Veusz Documentation
Release 3.3.1

Jeremy Sanders

Dec 06, 2020

CONTENTS

1 Introduction 3
L1 VRUSZ . . o o e e e e e e e e e e e 3

1.2 Installation e e e e e e e e e 3

1.3 Getting started L e e e e e e e 3

14 Terminology o v i i e e e e e e e e e e e e e e 3
LA WIdget e e e e e e e e e 3

1.4.2 Settings: properties and formattingo oL oo 6

1.4.3 Datasets e e e e e e e e e e e e e 7

1.4.4 Text e e e e e e e e e e 7

1.45 Measurements v i v e e e e e e e e e e e e e e e e e 8

1.46 Colortheme e e e e e e e e 8

1.47 Axisnumericscales e e e e e e e 8

1.4.8 Three dimensional BD) plots L 9

1.5 Themain window e e e e e e e e 10

1.6 My firstplot e e e e e 11

2 Reading data 13
2.1 Standard teXt iMPOrt e e e e e e e e e 13
2.1.1 Datatypes in teXt Importo it e e e e e e e e e e 14

2.1.2 0 DESCIIPLOTS . v v v vt o e 14

2.1.3 Descriptor examples e e e e e e e e e e e 15

2.2 CSVIAles . . . o o e e e e e e 15
2.3 HDFESAiles e 16
2.3.1 Errorbars e e e e e e 16

2.3.2 0 SHCES . . o v o e e e e e e e e e e e 16

233 2D datarangeso e 16

234 DateS e 16

24 2Dtextor CSVformat e e e e e e 17
2.5 FITSAiles o o e 17
2.6 Readingotherdataformats e e e e e e e e e 18

3 Manipulating datasets 21
3.1 Usingdataset plugins o o e e e e e 21
3.2 Using expressions to create new datasets e e e e e e e e e e 21
3.3 Linking datasets t0 eXpresSsions v v v i v e e e e e e e e e e e e e e e e e e 22
34 Splitting data e e e e e e e e e e e e 22
3.5 Defining new constants or functions L L oL oL o e e e e 22
3.6 Dataset plugins e e e e 23

4 Capturing data 25

5 Veusz command line and embedding interface (API) 27

5.1
52

Introduction e e e e 27
Commands and APT e e e 27
521 AcHOn e e e e e e e 27
522 Add ... e 27
523 AddCustom e e 28
5.2.4 AddImportPath e e e e e 28
5.25 CloneWidget o o i e e e e e e 28
526 Close e e 28
5277 CreateHistogram L e 28
52.8 CurrentPath e 29
5.2.9 DatasetPlugin e e e e e e e e e e e e e 29
5.2.10 EnableToolbar e 29
S2.01 EXPOrt . . v o v e e e e e e e e e e e e e e 29
5.2.12 FilterDatasets e e e e e e e e e e e 29
5.2.13 ForceUpdate e e 30
52,014 Get . .o o e e 30
52,15 GetChildren oo e e e e e 30
5216 GetClick o o e 30
5207 GetColormap e e e 30
5208 GetData e e e 30
52.19 GetDataType o o i e e e 31
5220 GetDatasetso e e e e e e e e e e e 31
5221 GPL . . e e 31
5.222 TImportFile o o e e e e e 31
5223 ImportFile2D oL e 31
5224 TImportFileCSV o e 32
5.2.25 TImportFileFITS e e e e e e e 33
5.226 TImportFileHDFS o e e e e 34
5227 ImportFileND o o e 35
5.2.28 ImportFilePlugin e 35
5229 ImportFITSFile e 35
5230 ImportString o e e e e e e e e 36
5.231 ImportString2D L e e e e e e e e e e 36
5.232 TImportStringND L. e e e e e e 36
5233 IsClosed o o i e e e e e e e e e e 36
5234 LSt . . . o e e e e 36
5235 Load o e 36
5236 MoveToPage e e e e e e e 37
5237 ReloadData e e e 37
5238 Rename e e 37
5239 RemMOVE L e e e e e e 37
5240 ResizeWindow oL e e 37
5241 Save . ..o e 37
5242 Set. . . o e e 37
5243 SetAntiAliasing L e 38
5244 SetData e e e e e e e e 38
5.245 SetDataEXpression o e e e e e e e e e 38
5246 SetDataND e e 38
5.247 SetDataRange e e e e e e e e e 38
5248 SetData2D e e 39
5.249 SetData2DEXPression o e e e e e e e e e 39
5.2.50 SetData2DExpressionXYZ oL e 39
5.251 SetData2DXYFunc o e e 39

