flawfinder — find potential security flaws ("hits") in source code

SYNOPSIS

flawfinder [-—help] [-—version] [-—allowlink] [-=inputs|-I] [ ——minlevel X | -m X ] [--falseposi-
tive-F] [—-—neverignore|-n] [--patchfilenam¢-P filenamé [——followdotdir] [-—contex{—c]
[-—columng-C] [—-—dataonlyj-D] [-—html] [-—immediatg-i] [——singlelind-S] [—-—omittime]
[-—quiet]-Q] [ ——loadhitlist F ] [ ——savehitlist F ] [ ——diffhitlist F ] [-—] [ source code file or soae
root directory ]+

DESCRIPTION

Flawfinder searches through C/C++ source code looking for potential secuwsy fl run flavfinder,
simply give flawfinder a list of directories or files-or each directory gien, all files that hee JC++ file-
name extensions in that directory (and its subdirectories, reely)swill be examined. Thusfor most
projects, simply gie flawfinder the name of the source cal®pmost directory (usé.” f or the current
directory), and flawfinder will examine all of the projec€@C++ source code. If you only want tovea
changesrevienved, s&e a wified diff of those changes (created by fdif" or "svn diff") in a patch file and
use the ——patch (-P) option.

Flawfinder will produce a list ofhits” (potential security flaws), sorted by risk; the riskiest hits araisho
first. Therisk level is shown inside square brackets araties from O, very little risk, to 5, great riskhis

risk level depends not only on the function, but on tléues of the parameters of the functidfor exam-

ple, constant strings are often lessyi#an fully variable strings in marcontexts, and in those comtts

the hit will have a bwer risk level. Flawfinder knows about gettext (a common library for internationalized
programs) and will treat constant strings passed through gettext as thoygbeteeconstant strings; this
reduces the number adile hits in internationalized programslawfinder will do the same sort of thing
with _T() and _TEXT(), common Microsoft macros for handling internationalized programsirtdar
correctly ignores most text inside comments and strings. Normally flawfinder shows all hits with a risk
level of at least 1, but you can use the ——migleoption to shav only hits with higher risk leels if you
wish.

Not every hit is actually a security vulnerabilitgnd not @ery security vulnerability is necessarily found.
Nevertheless, flawfinder can be an aid in finding and r@ngpsecurity vulnerabilitiesA common way to
use flawfinder is to first apply flawfinder to a set of source codexamime the highest-risk item§hen,
use ——inputs to examine the input locations, and check te mia& that only lgd and safe input alues
are accepted from untrusted users.

Once yowe audited a program, you can mark source code lines that are actually fine but cause spurious
warnings so that flawfinder will stop complaining about thefo. mark a line so that these warnings are
suppressed, put a specially-formatted comment either on the same line (after the source code) or all by
itself in the previous line. The comment mustdane of the tw following formats:

. /I Flawfinder: ignore
. * Flawfinder: ignore */

Note that, for compatibility sake, you can replace "Flawfinder:" with "ITS4:" or "RATS:" in these spe-
cially-formatted comments. Sincedthossible that such lines are wrong, you can use-th@éverignore”
option, which causes flawfinder toveeignore ag line no matter what the comments.s@yus, responses
that would otherwise be ignored would be included (oore confusingly ——neverignore ignores the
ignores). Thiscomment syntax is actually a more general syntax for special deett flawfinder, but
currently only ignoring lines is supported.

Flawfinder uses an internal database called ‘théeSet’; the ruleset identifies functions that are common
causes of security fies. Thestandard ruleset includes a large number of different potential problems,
including both general issues that can impagt@iC++ program, as well as a number of specific Unig-lik
and Windows functions that are especially problematis noted abee, every potential security fla
found in a gien source code file (matching an entry in the ruleset) is callélitd’ ‘and the set of hits
found during ap particular run of the program is called théitlist.” Hitlists can be sad (using
——savehitlist), reloaded back for redisplay (using ——loadhitlist), and you caw simby the hits that are

Flawfinder 30May 2004 1



different from another run (using ——diffhitlist).

