@script@name’ #1}%

The writing process is started.

432 \verbatim@start%

433 }

\endmglfunc It ends the mglfunc environment.

434 \def\endmglfunc{%

The end of the function is written.

435 \MGL@write\MGL@out@stream{return^^J}%

35

The output stream is closed.

436 \MGL@closeout\MGL@out@stream%

The space hack is terminated.

437 \@esphack%

438 }%

mglcode This environment also checks for changes on the code, but, since it writes to its
own script, there is no need to create a backup file (the check is performed using
the script itself).

\mglcode It starts the mglcode environment. Its anatomy is similar to that of the \mgl

command.

439

440 \newcommand\mglcode[2][]{%

441 \MGL@setkeys{MGL@keys}{#1}%

442 \MGL@set@script@name{#2}%

443 \MGL@codes%

444 \MGL@process@script{%

445 \mglcode@write@script%

446 }{%

447 \MGL@compare@code{\MGL@dir\MGL@scripts@dir\MGL@script@name.mgl}%

448 }%

449 }

\mglcode@write@script This command takes care of creating the script for the mglcode environment.

450 \def\mglcode@write@script{%

\MGL@next It performs the actions immediately following the end of \mglcode@write@script.

451 \def\MGL@next{%

The output stream is closed.

452 \MGL@closeout\MGL@out@stream%

The \MGL@unchanged{\MGL@script@name} command is written to the .aux file.

453 \MGL@write\@auxout{\string\MGL@unchanged{\MGL@script@name}}%

The script compilation instruction is written to the terminal.

454 \MGL@write{18}{%

455 mglconv -q \MGL@quality\space -S \MGL@scale\space%

456 -s "\MGL@dir\MGL@scripts@dir\mglcommonscriptname.mgl"\space%

457 -o "\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext"\space%

458 "\MGL@dir\MGL@scripts@dir\MGL@script@name.mgl"%

459 }%

460 }%

The \verbatim@processline command is redefined so it writes \the\verbatim@line
to the output stream.

461 \def\verbatim@processline{\MGL@write\MGL@out@stream{\the\verbatim@line}}%

36

The script is opened for writing in the output stream.

462 \MGL@openout\MGL@out@stream{\MGL@dir\MGL@scripts@dir\MGL@script@name.mgl}%

The writing process is started by calling the \verbatim@start command.

463 \verbatim@start%

464 }

\endmglcode It ends the mglcode environment. \MGL@next is called to perform the final
actions and \MGL@includegraphics is called to insert the corresponding im-
age. Once more, \MGL@next has different meanings depending on whether
\MGL@process@script branches to \MGL@compare@code or \mglcode@write@script.

465 \def\endmglcode{%

466 \MGL@next%

467 \MGL@includegraphics%

468 }

mglscript The only function of this environment is to write its contents to a script; no image
is created. It has been considered that scanning the code looking for changes is
as much operation-expensive as simply writing the code, so it has been decided
that this environment (over)writes the script everytime it’s executed, without
performing any check.

\mglscript Starts the environment. Its anatomy is similar to the previous environments. Since
no output is written to the LATEX document, a space hack is used.

469

470 \def\mglscript#1{%

471 \@bsphack%

472 \MGL@set@script@name{#1}%

473 \MGL@codes%

474 \def\verbatim@processline{\MGL@write\MGL@out@stream{\the\verbatim@line}}%

475 \MGL@openout\MGL@out@stream{\MGL@dir\MGL@scripts@dir\MGL@script@name.mgl}%

476 \verbatim@start%

477 }

\endmglscript It ends the mglscript environment. The space hack ends here, too.

478 \def\endmglscript{%

479 \MGL@closeout\MGL@out@stream%

480 \@esphack%

481 }

mglcommon This environment doesn’t require any backup file nor any scanning for changes. Al-
though the user sets the name of the script by redifining \mglcommonscriptname,
it is necessary to perform a check of the name, just in case a name has been
inadvertedly repeated.

\mglcommon Starts the mglcommon environment.

482

483 \def\mglcommon{%

484 \@bsphack%

37

485 \MGL@set@script@name{\mglcommonscriptname}%

486 \MGL@codes%

487 \def\verbatim@processline{\MGL@write\MGL@out@stream{\the\verbatim@line}}%

488 \MGL@openout\MGL@out@stream{\MGL@dir\MGL@scripts@dir\MGL@script@name.mgl}%

489 \verbatim@start%

490 }

It is declared to be an only-preamble command, so it can’t be used after the
\begin{document} instruction.

491 \@onlypreamble\mglcommon

\endmglcommon It ends the mglcommon environment.

492 \def\endmglcommon{%

493 \MGL@closeout\MGL@out@stream%

494 \@esphack%

495 }

6.4 Fast creation of graphics

mglsetup This environment is meant to contain code that is executed just before the in-
struction of a \mglplot command, producing always the same ouput. Instead of
writing a new chunk of code for that purpose, mglsetup is defined as a special case
of the mglfunc environment, with the exception that the MGL function obtained
this way doesn’t accept any argument —thus producing always the same output.

\mglsetup It is defined as an alias for \mglfunc, but only the name of the MGL function is
passed to it, forcing the assumption that the number of arguments for the function
is zero.

496

497 \def\mglsetup#1{\mglfunc{#1}}%

\endmglsetup Likewise, it is defined as an alias for \endmglfunc.

498 \let\endmglsetup\endmglfunc

\mglplot Although the function of this command is quite simple and straightforward, it
requires many lines of code and some tricks in order to reach the desired function-
ality.

499

500 \newcommand\mglplot[2][]{%

We add some 〈key〉=〈value〉 pairs locally. The label key works exactly as the one
of the mgl environment.

501 \define@key{MGL@keys}{label}{\edef\MGL@script@name{##1}}%

The setup key defines the variable \MGL@mglplot@setup which is later used to
call a setup function for the corresponding image.

502 \define@key{MGL@keys}{setup}{\def\MGL@mglplot@setup{##1}}%

38

The separator key uses the \MGL@def@for@loop to define \MGL@for so that it
iterates over lists separated by the indicated separator symbol.

503 \define@key{MGL@keys}{separator}{%

504 \MGL@def@for@loop{##1}%

505 }%

Now, we process the keys passed by the user.