5.2.52 SetDataDateTime v e e e e e e e e 39

5.2.53 SetDataTeXt o o i e e e e e e e e e 39
5.2.54 SetToReference e 40
5.2.55 SetUpdatelnterval e 40
5.2.56 SetVerbose e e e e e e 40
5.2.57 StartSecondView L e e 40
5.2.58 TagDatasets o i e e e e e e e e e e e e e e e e e e 40
5259 To .. e e 40
52.60 Quit . . .o e e e 40
5.2.61 WaitForClose o o i e e e e e e e 41
52.62 ZOOM e e 41

5.3 0 SECUItY . . v v ot e e e e e e e e e e e e e 41
5.4 Using Veusz from other programs v v v v v i i e e e e e e e e e e 41
54.1 Non-QtPythonprograms e 41

5.4.2 Older path-based interface 41

54.3 New-style objectinterface e 43

544 Translatingoldtonewstyle 45

6 Indices and tables 47

Veusz Documentation, Release 3.3.1

Jeremy Sanders
Copyright 2020

This document is licensed under the GNU General Public License, version 2 or greater. Please see the file COPYING
for details, or see http://www.gnu.org/licenses/gpl-2.0.html.

This is the documentation for Veusz. Veusz is a multiplatform scientific plotting package with a graphical user inter-
face.

Contents:

CONTENTS 1

http://www.gnu.org/licenses/gpl-2.0.html

Veusz Documentation, Release 3.3.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 Veusz

Veusz is a 2D and 3D scientific plotting package. It is designed to be easy to use, easily extensible, but powerful. The
program features a graphical user interface (GUI), which works under Unix/Linux, Windows or Mac OS. It can also
be easily scripted (the saved file formats are similar to Python scripts) or used as module inside Python. Veusz reads
data from a number of different types of data file, it can be manually entered, or constructed from other datasets.

In Veusz the document is built in an object-oriented fashion, where a document is built up by a number of widgets in
a hierarchy. For example, multiple function or xy widgets can be placed inside a graph widget, and many graphs can
be placed in a grid widget. The program also supports a variety of 3D plots, including 3D point and surface plots. The
program produces vector rather than rastered 3D output.

Veusz can be extended by the user easily by adding plugins. Support for different data file types can be added with
import plugins. Dataset plugins automate the manipulation of datasets. Tools plugins automate the manipulation of
the document.

1.2 Installation

Please go to the website of Veusz to learn more about the program. Links to binaries, distribution packages and the
source package can be found in downloads. For source installation, please see the package INSTALL.

1.3 Getting started

Veusz includes a built-in tutorial which starts the first time the program is run. You can rerun it later from the Help
menu. It also includes many examples, to show how certain kinds of plots are produced. For more help and link to a
video tutorial, see help.

1.4 Terminology
Here we define some terminology for future use.

1.4.1 Widget

A document and its graphs are built up from widgets. These widgets can often by placed within each other, depending
on the type of the widget. A widget has children (those widgets placed within it) and its parent. The widgets have

https://veusz.github.io/
https://veusz.github.io/download/
https://veusz.github.io/examples/
https://veusz.github.io/help-support/

Veusz Documentation, Release 3.3.1

a number of different settings which modify their behaviour. These settings are divided into properties, which affect
what is plotted and how it is plotted. These would include the dataset being plotted or whether an axis is logarithmic.
There are also formatting settings, including the font to be used and the line thickness. In addition they have actions,
which perform some sort of activity on the widget or its children, like “fit” for a fit widget.

As an aside, using the scripting interface, widgets are specified with a “path”, like a file in Unix or Windows. These
can be relative to the current widget (do not start with a slash), or absolute (start with a slash). Examples of paths
include, /pagel/graphl/x, x and ..