Any filename gien on he command line will be examinedséa if it doesnt havea usual C/C++ filename
extension); thus you can forcewiiinder to examine anspecific files you desire. While searching directo-
ries recursiely, flawfinder only opens and examines regular files thaeHaC++ filename etensions.
Flawfinder presumes that, files are C/C++ files ifythavethe extensions ".c", ".h", ".ec", ".ecp”, ".pgc",
".C", ".cpp", ".CPP", ".cxx", ".cc", ".CC", ".pcc", ".hpp", or ".H'The filename'-"’ means the standard
input. To prevent security problems, special files (such as device special files and named pipesere al
skipped, and by default symbolic links are skipped,

After the list of hits is a brief summary of the results (use -D to ventras information). It will shav the
number of hits, lines analyzed (as reported by wc —I), and thsiqath source lines of code (SLOC) ana-
lyzed. Aphysical SLOC is a non-blank, non-comment line. It will thenvslioe number of hits at each
level; note that there will neer be a lit at a level lower than minlgel (1 by default). Thus, "[0] 0 [1] 9"
means that at W&l O there were 0 hits reported, and atdel there were 9 hits reported. It will xieshaw

the number of hits at agn levd or larger (so leel 3+ has the sum of the number of hits atde3, 4, and

5). Thus,an entry of "[0+] 37" shows that atvig O or higher there were 37 hits (the 0+ entry wilivays

be the same as the "hits" number\a)o Hits per KSLOC is next shown; this is each of thevéleor
higher" values multiplied by 1000 and divided by the physical SLOC. If symlinks were skipped, the count
of those is reportedlf hits were suppressed (using the "ignore" directin source code comments as
described abee), the number suppressed is report@the minimum risk leel to be included in the report
is displayed; by default this is 1 (use ——mirdeto change this). The summary ends with important
reminders: Noteery hit is necessarily a security vulnerabilignd there may be other security vulnerabili-
ties not reported by the tool.

Flawfinder intentionally works similarly to another program, ITS4, which is not fully open sourceaseftw
(as defined in the Open Source Definition) nor free software (as defined by the FreseSRfumdation).
The author of Flawfinder hasvee seen ITS4$ source code.

BRIEF TUTORIAL
Here’s a biief example of hav flawfinder might be used. Imagine that yowéae C/C++ source code for
some program named xyzzy (which you may or may neé laitten), and you'e searching for security
vulnerabilities (so you can fix them before customers encounter the vulnerabilf@ghis tutorial, Il
assume that you're using a Unixdik/stem, such as Linux, OpenBSD, or MacOS X.

If the source code is in a subdirectory named xyyay would probably start by opening a text wimndo
and using fleffinder’s default settings, to analyze the program and report a prioritized list of potential secu-
rity vulnerabilities (the “less’j ust makes sure the results stay on the screen):

flawfinder xyzzy | less

At this point, you will a large number of entries; each entry begins with a filename, a colon, a line, number
a risk level in brackets (where 5 is the most risky), a caigy, the name of the function, and a description of
why flawfinder thinks the line is a vulnerabilityHlawfinder normally sorts by risk W&, showing the riski-

est items first; if you hee limited time, its probably best to start working on the riskiest items and continue
until you run out of time. If you want to limit the display to risks with only a certain right t& higher,

use the ——minkeel option. If you're getting an draordinary number of false posis because a&riable
names look lik dangerous function names, use the —F option to vermmeports about them. If you ddn’
understand the error message, please see documents suchagitigeSecue Programs for Linux and

Unix HOWTO at http://wwwdwheeleicom/secure-programs which pides more information on writing
secure programs.

Once you identify the problem and understand it, you can fi©@décasionally you may want to re-do the
analysis, both because the line numbers will chamgdo male aure that the ng code doesr’introduce
yet a different vulnerability.

Flawfinder 30May 2004 2



If you've determined that some line ismeally a problem, and you're sure of it, you can insert just before
or on the offending line a comment like

I* Flawfinder: ignore */
to keep them from showing up in the output.

Once yowre cone that, you should go back and search for the progriapuits, to ma& wure that the pro-
gram strongly filters anof its untrusted inputsFlawfinder can identify manprogram inputs by using the
——inputs option, lik tis:

flawfinder ——inputs xyzzy

Flawfinder can integrate well withxeeditors and integrated wi@opment environments; see theaeples
for more information.