506 \MGL@setkeys{MGL@keys}{#1}%

If the user hasn’t specified a name using the label option, then a name is auto-
generated following the same naming mechanism of the mgl environment.

507 \@ifundefined{MGL@script@name}{%

508 \stepcounter{MGL@script@no}

509 \edef\MGL@script@name{\MGL@main@script@name-MGL-\arabic{MGL@script@no}}

510 }{}%

The name of the script is checked.

511 \MGL@set@script@name{\MGL@script@name}%

If the user hasn’t specified a setup, then the only code that has to be written
is the non-optional argument of \mglplot; it is stored in the temporary variable
\MGL@temp@a.

512 \@ifundefined{MGL@mglplot@setup}{%

513 \edef\MGL@temp@a{#2}%

514 }{%

If the user has specified a setup, we store the code to call the setup and the code
passed by the user in the temporary variable \MGL@temp@a.

515 \edef\MGL@temp@a{call ’\MGL@mglplot@setup’^^J#2}%

516 }

If the code has changed the last time LATEX has been run, we call \mglplot@write@script
to (re)write and (re)compile the script; otherwise, we call \mglplot@compare@code
to check if it has changed this time.

517 \MGL@process@script{%

518 \mglplot@write@script%

519 }{%

520 \mglplot@compare@code%

521 }%

Finally, the corresponding image is included in the document.

522 \MGL@includegraphics%

523 }

\mglplot@write@script This command takes the code stored in the \MGL@temp@a variable by the \mglplot
command and writes it to the document’s main script and to a backup file, so
changes in the code can be detected.

524 \def\mglplot@write@script{%

The default quality is written to the main script.

525 \MGL@write\MGL@main@stream{quality \MGL@quality}%

39

The backup file is opened to write in the output stream.

526 \MGL@openout\MGL@out@stream{\MGL@dir\MGL@backups@dir\MGL@script@name.mgl}%

Now we use the \MGL@for command to iterate over \MGL@temp@a. It takes a piece
of code up to the separator symbol indicated by the user, and stores it in the
temporary variable \MGL@temp@b, which is then written to the main script and
backup file.

527 \MGL@for\MGL@temp@b:=\MGL@temp@a\do{%

528 \MGL@write\MGL@main@stream{\MGL@temp@b}%

529 \MGL@write\MGL@out@stream{\MGL@temp@b}%

530 }%

The output stream is closed.

531 \MGL@closeout\MGL@out@stream%

The instructions to save the image and reset the MGL parameters are written to
the main script.

532 \MGL@write\MGL@main@stream{%

533 write ’\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext’^^J%

534 ^^Jreset^^J%

535 }%

Finally, \MGL@unchanged{\MGL@script@name} is written to the .aux file.

536 \MGL@write\@auxout{\string\MGL@unchanged{\MGL@script@name}}%

537 }

\mglplot@compare@code This macro is in charge of comparing the code from a \mglplot command to
detect changes.

538 \def\mglplot@compare@code{%

The action that will finish this command is, for now, to write \MGL@unchanged{\MGL@script@name}
in the .aux file; it is stored in the \MGL@next variable. If no changes in the code
are found, this will remain as the last action; otherwise, it will be overwritten to
do nothing.

539 \def\MGL@next{\MGL@write\@auxout{\string\MGL@unchanged{\MGL@script@name}}}%

The backup file is opened for reading in the input stream.

540 \MGL@openin\MGL@in@stream{\MGL@dir\MGL@backups@dir\MGL@script@name.mgl}%

Once again, the \MGL@for command is used to iterate over the \MGL@temp@a

variable defined by \mglplot. Pieces of code are taken up to the appearance of
the separator symbol indicated by the user. In every iteration, the corresponding
piece of code is stored in the \MGL@temp@b variable, one line of code is read from
the input stream to the variable \MGL@temp@c, and these two are compared; if
they are different, we redefined \MGL@next to do nothing.

541 \MGL@for\MGL@temp@b:=\MGL@temp@a\do{%

542 \MGL@read\MGL@in@stream{\MGL@temp@c}%

543 \ifx\MGL@temp@b\MGL@temp@c\else%

544 \let\MGL@next\relax%

545 \fi%

546 }%

40

The input stream is closed.

547 \MGL@closein\MGL@in@stream%

\MGL@next is executed.

548 \MGL@next%

549 }

6.5 Verbatim-like environments

mglblock

mglblock*

The main body of these environments is the same; the only difference is that the
unstarred version creates an entry in the \listofmglscripts, while the starred
version doesn’t.

\mglblock This command defines the switch \@MGL@list@script@ as true, so a \listofmglscripts
entry for the code is created, then calls the main body of the environment
(\mglblock@).

550

551 \def\mglblock{\@MGL@list@script@true\mglblock@}

\mglblock* This command defines the switch \@MGL@list@script@ as false, so no \listofmglscripts
entry is created, then calls the main body of the environment (\mglblock@).

552 \@namedef{mglblock*}{\@MGL@list@script@false\mglblock@}

\mglblock@ This macro contains the real functionality of the mglblock and mglblock* envi-
ronments. It is the common code they both have.

553 \newcommand\mglblock@[2][]{%

First, the switch \@MGL@lineno@ is set to true, so the lines of code will be numbered
by default.

554 \@MGL@lineno@true%

Now we process the decision of the user of keeping the line numbering or not.

555 \setkeys{MGL@verb@keys}{#1}%

The name of the script is checked for repetition.

556 \MGL@set@script@name{#2}%

If the switch \@MGL@list@script@ is true, we increase the counter for verbatim
code (MGL@verb@script@no), and add a contents line to the .lms file, using the
style set by \l@MGL@script. In order to be able to use special characters in the
name of the script, we use the \detokenize primitive.

557 \if@MGL@list@script@%

558 \refstepcounter{MGL@verb@script@no}%

559 \addcontentsline{lms}{MGL@script}{%

560 \protect\numberline{\theMGL@verb@script@no.}%

561 {\ttfamily\protect\detokenize{\MGL@script@name.mgl}}%

562 }%

563 \fi%

41

If the switch \@MGL@lineno@ is true, we create a list such that each item will be
labeled or numbered by the MGL@lineno counter. The style for the label is set by
\mgllinenostyle.