The widget types include

1.

document - representing a complete document. A document can contain pages. In addition it contains a setting
giving the page size for the document.

page - representing a page in a document. One or more graphs can be placed on a page, or a grid.

graph - defining an actual graph. A graph can be placed on a page or within a grid. Contained within the
graph are its axes and plotters. A graph can be given a background fill and a border if required. It also has a
margin, which specifies how far away from the edge of its parent widget to plot the body of the graph. A graph
can contain several axes, at any position on the plot. In addition a graph can use axes defined in parent widgets,
shared with other graphs. More than one graph can be placed within in a page. The margins can be adjusted so
that they lie within or besides each other.

grid - containing one or more graphs. A grid plots graphs in a gridlike fashion. You can specify the number
of rows and columns, and the plots are automatically replotted in the chosen arrangement. A grid can contain
graphs or axes. If an axis is placed in a grid, it can be shared by the graphs in the grid.

axis - giving the scale for plotting data. An axis translates the coordinates of the data to the screen. An axis
can be linear or logarithmic, it can have fixed endpoints, or can automatically get them from the plotted data.
It also has settings for the axis labels and lines, tick labels, and major and minor tick marks. An axis may be
“horizontal” or “vertical” and can appear anywhere on its parent graph or grid. If an axis appears within a grid,
then it can be shared by all the graphs which are contained within the grid. The axis-broken widget is an
axis sub-type. It is an axis type where there are jumps in the scale of the axis. The axis—function widget
allows the user to create an axis where the values are scaled by a monotonic function, allowing non-linear and
non-logarithmic axis scales. The widget can also be linked to a different axis via the function.

plotters - types of widgets which plot data or add other things on a graph. There is no actual plotter widget
which can be added, but several types of plotters listed below. Plotters typically take an axis as a setting, which
is the axis used to plot the data on the graph (default x and y).

1. function - a plotter which plots a function on the graph. Functions can be functions of x or y (parametric
functions are not done yet!), and are defined in Python expression syntax, which is very close to most other
languages. For example 3*x**2 + 2%x - 4. A number of functions are available (e.g. sin, cos, tan, exp,
log. ..). Technically, Veusz imports the numpy package when evaluating, so numpy functions are available.
As well as the function setting, also settable is the line type to plot the function, and the number of steps
to evaluate the function when plotting. Filling is supported above/below/left/right of the function.

2. xy - a plotter which plots scatter, line, or stepped plots. This versatile plotter takes an x and y dataset, and
plots (optional) points, in a chosen marker and colour, connecting them with (optional) lines, and plotting
(optional) error bars. An xy plotter can also plot a stepped line, allowing histograms to be plotted (note
that it doesn’t yet do the binning of the data). The settings for the xy widget are the various attributes for
the points, line and error bars, the datasets to plot, and the axes to plot on. The xy plotter can plot a label
next to each dataset, which is either the same for each point or taken from a text dataset. If you wish to
leave gaps in a plot, the input value nan can be specified in the numeric dataset.

3. £it - fit a function to data. This plotter is a like the function plotter, but allows fitting of the function to
data. This is achieved by clicking on a “fit” button, or using the “fit” action of the widget. The fitter takes
a function to fit containing the unknowns, e.g. a*x**2 + b*x + ¢, and initial values for the variables (here
a, b and c). It then fits the data (note that at the moment, the fit plotter fits all the data, not just the data

Chapter 1. Introduction

Veusz Documentation, Release 3.3.1

10.

11.

12.

13.

14.

15.

that can be seen on the graph) by minimising the chi-squared. In order to fit properly, the y data (or x, if
fitting as a function of x) must have a properly defined, preferably symmetric error. If there is none, Veusz
assumes the same fractional error everywhere, or symmetrises asymmetric errors. Note that more work
is required in this widget, as if a parameter is not well defined by the data, the matrix inversion in the fit
will fail. In addition Veusz does not supply estimates for the errors or the final chi-squared in a machine
readable way. If the fitting parameters vary significantly from 1, then it is worth “normalizing” them by
adding in a factor in the fit equation to bring them to of the order of 1.

. bar - a bar chart which plots sets of data as horizontal or vertical bars. Multiple datasets are supported. In

“grouped” mode the bars are placed side-by-side for each dataset. In “stacked” mode the bars are placed
on top of each other (in the appropriate direction according to the sign of the dataset). Bars are placed on
coordinates given, or in integer values from 1 upward if none are given. Error bars are plotted for each of
the datasets. Different fill styles can be given for each dataset given. A separate key value can be given for
each dataset.