Flawfinder includes manother options, including ones to create HTML versions of the output (useful for
prettier displays). The next section describes those options in more detail.

OPTIONS
Flawfinder has a number of options, which can be grouped into options that control its own documentation,
select which hits to displagelect the output format, and perform hitlist management.

Documentation
——help Show usage (help) information.

—-version  Shows (just) the version number and exits.

Selecting Hits to Display
——patchpatchfile

—PpatchfileOnly report hits that are changed by theegipatch file. The patch file must be
in unified dif format (e.g., the output of "difu old new" or "svn diff"), where the nefiles
are the ones that are beingaeined by flafinder The line numbers gén in the patch file
are used to determine which lines were changed, so if yrimadified the files since the
patch file vas created, regenerate the patch file fiBsware that the file names of thewe
files given in the patch file must matchxactly, including upper/lower case, path prefix, and
directory separator (\ vs. /). Only unifiedfdibrmat is accepted (either GNU fdifr svn diff
output is okay); if you hae a dfferent format, again regenerate it first. Only hits that occur
on resultant changed lines, or immediately\eband belav them, are reported. This option
implies --ne&erignore.

——allowlink Allow the use of symbolic links; normally symbolic links are skippBdn't use this option
if you're analyzing code by others; attackers could doynthimgs to cause problems for an
analysis with this option enabledtor example, an attacker could insert symbolic links to
files such as /etc/passwd (leaking information about the file) or create a circular loop, which
would cause flawfinder to rufforever’”. Anotherproblem with enabling this option is that
if the same file is referenced multiple times using symbolic links, it will be analyzed multi-
ple times (and thus reported multiple times). Note that flawfinder already includes some
protection against symbolic links to special file types such as device file types (e.g.,
/devizero or C:\mystdfcoml). Notethat for flawfinder ersion 1.01 and before, thisaw
the default.

——inputs

Flawfinder 30May 2004 3



= Shaw only functions that obtain data from outside the program; this also setvehiol®.

——minlevel=X

-m X Set minimum risk Ieel to X for inclusion in hitlist. This can be from 0 (“no risk”) to 5
(“maximum risk”); the default is 1.

——falsepositve

-F Do not include hits that are Bly to be false posites. Currently this means that function
names are ignored if titee not followed by "(", and that declarations of character arrays
arent noted. Thusjf you have wse a variable named "accessérgwhere, this will elimi-
nate references to this ordinargriable. Thisisn’'t the deéult, because this also increases
the likelihood of missing important hits; in particylunction names in #define clauses and
calls through function pointers will be missed.

——neverignore

-n Never ignore security issuesyen if they havean “ignore’ directive in a @mment.

——followdotdir
Enter directories whose names begin with ".". Normally such directories are ignored, since
they normally include version control préte data, configurations, and so on.

Selecting Output Format

—-columns

-C Shaowv the column number (as well as the file name and line number) of each hit; this is
shavn after the line number by adding a colon and the column number in the line (the first
character in a line is column number This is useful for editors that can jump to specific
columns, or for integrating with other tools (such as those to further filteratag posi-
tives).

—-context

-C Shav context, i.e., the line having the "hit"/potential fla By default the line is shan
immediately after the warning.

——dataonly

-D Don't display the header and footddse this along with ——quiet to see just the data itself.

——html Format the output as HTML instead of as simple text.

——immediate

-i Immediately display hits (donjust wait until the end).

—=singleline

-S Display as single line of text output for each hit. Useful for interacting with compilation

tools.

——omittime  Omit timing information. This is useful for regression tests of flawfinder itself, so that the
output doest’'vary depending on lwlong the analysis takes.

Flawfinder 30May 2004 4



——quiet

-Q Don't display status information (i.e., which files are being examined) while the analysis is
going on.

Hitlist Management
——savehitlist=F
Save dl resulting hits (the "hitlist") to F.

——loadhitlist=F
Load the hitlist from F instead of analyzing source programs.