564 \if@MGL@lineno@%

565 \list{\mgllinenostyle\arabic{MGL@line@no}.}{\usecounter{MGL@line@no}}%

Otherwise, we create a list without labeling for the items.

566 \else%

567 \list{}{}%

568 \fi%

The parameters for the environment are set.

569 \MGL@set@verbatim@code%

The thickness of the box that will contain the name of the script has to be the
same as the thickness for the separation line at the begining of the verbatim code.

570 \fboxrule=\mgllinethickness%

The separator to indicate the begining of the verbatim code is positioned; we use
the \MGL@line@sep command to draw it.

571 \item[\MGL@line@sep]\fbox{%

572 \bfseries\ttfamily\expandafter\detokenize\expandafter{\MGL@script@name.mgl}%

573 }\hskip\labelsep\MGL@line@sep\par\par%

The \verbatim@processline is redefined to put \the\verbatim@line in an item
of the list, and to to also write it to the script file.

574 \def\verbatim@processline{%

575 \item\the\verbatim@line%

576 \MGL@write\MGL@out@stream{\the\verbatim@line}%

577 }%

The script file is opened for writing.

578 \MGL@openout\MGL@out@stream{\MGL@dir\MGL@scripts@dir\MGL@script@name.mgl}%

The writing process starts.

579 \verbatim@start%

580 }

\endmglblock To finish the environment’s work, the script file is closed, the separator indicating
the end of the verbatim code is placed, and the list is ended.

581 \def\endmglblock{%

582 \MGL@closeout\MGL@out@stream%

583 \item[\MGL@line@sep]\hskip-\labelsep\MGL@line@sep%

584 \endlist%

585 }

\endmglblock* It’s defined as an alias for \endmglblock.

586 \expandafter\let\csname endmglblock*\endcsname\endmglblock

mglverbatim

mglverbatim*

These two environments have the same main body. They difference in that the
unstarred version creates an entry for the \listofmglscripts, while the starred
version doesn’t. We will apply a similar approach to the used for the mglblock

and mglblock* environments.

42

\mglverbatim Similar in function to \mglblock.

587

588 \def\mglverbatim{\@MGL@list@script@true\mglverbatim@}

\mglverbatim Similar in function to \mglblock*.

589 \@namedef{mglverbatim*}{\@MGL@list@script@false\mglverbatim@}

\mglverbatim@ The main body of these environments; it’s similar to \mglblock@. To explain each
line of this command would be repetitive, so we explain only the different parts.

590 \newcommand\mglverbatim@[1][]{%

591 \@MGL@lineno@true%

592 \define@key{MGL@verb@keys}{label}{\edef\MGL@script@name{##1}}%

593 \setkeys{MGL@verb@keys}{#1}%

594 \if@MGL@lineno@%

595 \list{\mgllinenostyle\arabic{MGL@line@no}.}{\usecounter{MGL@line@no}}%

596 \else%

597 \list{}{}%

598 \fi%

599 \MGL@set@verbatim@code%

600 \fboxrule=\mgllinethickness%

The separator that indicates the begining of the verbatim code is different depend-
ing on whether the user has specified a name associated to the code or not. If no
name has been indicated, i.e., \MGL@script@name is undefined, the separator is
just a line; otherwise, i.e., \MGL@script@name is defined, the separator is similar
to the one of the mglblock environment.

601 \@ifundefined{MGL@script@name}{%

602 \edef\MGL@script@name{\mglverbatimname}%

603 \item[\MGL@line@sep]\hskip-\labelsep\MGL@line@sep%

604 }{%

605 \item[\MGL@line@sep]\fbox{%

606 \bfseries\ttfamily\expandafter\detokenize\expandafter{\MGL@script@name.mgl}%

607 }\hskip\labelsep\MGL@line@sep\par\par%

608 }%

Note that, if the user requests an entry in the \listofmglscripts, the contents
line is added to the same .lms file. So here start the similitudes again.

609 \if@MGL@list@script@%

610 \refstepcounter{MGL@verb@script@no}%

611 \addcontentsline{lms}{MGL@script}{%

612 \protect\numberline{\theMGL@verb@script@no.}%

613 {\ttfamily\protect\detokenize{\MGL@script@name}}%

614 }%

615 \fi%

616 \def\verbatim@processline{%

617 \item\the\verbatim@line%

618 }%

619 \verbatim@start%

620 }

43

\endmglverbatim This command could be defined as an alias for \endmglblock, for they execute
the same instructions. But, for the sake of congruence, we rewrite the code.

621 \def\endmglverbatim{%

622 \MGL@closeout\MGL@out@stream%

623 \item[\MGL@line@sep]\hskip-\labelsep\MGL@line@sep%

624 \endlist%

625 }

\endmglverbatim* It is an alias for \endmglverbatim.

626 \expandafter\let\csname endmglverbatim*\endcsname\endmglverbatim

mglcomment This environment has two different behaviors: When commentaries are allowed by
the user, it behaves similarly to the mglverbatim environment; if commentaries
are not allowed, it behaves as the comment environment from the verbatim package.
So it is natural that we borrow code from them and adapt it to the corresponding
situation.

\mglcomment The switch \@MGL@comments@ governs the behavior of this command.

627

628 \def\mglcomment{%

If the switch is true, i.e., the user requests displaying of commentaries, we start a
list without labels, and set the parameters for verbatim text.

629 \if@MGL@comments@%

630 \list{}{}%

631 \MGL@set@verbatim@code%

The separator indicating the begining of the commentary is similar to the one
used by the mglblock and mglverbatim environments; the differences are that,
instead of using a solid line, we use a dashed line (\MGL@dash@sep), and instead
of displaying the name of a script, we display \mglcommentname.

632 \item\hskip-\labelsep<\MGL@dash@sep\mglcommentname\MGL@dash@sep>%

The two following lines redefine the \verbatim@processline command to display
the commentary text line by line as items of the list, and start the process of writing
the text.

633 \def\verbatim@processline{\item\the\verbatim@line}%

634 \verbatim@start%

If the switch is false, i.e., the user requests no to display commentaries, we
start a space hack, since no text output will be produced. Then, the cate-
gory codes are changed with \MGL@codes, and the macros \verbatim@startline,
\verbatim@addtoline, \verbatim@processline and \verbatim@finish are dis-
abled, as done in the comment environment of the verbatim package. Finally, we
call the \verbatim@ command to start reading the text in the environment.