. key - a box which describes the data plotted. If a key is added to a plot, the key looks for “key” settings of

the other data plotted within a graph. If there any it builds up a box containing the symbol and line for the
plotter, and the text in the “key” setting of the widget. This allows a key to be very easily added to a plot.
The key may be placed in any of the corners of the plot, in the centre, or manually placed. Depending on
the ordering of the widgets, the key will be placed behind or on top of the widget. The key can be filled
and surrounded by a box, or not filled or surrounded.

. label - atext label places on a graph. The alignment can be adjusted and the font changed. The position

of the label can be specified in fractional terms of the current graph, or using axis coordinates.

. rect, ellipse - these draw a rectangle or ellipse, respectively, of size and rotation given. These

widgets can be placed directly on the page or on a graph. The centre can be given in axis coordinates or
fractional coordinates.

. imagefile - draw an external graphs file on the graph or page, with size and rotation given. The centre

can be given in axis coordinates or fractional coordinates.

. line - draw a line with optional arrowheads on the graph or page. One end can be given in axis coordi-

nates or fractional coordinates.

contour - plot contours of a 2D dataset on the graph. Contours are automatically calculated between
the minimum and maximum values of the graph or chosen manually. The line style of the contours can
be chosen individually and the region between contours can be filled with shading or color. 2D datasets
currently consist of a regular grid of values between minimum and maximum positions in x and y. They
can be constructed from three 1D datasets of x, y and z if they form a regular x, y grid.

image - plot a 2D dataset as a colored image. Different color schemes can be chosen. The scaling between
the values and the image can be specified as linear, logarithmic, square-root or square.

polygon - plot x and y points from datasets as a polygon. The polygon can be placed directly on the
page or within a graph. Coordinates are either plotted using the axis or as fractions of the width and height
of the containing widget.

boxplot - plot distribution of points in a dataset.

polar - plot polar data or functions. This is a non-orthogonal plot and is placed directly on the page
rather than in a graph.

ternary - plot data of three variables which add up to 100 per cent.This is a non-orthogonal plot and is
placed directly on the page rather than in a graph.

7. 3D widgets - 3D graphs can be created by adding a 3D scene widget (scene3d) to a blank page, or by creating
a new 3D document. The 3D scene has settings which control the angle the rotation angle of the plot, the
position and color of lighting and the rendering method.

To build up a 3D plot the following widgets can be placed inside it:

1.4. Terminology 5

Veusz Documentation, Release 3.3.1

1. graph3d - this is an analogous widget to the 2D graph widget, plotting a 3D plot with cartesian axes.
It contains three or more axis3d widgets, and plotting widgets. The graph contains settings for the graph
size (the default is 1 in each direction) and the 3D position of the graph in the same units. Multiple graph
widgets can be added to a scene, though the position and sizes may need to be adjusted.

2. axis3d - normally a 3D graph has three axes (X, Y and Z), but more axes can be added to plot multiple
things on a single axis direction. This works in a similar way to the 2D axis widget. The widget has
options for the axis label, tick labels, tick marks and grid lines (which appear on the outside of the 3D
cube). An axis can be swiched between linear and logorithmic mode. Scalings can be applied to the data
values plotted in that dimension or to the axis labels.

3. point3d - for plotting points, and optionally connecting lines, in 3D. This, and the other plotting widgets
are placed in a graph3d widget. The user provides three 1D datasets for the x, y and z values. The markers
can be scaled in size by another optional dataset. The markers can also be colored according to another
optional dataset, according to a color map, minimum and maximum. Error bars can be provided for each
of the x, y and z datasets. The connecting line can also be colored if a color dataset is provided and a
colormap chosen.

4. function3d - for plotting either a functional line in 3D space or a functional surface. The type of plot is
given by the mode parameter. In the case of the line, the X,y,z coordinates can be specified as a function of
t, where t goes from O to 1, or by giving functions for two of the coordinates as a function of the other. For
a surface, the value for x, y or z is given as a function of the other two. In addition, a function returning
0 to 1 can be provided for the color, which specifies the color map value for the surface at each position
or the line color. For a 2D surface, the grid lines or surface fill can be hidden or shown. There are also
settings giving the number of function evaluations to compute in each direction for a surface, or in one
direction for a line.