——diffhitlist= F
Show only hits (loaded or analyzed) not in IF was presumably created previously using
——savehitlist. If the ——loadhitlist option is not provided, this will siéhe hits in the ana-
lyzed source code files that were not previously stored ifised along with ——loadhitlist,
this will shaw the hits in the loaded hitlist not in Fhe difference algorithm is conseative;
hits are only considered thsame’ if t hey havethe same filename, line numpeolumn
position, function name, and riskvis.

EXAMPLES
Here are various examples ofvhto invoke flawfinder. The first examples shovarious simple command-
line options. Flawfinder is designed to avk well with text editors and integratedvé®pment eriron-
ments, so the next sections shmw to integrate flawfinder into vim and emacs.

Simple command-line options
flawfinder /usr/src/linux-2.4.12
Examine all the C/C++ files in the directory /usr/src/linux-2.4.12 and all its subdirectories
(recursvely), reporting on all hits found.

flawfinder ——minlevel=4 .
Examine all the C/C++ files in the current directory and its subdirectories (regtylsonly
report vulnerabilities deel 4 and up (the tw highest risk lgels).

flawfinder ——inputs mydir
Examine all the C/C++ files in mydir and its subdirectories (reeslydj and report func-
tions that tak inputs (so that you can ensure thaytfiker the inputs appropriately).

flawfinder ——neverignor e mydir
Examine all the C/C++ files in the directory mydir and its subdirectories, includamgtiee
hits marked for ignoring in the code comments.

flawfinder -QD mydir
Examine mydir and report only the actual results (rémwpthe header and footer of the out-
put). Thisform is useful if the output will be piped into other tools for further analyBise
—C (-—columns) and -S (--singleline) options can also be useful if you're piping the data
into other tools.

Flawfinder 30May 2004 5



flawfinder ——quiet ——html ——context mydir > results.html
Examine all the C/C++ files in the directory mydir and its subdirectories, and produce an
HTML formatted version of the resultSource code management systems (such as Source-
Forge and Saannah) might use a commandédikis.

flawfinder ——quiet ——savehitlist saved.hits *.[ch]
Examine all .c and .h files in the current directobon’t report on the status of processing,
and sae the resulting hitlist (the set of all hits) in the filevad hits.

flawfinder ——diffhitlist saved.hits *.[ch]
Examine all .c and .h files in the current direct@nd shav any hits that werert' aready in
the file saed.hits. Thiscan be used to sthwonly the ‘new” vulnerabilities in a modified
program, if saed.hits was created from the older version of the program being analyzed.

Invoking from vim
The tet editor vim includes a "quickfix" mechanism that works well witwflader, so hat you can easily
view the warning messages and jump to theveslesource code.

First, you need to iroke flawfinder to create a list of hits, and there are ways to do this. The firstay
is to start flawfinder first, and then (using its outpuipke vim. Thesecond way is to start (or continue to
run) vim, and then woke flawfinder (typically from inside vim).

For the first vay, run flawfinder and store its output in some FLAWFILE (say "flawfile"), theakis im
using its -q option, lik this: "vim -q flavfile". The second way (starting flawfinder after starting vim) can
be done a legion of ays. Ones to invoke flawfinder using a shell command, ":\flindercommand >
FLAWFILE", then follov that with the command ":cf FIMXFILE". Anotherway is to gore the flavfinder
command in your makefile (as, sayseudocommand lk"flaw"), and then run ":makflaw'.

In all these cases you need a command for flawfinder toAynausible command, which places each hit
in its own line (-S) and remves headers and footers that would confuse it, is:

flawfinder -SQD .

You can nav use various editing commands towithe results. The command ":cn" displays the next hit;
":cN" displays the previous hit, and ":cr'winds back to the first hit. ":copen" will open a windto show

the current list of hits, called the "quickfix windg ":cclose" will close the quickfix winde. If the huffer

in the used winde has changed, and the error is in another file, jumping to the errom@illMou hare ©
malke aure the windw contains a bffer which can be abandoned before trying to jump tonafile, say by
saving the file; this prents accidental data loss.

Invoking from emacs
The text editor / operating system emacs includes "grep mode" and "compile mode" mechanisork that w
well with flawfinder, making it easy to vie warning messages, jump to the val® source code, and fix
ary problems you find.