635 \else%

636 \@bsphack%

637 \MGL@codes%

638 \let\verbatim@startline\relax%

639 \let\verbatim@addtoline\@gobble%

44

640 \let\verbatim@processline\relax%

641 \let\verbatim@finish\relax%

642 \verbatim@%

643 \fi%

644 }

\endmglcomment The \@MGL@comments@ switch also governs the behavior of this command. If it’s
true, then the separator that ends the commentary —which is the same as the
one that starts it— is displayed, and the list is ended; otherwise, simply the space
hack is ended.

645 \def\endmglcomment{%

646 \if@MGL@comments@%

647 \item\hskip-\labelsep<\MGL@dash@sep\mglcommentname\MGL@dash@sep>%

648 \endlist%

649 \else%

650 \@esphack%

651 \fi%

652 }

6.6 Commands for external scripts

Since external scripts exist independently of the LATEX document, there is no need
of environments to process them, just commands. Remember these commands
work on the suposition that the scripts don’t change.

\mglgraphics This command compiles the external script and includes it in the document. Al-
though that process is simple, the code to execute it is relatively large due to the
possibility of the user specifying an optional path, so many parameters have to be
checked.

653

654 \newcommand\mglgraphics[2][]{%

In order to keep all definitions and changes local, we start a local group inside
which all LATEX code will be contained.

655 \bgroup%

We add the option path for the user to be able to specify the location of the script,
which is stored in the variable \MGL@force@path.

656 \define@key{MGL@keys}{path}{\def\MGL@forced@path{##1}}%

The optional arguments are processed.

657 \MGL@setkeys{MGL@keys}{#1}%

The name of the script is set, though it is not check for multiple naming. This is
necessary, since \MGL@includegraphics uses this macro.

658 \edef\MGL@script@name{#2}%

If the corresponding image exists, then this script has been compiled in a previous
LATEX run, so nothing is done, but the inclusion of the image.

659 \IfFileExists{\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext}{}{%

45

If the image doesn’t exist, we check if the user has specified a custom location.

660 \@ifundefined{MGL@forced@path}{%

If no custom location has been used, we iterate over the list of search paths
(\MGL@paths): If we find the requested script, then we store its location in
\MGL@temp@b.

661 \@for\MGL@temp@a:=\MGL@paths\do{%

662 \IfFileExists{\MGL@temp@a\MGL@script@name.mgl}{%

663 \edef\MGL@temp@b{\MGL@temp@a}%

664 }{}%

665 }%

666 }{%

If the user has specified a path for the script, we check if the script actually exists.
If it does, we store its location inside \MGL@temp@b.

667 \IfFileExists{\MGL@forced@path\MGL@script@name.mgl}{%

668 \edef\MGL@temp@b{\MGL@forced@path}%

669 }{}%

670 }%

If \MGL@temp@b is not defined, the script has not been found, so a warning is
issued.

671 \@ifundefined{MGL@temp@b}{%

672 \PackageWarning{mgltex}{%

673 MGL script "\MGL@script@name.mgl" not found%

674 }%

675 }{%

If \MGL@temp@b is defined, the script has been found, so we compile it.

676 \MGL@write{18}{%

677 mglconv -q \MGL@quality\space -S \MGL@scale\space%

678 -s "\MGL@dir\MGL@scripts@dir\mglcommonscriptname.mgl"\space%

679 -o "\MGL@dir\MGL@graphics@dir\MGL@script@name\MGL@graph@ext"\space%

680 "\MGL@temp@b\MGL@script@name.mgl"%

681 }%

682 }%

683 }%

The image is included.

684 \MGL@includegraphics%

The local group ends here.

685 \egroup%

686 }

\mglinclude

\mglinclude*

The purpose of these commands is to transcript the MGL code from a script.
Once again, this is a straightforward functionality, but the code is quite large, so
it has been separated in various macros.

The unstarred version defines the \@MGL@list@script@ switch to be true, so
the script is listed with the \listofmglscripts command, and then it calls the

46

main body of code (\mglinclude@), just like the mglblock environment does. The
starred version defines the switch as false and calls the main body, too.

687

688 \def\mglinclude{\@MGL@list@script@true\mglinclude@}

689 \@namedef{mglinclude*}{\@MGL@list@script@false\mglinclude@}

\mglinclude@

690 \newcommand\mglinclude@[2][]{%

We start a local group to keep definitions and changes local.

691 \bgroup%

The default behavior is to number lines of MGL code, so the switch \@MGL@lineno@

is set to true.

692 \@MGL@lineno@true%

We add the option path for the user to be able to specify the location of the script,
which is stored in \MGL@forced@path.

693 \define@key{MGL@verb@keys}{path}{\def\MGL@forced@path{##1}}%

The options are processed.

694 \setkeys{MGL@verb@keys}{#1}%

We don’t need to check if there are multiple scripts with the same name, so we
namually set \MGL@script@name, instead of using \MGL@set@script@name.

695 \edef\MGL@script@name{#2}%

We check if the user has specified a custom location for the script.

696 \@ifundefined{MGL@forced@path}{%

If no custom location has been used, we iterate over the list \MGL@paths to find
the script.

697 \@for\MGL@temp@b:=\MGL@paths\do{%

If the script exists, we store its location in \MGL@temp@a

698 \IfFileExists{\MGL@temp@b\MGL@script@name.mgl}{%

699 \edef\MGL@temp@a{\MGL@temp@b}%

700 }{}%

701 }%

702 }{%

If the user specified the location of the script, we check if it exists, in which case
we store its location in \MGL@temp@a.

703 \IfFileExists{\MGL@script@name.mgl}{%

704 \edef\MGL@temp@a{\MGL@forced@path}%

705 }{}%

706 }%

If \MGL@temp@a is not defined, the script has not been found, so we issue a warning,
and display a box in the document with the words MGL script not found.

707 \@ifundefined{MGL@temp@a}{%

708 \PackageWarning{mgltex}{%

709 MGL script "\MGL@forced@path\MGL@script@name.mgl" not found%

47

710 }%

711 \center%

712 \fbox{%

713 \centering%

714 \bfseries\Huge%

715 \begin{tabular}{c}MGL\\script\\not\\found\end{tabular}%

716 }%

717 \endcenter%

718 }{%

If \MGL@temp@a is defined, the script has been found, so we call \mglinclude@@
to set up the inclusion of the script.