5. surface3d - for plotting a two dimensional surface from data values. The user should provide a 2D
dataset for the height of a surface. The x, y or z axis for the height and other directions can be chosen. A
second 2D dataset can be provided for the color of the surface at each point. Note that the coordinate of
the 2D dataset lies at the center of each 2D grid point. The height of the grid at the edge is calculated by
linear interpolation. Normally the grid is surrounded by four lines and the surface by two triangles. If a
high resolution option is enabled, the each grid point is surrounded by eight lines and the surface drawn
by eight triangles.

6. volume3d - for plotting 3D volumes. In this widget, for a volume described by AxBxC values, then the
user should provide four datasets, each containing up to AxBxC values (there can be holes in the repre-
sentation). Three of the datasets give coordinates of the centers of the 3D cells and the fourth the color of
the cell. An example set of datasets would be X=(0,0,0,0,1,1,1,1), Y=(0,0,1,1,0,0,1,1), Z=(0,1,0,1,0,1,0,1),
color=(0.1,0.2,0.3,0.4,0.3,0.2,0.1,0). Additionally, the user can provide a transparency dataset, which can
be useful for showing or hiding parts of the 3D space.

1.4.2 Settings: properties and formatting
The various settings of the widgets come in a number of types, including integers (e.g. 10), floats (e.g. 3.14), dataset
names (mydata), expressions (x+y), text (hi there!), distances (see above), options (horizontal or vertical for axes).

Veusz performs type checks on these parameters. If they are in the wrong format the control to edit the setting will
turn red. In the command line, a TypeError exception is thrown.

In the GUI, the current page is replotted if a setting is changed when enter is pressed or the user moves to another
setting.

The settings are split up into formatting settings, controlling the appearance of the plot, or properties, controlling what
is plotted and how it is plotted.

Default settings, including the default font and line style, and the default settings for any graph widget, can be modified
in the “Default styles” dialog box under the “Edit” menu. Default settings are set on a per-document basis, but can be

6 Chapter 1. Introduction

Veusz Documentation, Release 3.3.1

saved into a separate file and loaded. A default default settings file can be given to use for new documents (set in the
preferences dialog).

1.4.3 Datasets

Data are imported into Veusz as a dataset. A dataset is imported from a file, entered manually, set via the command
line, or linked to other datasets via an expression or dataset plugin. Each dataset has a unique name in the document.
They can be seen in the dataset browser panel, or in the Data, Edit dialog box. To choose the data to be plotted, the
user usually selects the dataset in the appropriate setting of a widget.

Veusz supports one-dimensional (1D) datasets, which are a list of values with optional error bars. Error bars can either
be symmetric or asymmetric. Veusz also supports two-dimensional (2D) data. A 2D dataset is a grid of values, with
either a fixed spacing in coordinates, or with arbitrary pixel sizes. An n-dimensional (nD) dataset is an arbitrary matrix
of values. These cannot be plotted directly, but subsets can be plotted using python slice syntax to convert to 1D or 2D
datasets.

In addition to simple numeric datasets, Veusz also supports date-time datasets. For details see the sections on reading
data. Also supported are text datasets, which are lists of text strings.

Datasets can either be plain lists of values which are stored within the document, or they can be linked to a file, so that
the values update if the file is reloaded, or they can be linked to other datasets via expressions or dataset plugins.

1.4.4 Text

Veusz understands a limited set of LaTeX-like formatting for text. There are some differences (for example, 10"23
puts the 2 and 3 into superscript), but it is fairly similar. You should also leave out the dollar signs. Veusz supports
superscripts (%), subscripts (_), brackets for grouping attributes are { and /.