First, you need to iroke flawfinder to create a list of warning messag&su can use "grep mode" or
"compile mode" to create this listOften "grep mode" is more ceenient; it leaes compile mode
untouched so you can easily recompile oncewysdanged somethingHowever, if you want to jump to
the exact column position of a hit, compile mode may be moneecmmt because emacs can use the col-
umn output of flawfinder to directly jump to the right location withowt ggecial configuration.

To use grep mode, enter the command "M-x grep" and then enter the needed flawfinder coffomased.
compile mode, enter the command "M-x compile” and enter the needed flawfinder command. This is a
meta-lkey mmmand, so yoll'need to use the metak for your keyboard (this is usually the ES@W. As

with all emacs commands, you'll need to press RETURN after typing "grep" or "comfitcebn man
systems, the grep mode izvdaked by typing ESC x g r e p RETURN.

Flawfinder 30May 2004 6



You then need to enter a command, removing wieateas there before if necessar plausible com-
mand is:

flawfinder -SQDC .

This command makewery hit report a single line, which is much easier for tools to haritie quiet and
dataonly options renve the other status information not needed for use inside emacs. The trailing period
means that the current directory and all descendents are searched for C/C++ code, and analyzed for flaws.

Once yowe invoked flawfinder, you can use emacs to jump around in its results. The command C-x °
(Control-x backtick) visits the source code location for the nextnimg message. C-u C-x ~ (control-u
control-x backtick) restarts from the dianing. You can visit the source for yaparticular error message

by moving to that hit message in the *compilationiffer or *grep* tuffer and typing the returnel
(Technical note: in the compilationutfer, this invokes cmpile-goto-error). Wu can also click the
Mouse-2 button on the error message (when using the mouse yoneknhto switch to the *compilation*
buffer first).

If you want to use grep mode to jump to specific columns of a hitllymed to specially configure emacs
to do this. To do this, modify the emacs variable "greeep-alist". Thisvariable tells Emacs o to
parse output of a "grep" command, similar to thgable "compilation-erreregexp-alist” which lists wari-
ous formats of compilation error messages.

SECURITY
You should alvays analyze @opyof the source program being analyzed, not a directory that can be modi-
fied by a deeloper while flawfinder is performing the analysis. Thigépeciallytrue if you dont necess-
ily trust a deeloper of the program being analyzed. If an attacker has conteoltioe files while youe
analyzing them, the attacker could vediles around or change their contents tovpnéthe exposure of a
security problem (or create the impression of a problem where there is hioy@).re worried about mali-
cious programmers you should do thignaay, because after analysis you'll need to verify that the code
eventually run is the code you analyzedlso, do not use the ——allowlink option in such cases; attack
could create malicious symbolic links to files outside of their source code area (such as /etc/passwd).

Source code management systemse (lourceFoge and Sannah) definitely fall into this category; if
you're maintaining one of those systems, firstycopextract the files into a separate directory (that tan’
be controlled by attackers) before running flawfinder grather code analysis tool.

Note that flawfinder only opens regular files, directories, and (if requested) symbolic links; itweill ne
open other kinds of files,ven if a symbolic link is made to themThis counters attackers who insert
unusual file types into the source codtowever, this only works if the filesystem being analyzed tée’
modified by an attacker during the analysis, as recommended. ablis protection also doegnvork on
Cygwin platforms, unfortunately.

Cygwin systems (Unix emulation on top ofifows) hare an additional problem if flafinder is used to
analyze programs the analyzer cannot trust due to a designnfd/indows (that it inherits from MS-
DOS). OnWindows and MS-DOS, certain filenames (e.gom1”) are automatically treated by the oper
ating system as the names of peripherals, and this isuenentien a full pathname is\gn. Yes, Whn-
dows and MS-DOS really are designed this badiawfinder deals with this by checking what a filesystem
object is, and then only opening directories and regular files (and symlinks if endbigdjtunately this
doesnt work on Cygwin; on at least some versions of Cygwin on some versionsidbwg, merely trying
to determine if a file is a device type can cause the program to Bamgrkaround is to delete or rename
ary filenames that are interpreted as device names before performing the anaéhese so-called
“resened namesare CON, PRN, X, CLOCK$, NUL, COM1-COM9, and LPT1-LPT9, optionally fol-
lowed by an extension (e.g., “coml.txt”), inyadirectory, and in ary case (Windows is case-insengd).