719 \mglinclude@@%

720 }%

721 \egroup%

722 }

\mglinclude@@ This macro sets the parameters for the inclusion of the script, and calls the com-
mand in charge of the transcription.

723 \def\mglinclude@@{%

We first add the script to the LATEX list of included files.

724 \@addtofilelist{\MGL@script@name.mgl}%

If the user has used the unstarred version of \mglinclude, we add a contents line
to the .lms file.

725 \if@MGL@list@script@%

726 \refstepcounter{MGL@verb@script@no}%

727 \addcontentsline{lms}{MGL@script}{%

728 \protect\numberline{\theMGL@verb@script@no.}%

729 {\ttfamily\protect\detokenize{\MGL@script@name.mgl}}%

730 }%

731 \fi%

We start a \list in which each line of code will be an item. If the lines have to
be numbered, we use the MGL@line@no counter.

732 \if@MGL@lineno@%

733 \list{\mgllinenostyle\arabic{MGL@line@no}.}{\usecounter{MGL@line@no}}%

734 \else%

735 \list{}{}%

736 \fi%

We set the parameters for a verbatim code.

737 \MGL@set@verbatim@code%

The heading of the environment is set. It is similar to that of the mglblock

environment.

738 \fboxrule=\mgllinethickness%

739 \item[\MGL@line@sep]\fbox{%

740 \bfseries\ttfamily\expandafter\detokenize\expandafter{\MGL@script@name.mgl}%

741 }\hskip\labelsep\MGL@line@sep\par\par%

48

We redefine the \verbatim@processline macro from the verbatim package to put
\the\verbatim@line on an item.

742 \def\verbatim@processline{%

743 \item\the\verbatim@line%

744 }%

The script is opened for reading.

745 \immediate\openin\MGL@in@stream="\MGL@temp@a\MGL@script@name.mgl"%

We call \mglinclude@@@ to start the transcription.

746 \mglinclude@@@%

747 }

\mglinclude@@@ This command transcripts the MGL code of the script and closes the list started
in \mglinclude@@, adding the corresponding separation line to separate the code
from normal text.

748 \def\mglinclude@@@{%

Since the transcription has to be done even when mglTEX is off, instead of using
the \MGL@read command —which is inactive when the package is off—, we use
the usual commands from LATEX to read from the file.

749 \immediate\read\MGL@in@stream to \MGL@temp@b%

If the end of file has been reached, we close the input stream, add the separation
line, and end the \list.

750 \ifeof\MGL@in@stream%

751 \immediate\closein\MGL@in@stream%

752 \item[\MGL@line@sep]\hskip-\labelsep\MGL@line@sep%

753 \endlist%

Otherwise, we use \verbatim@startline to clean the \verbatim@line buffer,
then we add the just read line to the buffer, and call \verbatim@processline to
include it as an item of the list. Finally, we recursively call \mglinclude@@@ to
read the next line.

754 \else%

755 \verbatim@startline%

756 \expandafter\verbatim@addtoline\expandafter{\MGL@temp@b}%

757 \verbatim@processline%

758 \expandafter\mglinclude@@@%

759 \fi%

760 }

6.7 Additional commands

\mglname The purpose of this command is to force the closure of the current main script,
compile the corresponding figures, and open a new main script. At first, it is
defined to only change the value of \MGL@main@script@name because the main
script is not opened until the call of \begin{document}; but at that point, it is
redefined to perform the described actions.

761 \def\mglname#1{\edef\MGL@main@script@name{#1}}

49

Here is the redefinition of \mglname.

762 \AtBeginDocument{%

763 \def\mglname#1{%

We start a space hack, ince this function has no real effect on the document.

764 \@bsphack%

The MGL functions created throughout the document are written.

765 \MGL@write@funcs%

We force the closure of the main script. We use \immediate\closeout instead of
\MGL@closeout in case mglTEX is off.

766 \immediate\closeout{\MGL@main@stream}%

The closed script is compiled.

767 \MGL@write{18}{%

768 mglconv -q \MGL@quality\space -S \MGL@scale\space%

769 -s "\MGL@dir\MGL@scripts@dir\mglcommonscriptname.mgl"\space%

770 -n "\MGL@dir\MGL@scripts@dir\MGL@main@script@name.mgl"%

771 }%

The name of the new main script is updated, and it is check for overwriting,
using \MGL@set@script@name inside a local group, since this command defines
\MGL@script@name, which we need undefined in some parts of the code of the
package.

772 \edef\MGL@main@script@name{#1}%

773 \bgroup\MGL@set@script@name{\MGL@main@script@name}\egroup%

774 \MGL@openout\MGL@main@stream{%

775 \MGL@dir\MGL@scripts@dir\MGL@main@script@name.mgl%

776 }%

The space hack is ended.

777 \@esphack%

778 }%

779 }

\mglswitch This command turns on and off the package according to its argument; it is just
a call to the commands \MGL@switch@on or \MGL@switch@off.

780 \def\mglswitch#1{\csname MGL@switch@#1\endcsname}

\mglcomments Depending on the option passed by the user, it calls \@MGL@comments@on or
\@MGL@comments@off.

781 \def\mglcomments#1{\csname @MGL@comments@#1\endcsname}

\mgldir This command is the interface for the user to change the value of \MGL@dir. It is
an only-preamble macro, since using it elsewhere would cause faulty behavior.

782

783 \def\mgldir#1{\def\MGL@dir{#1}}\@onlypreamble\mgldir

\mglscriptsdir This command modifies the value of \MGL@scripts@dir. It is also an only-
preamble macro.

784 \def\mglscriptsdir#1{\def\MGL@scripts@dir{#1}}\@onlypreamble\mglscriptsdir

50

\mglgraphicsdir Modifies the value of \MGL@graphics@dir. It is an only-preamble macro.

785 \def\mglgraphicsdir#1{\def\MGL@graphics@dir{#1}}\@onlypreamble\mglgraphicsdir

\mglbackupsdir Modifies the value of \MGL@backups@dir. It is an only-preamble macro.

786 \def\mglbackupsdir#1{\def\MGL@backups@dir{#1}}\@onlypreamble\mglbackupsdir

\mglpaths This command adds a list of search paths for scripts to the existing one
(\MGL@paths).

787 \def\mglpaths#1{\g@addto@macro\MGL@paths{,#1}}

\mglimgext This command changes the value of \MGL@graph@ext.

788 \def\mglimgext#1{\def\MGL@graph@ext{#1}}

\listofmglscripts This command creates the list of MGL scripts section. It has to be defined dif-
ferently depending on whether the used document class defines the \l@chapter

command or it only the \l@section command, which set the style for making a
table of contents entry for the \chapter command and the \section command,
respectively. If none of them are defined, we define our own style based on the
latter.

789

790 \ifx\l@chapter\@undefined%

If \l@chapter is not defined, we check if \l@section is.

791 \ifx\l@section\@undefined%

If \l@section is not defined, we set the \lisofmglscripts command to perform
exactly as the \section*{\listofmglscriptsname} would do in the usual book
and article LATEX classes, except that the type of section is MGL@list.

792 \def\listofmglscripts{%

793 \@startsection{MGL@list}%

794 {1}{0em}{-3.5ex plus -1ex minus -0.2ex}%

795 {2.5ex plus 0.2ex}%

796 {\centering\normalfont\bfseries\large}*%

797 {\listofmglscriptsname}%

We use the \@mkboth command to set the page marks according to the current
page style.

798 \@mkboth{%

799 \MakeUppercase\listofmglscriptsname%

800 }{%

801 \MakeUppercase\listofmglscriptsname%

802 }%

The list of MGL scripts is created by reading the document’s .lms file.

803 \@starttoc{lms}%

804 }%

The \l@MGL@list style has the same code as the \l@section style.

805 \newcommand*\l@MGL@list[2]{%

806 \ifnum \c@tocdepth >\z@

51

807 \addpenalty\@secpenalty

808 \addvspace{1.0em \@plus\p@}%

809 \setlength\@tempdima{1.5em}%

810 \begingroup

811 \parindent \z@ \rightskip \@pnumwidth

812 \parfillskip -\@pnumwidth

813 \leavevmode \bfseries

814 \advance\leftskip\@tempdima

815 \hskip -\leftskip

816 #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss #2}\par

817 \endgroup

818 \fi%

819 }%

820 \else%

If the \l@section style is defined, the list of MGL scripts is just an unumbered
section.

821 \def\listofmglscripts{%

822 \section*{\listofmglscriptsname}%

823 \@mkboth{%

824 \MakeUppercase\listofmglscriptsname%

825 }{%

826 \MakeUppercase\listofmglscriptsname%

827 }%

828 \@starttoc{lms}%

829 }%

830 \fi%

831 \else%

If the \l@chapter style is defined, the list of MGL scripts is just an unumbered
chapter.

832 \def\listofmglscripts{%

833 \chapter*{\listofmglscriptsname}%

834 \@mkboth{%

835 \MakeUppercase\listofmglscriptsname%

836 }{%

837 \MakeUppercase\listofmglscriptsname%

838 }%

839 \@starttoc{lms}%

840 }%

841 \fi%

\mglcommonscriptname

\mglcommentname

\listofmglscriptsname

\mglverbatimname

\mgllinenostyle

\mgldashwidth

\mgllinethickness

\mglbreakindent

842

843 \def\mglcommonscriptname{MGL_common_script}

844 \def\mglcommentname{MGL commentary}

845 \def\listofmglscriptsname{List of MGL scripts}

846 \def\mglverbatimname{(Unnamed MGL verbatim script)}

847 \def\mgllinenostyle{\footnotesize}

848 \newdimen\mgldashwidth\mgldashwidth=0.75em

52

849 \newdimen\mgllinethickness\mgllinethickness=0.25ex

850 \newdimen\mglbreakindent\mglbreakindent=1em

\mglTeX This macro pretty-prints the name of the package. It has a starred version, which
also prints the version.

851

852 \def\mglTeX{%

853 mgl\TeX\@ifstar{~v4.1}{}%

854 }

6.8 Final adjustments

To finish the code of mglTEX, we set the behavior of the package at the call of the
\begin{document} and \end{document} commands.

We tell LATEX to check the name of the document’s main script for overwriting.
We do this by calling \MGL@set@script@name inside a local group, because it
defines \MGL@script@name, which we need undefined in certain parts of the code.
Then the script is opened. We use \immediate\openout instead of \MGL@openout
for this purpose, since, otherwise, we run the risk of the main script not being
created when needed, if the user turns off mglTEX before the \begin{document}

command, and turns it on immediately after.

855

856 \AtBeginDocument{%

857 \bgroup\MGL@set@script@name{\MGL@main@script@name}\egroup%

858 \immediate\openout\MGL@main@stream=%

859 \MGL@dir\MGL@scripts@dir\MGL@main@script@name.mgl%

860 }

We also set the actions for the call of \end{document}

861 \AtEndDocument{%

\MGL@write@funcs will simply write the MGL functions throughout the LATEX
document.

862 \MGL@write@funcs%

The main script is closed. We use the \immediate\closeout construction instead
of \MGL@closeout, since the script must be closed even when mglTEX is off.

863 \immediate\closeout\MGL@main@stream%

The main script is compiled.

864 \MGL@write{18}{%

865 mglconv -q \MGL@quality\space -S \MGL@scale\space%

866 -s "\MGL@dir\MGL@scripts@dir\mglcommonscriptname.mgl"\space%

867 -n "\MGL@dir\MGL@scripts@dir\MGL@main@script@name.mgl"%

868 }%

869 }

53

Change History

v1.0

General: Initial version 1

v2.0

General: Add environment
mglsignature that adds a com-
mentary every MGL script . . . 1

Eliminate line ignoring com-
mands to create more elegant
scripts, due to the a new com-
mand that adds comments to
the scripts 1

Move the MGL stop command
from the \AtEndDocument com-
mand to the \mgl@func buffer . 1

Possible bugfix by adding
\expandafter to commands to
ignore/write lines of MGL code 1

v3.0

General: Add command
\mgldir, \mglscriptsdir,
\mglgraphicsdir and
\mglbackupsdir to specify a
main directory for mglTEX and
directories for the creation of
scripts, graphics and backups . . 1