BUGS
Flawfinder is currently limited to C/C++It’s designed so that adding support for other languages should
be easy.

Flawfinder 30May 2004 7



Flawfinder can be fooled by user-defined functions or method names that happen to be the same as those
defined ashits” in its database, and will often trigger on definitions (as well as uses) of functions with the
same name. This is because flawfinder is basedxbpa&ern matching, which is part of its fundamental
design and not easily changed. Thistiss much of a problem for C codeuybit can be more of a problem

for some C++ code which hély uses classes and namespaces. On theymsde, flawfinder doeshyet
confused by mancomplicated preprocessor sequences that other tools sometimesahaoklso, having

the same name as a common library routine name can indicate thatdlopeleis simply rewriting a com-

mon library routine, say for portability'sake. Thusthere are reasonable odds that these rewritten routines
will be vulnerable to the same kinds of misuse. Thealsepositie gtion can help someéhat. Ifthis is a
serious problem, feel free to modify the program, or process thérftier output through other tools to
remove te false posities.

Preprocessor commands embedded in the middle of a parameter list of a call can cause problems in parsing,
in particular if a gring is opened and then closed multiple times using an #ifdef .. #else construct,
flawfinder gets confusedSuch constructs are bad style, and will confuseynottrer tools too. If you must

analyze such files, rewrite those lines. Thankfuhlgse are quite rare.

The routine to detect statically defined character arrays uses sixipheatiehing; some complicatedpe-
sions can cause it to trigger or not trigger unexpectedly.

Flawfinder looks for specific patterns known to be common méstallavfinder (or ay tool like it) is not
a good tool for finding intentionally malicious code (e.g., Trojan horses); malicious programmers can easily
insert code that would not be detected by this kind of tool.

Flawfinder looks for specific patterns known to be common mistakes in application code. Thuselyis lik

to be less ééctive analyzing programs that ardrdpplication-layer code (e.g., kernel code or self-hosting
code). Theechniques may still be useful; feel free to replace the database if your situation is significantly
different from normal.

Flawfinders autput format (filename:linenumhdollowed optionally by a :columnnumber) can be misun-
derstood if ay source files hee vey weird filenames.Filenames embedding a newline/linefeed character
will cause odd breaks, and filenames including colon (:) are likely to be misunder3tieds especially
important if flavfinder’s autput is being used by other tools, such as filters or text editors. If you're looking
at nev code, examine the files for such charactdt's incredibly unwise to hee aich filenames gmway;

mary tools cant handle such filenames at aMewline and linefeed are often used as internal data delime-
ters. Thecolon is often used as special characters in filesystems: MacOS uses it as a directory,separator
Windovs/MS-DOS uses it to identify o letters, Vihdows/MS-DOS inconsistently uses it to identify spe-
cial devices lie CON:, and applications on mamlatforms use the colon to identify URIS/URLSile-
names including spaces and/or tabs tcase problems for fl&inder, though note that other tools might
have problems with them.

In general, flawfinder attempts to err on the side of caution; it tends to report hits, soyticantbe gam-

ined furtheyr instead of silently ignoring them. Thus, flawfinder prefers teeHalse posities (reports that
turn out to not be problems) rather than falsgatiees (failure to report on a security vulnerabilityBut

this is a generality; flawfinder uses simplistic heuristics and simply gaindserything "right”.

Security vulnerabilities might not be identified as such hyfitaler, and cormversely, some hits arert’'really
security vulnerabilities. This is true for all static security scanners, especially thedlawknder that use
a dmple pattern-based approach to identifying problems. Still, it care sesva geful aid for humans,
helping to identify useful places to examine furtlaad thats the point of this tool.

SEE ALSO
See the flawfinder website at http://mewheeler.com/flawfinderYou should also see tigecue Pro-
gramming for Unix and Linux HOWT&X http://www.dwheeler.com/secure-programs.

AUTHOR
David A. Wheeler (dwheeler@dwheeler.com).

Flawfinder 30May 2004 8



Flawfinder 30May 2004