Add detection of changes in MGL
scripts to speed up compilation
time (only changed scripts are
recompiled) 1

Add the \mglquality command
to specify a default quality . . . 1

Add the \mglsettings command
to configure behavior of the
package 1

Add the \mglwidth and
\mglheight commands to spec-
ify the default size of the images
produced 1

Improve environment mglsignature
by adding the possibility of us-
ing LATEX commands inside it . 1

v4.0

General: mglTEX now depends of
the verbatim package 1

Add package options 0q, . . . , 8q
to specify quality 1

Add the \mglname command to
force clousure of the current
main script, its compilation,
and the opening of a new main
script 1

Add the \mglpaths command to
add directories to the search
paths for MGL scripts 1

Add the command \listofmglscripts
to create a list of all MGL
scripts included verbatim in the
document 1

Add the command \mglTeXwVer
that prints the name of the
package with its version in a co-
herent manner, and separated
by an unbreakable space 1

Add the option label to the
mglverbatim environment to
name the verbatim code 1

Add the option label to the
mgl environment in order to
override the automatic naming
of the script and corresponding
image 1

Add the option path to the
commands \mglgraphics and
\mglinclude to force a path to
search MGL scripts 1

Add the option separator to the
command \mglplot to brake
the code into different physical
text lines 1

All environments write their con-
tents verbatim 1

Completely rewrite of mglTEX . . 1
Make verbatim-like environ-
ments and \mglinclude com-
mand more visually elegant . . . 1

Many bugfixes 1
Many improvements, including,
but not limited to, speed up, in-
creased coherence and cleanness
of the code, less resource con-
sumption 1

Numbering in verbatim-like envi-
ronments is optional now 1

54

Remove mglsignature environ-
ment for being considered use-
less, and to avoid interference
with the detection of changes in
MGL scripts, to speed up script
writing and to make the pack-
age less resource-consuming . . . 1

Remove the \MGL@setkeys com-
mand, since it isn’t needed as
first thought 1

Remove the \mglwidth and
\mglheight commands for be-
ing considered useless 1

Verbatim-like environments
and the \mglinclude com-
mand have starred versions
wich prevent the command
\listofmglscripts to list
them 1

v4.1
General: A starred version of the

command \mglTeX has been im-
plemented, which prints the
version of the package besides
its name 1

Add the command \mglimgext
to specify locally the extension
to save the generated graphics . 1

Add the command \mglswitch,
which replaces \mgltexon and
\mgltexoff 1

Expand the key-val list family for
the command \mglsettings . . 1

Reimplement the \@MGL@comments@
switch 1

Remove the command
\mglnocomments (rendered use-
less by the new implementation
of \mglcomments) 1

Remove the command
\mglTeXwVer (rendered useless
by the implementation of the
starred version of \mglTeX) . . . 1

Rename the commands
\mgltexon as \MGL@switch@on
and \mgltexoff as \MGL@switch@off
in order to avoid the user from
unpurposely overwriting them . 1

Restore the command
\mglsettings, which was un-
intentionally deleted in ver-
sion 4.0 1

The command \mglcomments
has been reimplemented to
accept one mandatory argu-
ment: \mglcomments{on} re-
places the old \mglcomments,
while \mglcomments{off} re-
places the old \mglnocomments 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@MGL@comments@off .
. 63, 131

\@MGL@comments@on .
. 63, 132

\@MGL@lineno@ 200

\@MGL@lineno@true .
. . . . 554, 591, 692

\@MGL@list@script@ . 228

\@MGL@list@script@false

. . . . 552, 589, 689
\@MGL@list@script@true

. . . . 551, 588, 688
\^ 242

E
\endmgl 409
\endmgladdon 422
\endmglblock . . 581, 586
\endmglblock* 586

\endmglcode 465

\endmglcomment 645

\endmglcommon 492

\endmglfunc . . . 434, 498

\endmglscript 478

\endmglsetup 498

\endmglverbatim 621, 626

\endmglverbatim* . . 626

environments:

mgl 376

55

mgladdon 413
mglblock 550
mglblock* 550
mglcode 439
mglcomment 627
mglcommon 482
mglfunc 423
mglscript 469
mglsetup 496
mglverbatim 587
mglverbatim* . . . 587

I
\if@MGL@comments@ .

. 64, 629, 646
\if@MGL@lineno@ . . .

. 201, 564, 594, 732
\if@MGL@list@script@

. 228, 557, 609, 725
\if@mglcomments@ . . 65
\iffalse 65
\iftrue 64

L
\l@MGL@list 805
\l@MGL@script 229
\listofmglscripts . 789
\listofmglscriptsname

. 797, 799, 801,
822, 824, 826,
833, 835, 837, 842

M
\mgl 376
mgl (environment) . . . 376
\MGL@@func . . . 326, 328
\MGL@backups@dir . .

. 207, 208, 212,
325, 389, 406,
430, 526, 540, 786

\MGL@closein
. . . 25, 54, 302,
309, 316, 331, 547

\MGL@closeout
. . . 22, 53, 394,
436, 452, 479,
493, 531, 582, 622

\MGL@codes . . . 239,
385, 416, 428,
443, 473, 486, 637

\MGL@compare@code .
. . . . 299, 389, 447

\MGL@dash@sep
. . . . 371, 632, 647

\MGL@def@for@loop .
. 271, 504

\MGL@dir 29,
31, 34, 203,
208, 209, 264,
325, 389, 396,
406, 430, 447,
456–458, 462,
475, 488, 526,
533, 540, 578,
659, 678, 679,
769, 770, 775,
783, 859, 866, 867

\MGL@document@scripts

. . . . 244, 248, 253

\MGL@for . . 271, 527, 541

\MGL@forced@path . .
. . . . 656, 667,
668, 693, 704, 709

\MGL@forloop . . 276, 279

\MGL@func 324, 427

\MGL@graph@ext 29–31,
151, 199, 216,
264, 396, 457,
533, 659, 679, 788

\MGL@graph@keys . . .
. 33, 173, 236

\MGL@graphics@dir 29,
31, 34, 206, 211,
264, 396, 457,
533, 659, 679, 785

\MGL@iforloop
. . . . 284, 288, 293

\MGL@in@stream
. 224, 302, 306,
309, 314–316,
319, 325, 329–
331, 540, 542,
547, 745, 749–751

\MGL@includegraphics

. 28, 55,
411, 467, 522, 684

\MGL@line@no 226

\MGL@line@sep . 365,
571, 573, 583,

603, 605, 607,
623, 739, 741, 752

\MGL@main@script@name

. 219,
382, 509, 761,
770, 772, 773,
775, 857, 859, 867

\MGL@main@stream 221,
323, 333, 395,
402, 405, 418,
525, 528, 532,
766, 774, 858, 863

\MGL@mglplot@setup .
. 502, 515

\MGL@next
. 301, 309, 316,
393, 410, 451,
466, 539, 544, 548

\MGL@openin
7, 50, 319, 325, 540

\MGL@openout
. . . 4, 49, 406,
430, 462, 475,
488, 526, 578, 774

\MGL@out@stream . . .
. . . . 223, 394,
403, 406, 429–
431, 435, 436,
452, 461, 462,
474, 475, 479,
487, 488, 493,
526, 529, 531,
576, 578, 582, 622

\MGL@paths . . . 208,
213, 661, 697, 787

\MGL@process@script

. 259, 386, 444, 517
\MGL@quality

. . . 76, 78, 79,
119, 405, 455,
525, 677, 768, 865

\MGL@read . . . 13, 52,
306, 314, 329, 542

\MGL@scale 66,
455, 677, 768, 865

\MGL@script@name 29,
31, 34, 38, 246,
261, 264, 303,
378, 382, 384,
389, 396, 399,

56

406, 430, 431,
447, 453, 457,
458, 462, 475,
488, 501, 509,
511, 526, 533,
536, 539, 540,
561, 572, 578,
592, 602, 606,
613, 658, 659,
662, 667, 673,
679, 680, 695,
698, 703, 709,
724, 729, 740, 745

\MGL@script@no 225

\MGL@scripts@dir . .
. . . . 205, 208,
210, 447, 456,
458, 462, 475,
488, 578, 678,
769, 770, 775,
784, 859, 866, 867

\MGL@set@script@name

. 246, 384, 426,
442, 472, 485,
511, 556, 773, 857

\MGL@set@verbatim@code

. 337,
569, 599, 631, 737

\MGL@setkeys . . 234,
379, 441, 506, 657

\MGL@switch@off 47, 130

\MGL@switch@on . . 2, 129

\MGL@temp@a
. 248, 249, 306,
308, 314, 329,
333, 513, 515,
527, 541, 661–
663, 699, 704, 745

\MGL@temp@b
. 307, 308, 527–
529, 541, 543,
663, 668, 680,
697–699, 749, 756

\MGL@temp@c . . . 542, 543

\MGL@TeX@ext 1, 30

\MGL@unchanged
. . . . 255, 303,
399, 453, 536, 539

\MGL@verb@script@no 227

\MGL@write
10, 51, 303, 323,
333, 395, 399,
402, 403, 405,
418, 429, 431,
435, 453, 454,
461, 474, 487,
525, 528, 529,
532, 536, 539,
576, 676, 767, 864

\MGL@write@funcs . .
. 322, 427, 765, 862

\MGL@write@script .
. 387, 392

\mgladdon 413
mgladdon (environ-

ment) 413
\mglbackupsdir 786
\mglblock 550
mglblock (environ-

ment) 550
\mglblock* 552
mglblock* (environ-

ment) 550
\mglblock@ 551, 552, 553
\mglbreakindent . . .

. . . . 362, 363, 842
\mglcode 439
mglcode (environment) 439
\mglcode@write@script

. 445, 450
\mglcomment 627
mglcomment (environ-

ment) 627
\mglcommentname . . .

. . . . 632, 647, 842
\mglcomments 781
\mglcommon 482
mglcommon (environ-

ment) 482
\mglcommonscriptname

. . . . 456, 485,
678, 769, 842, 866

\mgldashwidth . 373, 842
\mgldir 782
\mglfunc 423, 497
mglfunc (environment) 423
\mglgraphics 653
\mglgraphicsdir . . . 785
\mglimgext 788

\mglinclude 687
\mglinclude* 687
\mglinclude@

. . . . 688, 689, 690
\mglinclude@@ . 719, 723
\mglinclude@@@ 746, 748
\mgllinenostyle . . .

. 565, 595, 733, 842
\mgllinethickness .

. 368,
570, 600, 738, 842

\mglname 761
\mglpaths 787
\mglplot 499
\mglplot@compare@code

. 520, 538
\mglplot@write@script

. 518, 524
\mglquality

76, 77, 142–150, 214
\mglscale

. . 66, 133–141, 215
\mglscript 469
mglscript (environ-

ment) 469
\mglscriptsdir 784
\mglsettings 209
\mglsetup 496
mglsetup (environ-

ment) 496
\mglswitch 780
\mglTeX 59, 851
\mglverbatim . . 587, 589
mglverbatim (environ-

ment) 587
mglverbatim* (environ-

ment) 587
\mglverbatim@

. . . . 588, 589, 590
\mglverbatimname . .

. 602, 842

T
\theMGL@verb@script@no

. . . . 560, 612, 728

V
\verbatim@ 642
\verbatim@addtoline

. 639, 756

57

\verbatim@finish . .
. . . . 233, 313, 641

\verbatim@line
. 307, 402, 403,
418, 429, 461,
474, 487, 575,
576, 617, 633, 743

\verbatim@processline

. 305,
310, 401, 417,
429, 461, 474,
487, 574, 616,
633, 640, 742, 757

\verbatim@start . . .
. 320, 407, 420,
432, 463, 476,
489, 579, 619, 634

\verbatim@startline

. 638, 755

58

	Introduction
	Conventions and notations

	Usage
	Warning for the user
	Environments for MGL code embedding
	Fast creation of graphics
	Verbatim-like environments
	Working with external scripts
	Additional commands
	Advanced setup commands
	User-definable macros

	Behavior of mglTeX
	Creation and inclusion of MGL scripts and graphics
	Recompilation-decision algorithm

	Acknowledgements
	Redistributing and modifying
	Implementation
	Initialization
	Anatomy of environments and commands
	Environments for MGL code embedding
	Fast creation of graphics
	Verbatim-like environments
	Commands for external scripts
	Additional commands
	Final adjustments