Supported LaTeX symbols include: \AA, \Alpha, \Beta, \Chi, \Delta, \Epsilon, \Eta, \Gamma, \Iota, \Kappa, \LLambda,
\Mu, \Nu, \Omega, \Omicron, \Phi, \Pi, \Psi, \Rho, \Sigma, \Tau, \Theta, \Upsilon, \Xi, \Zeta, \alpha, \approx, \ast,
\asymp, \beta, \bowtie, \bullet, \cap, \chi, \circ, \cup, \dagger, \dashv, \ddagger, \deg, \delta, \diamond, \divide, \doteq,
\downarrow, \epsilon, \equiv, \eta, \gamma, \ge, \gg, \hat, \in, \infty, \int, \iota, \kappa, \lambda, \le, \leftarrow, \Ihd, \11,
\models, \mp, \mu, \neq, \ni, \nu, \odot, \omega, \omicron, \ominus, \oplus, \oslash, \otimes, \parallel, \perp, \phi, \pi,
\pm, \prec, \preceq, \propto, \psi, \rhd, \rho, \rightarrow, \sigma, \sim, \simeq, \sqrt, \sqsubset, \sqsubseteq, \sqsupset,
\sqsupseteq, \star, \stigma, \subset, \subseteq, \succ, \succeq, \supset, \supseteq, \tau, \theta, \times, \umid, \unlhd,
\unrhd, \uparrow, \uplus, \upsilon, \vdash, \vee, \wedge, \wtilde, \xi, \zeta. Please request additional characters if they
are required (and exist in the unicode character set). Special symbols can be included directly from a character map.

Other LaTeX commands are supported. \ breaks a line. This can be used for simple tables. For example {a\b} {c\d}
shows a c over b d. The command \frac{a}{b} shows a vertical fraction a/b.

Also supported are commands to change font. The command \font{name}{text} changes the font text is written in to
name. This may be useful if a symbol is missing from the current font, e.g. \font{symbol}{g} should produce a gamma.
You can increase, decrease, or set the size of the font with \size{+2}{text}, \size{-2}{text}, or \size{20}{text]. Numbers
are in points.

Various font attributes can be changed: for example, \italic{some italic text} (or use \textit or \emph), \bold{some bold
text} (or use \textbf) and \underline{some underlined text}.

Example text could include Area /\pi (10M{-23} cm™{-2}), or \pi\bold{g}.

Veusz plots these symbols with Qt’s unicode support. You can also include special characters directly, by copying and
pasting from a character map application. If your current font does not contain these symbols then you may get a box
character.

Veusz also supports the evaluation of a Python expression when text is written to the page. Python code is written
inside the brackets ${{ }}%. Note that the Python evaluation happens before the LaTeX expansion is done. The

1.4. Terminology 7

Veusz Documentation, Release 3.3.1

return value of the expression is converted to text using the Python str () function. For example, the expression
%{{2+2}}% would write 4. Custom functions and constants are supported when evaluation, in addition to the usual
numpy functions. In addition, Veusz defines the following useful functions and values.

1. ENVIRON is the os.environ dict of environment variables. ${ {ENVIRON|['USER'] } }$ would show the
current user in unix.

2. DATE ([fmt]) returns the current date, by default in ISO format. fmt is an optional format specifier using
datetime.date.strftime format specifiers.

3. TIME ([fmt]) returns the current date/time, by default in ISO format. fmt is an optional format specifier using
datetime.datetime.strftime format specifiers.

4. DATA (name[, part]) returns the Veusz dataset with given name. For numeric datasets this is a numpy

array. For numeric datasets with errors, part specifies the dataset part to return, i.e. ‘data’, ‘serr’, ‘perr’, ‘nerr’.
For example, the mean value of a dataset could be shown using % { {mean (DATA('x')) }}%.

5. FILENAME () - returns the current document filename. This can include the directory/folder of the file. Note
that the filename is escaped with ESCAPE() so that LaTeX symbols are not expanded when shown.

6. BASENAME () - returns the current document filename, removing the directory or folder name Note that the
filename is escaped with ESCAPE() so that LaTeX symbols are not expanded when shown.

7. ESCAPE (x) - escapes any LaTeX symbols in x so that they are not interpreted as LaTeX.

8. SETTING (path) - return the value of the Veusz setting given by the full path, e.g. %{{SETTING('/
pagel/width') }}%.

9. LANG (mapping) - mapping is a dictionary which maps language names to strings. This returns the string
corresponding to the current language. The keys come from the locale names which are the two-letter language
codes (e.g. en or fr), or the full code (e.g. en_GB or de_AT). The default key is used if the language code is not
found. An example is ${{ LANG({'de':'Druck’', 'default':'Pressure'}) }1}%.

1.4.5 Measurements

Distances, widths and lengths in Veusz can be specified in a number of different ways. These include absolute distances
specified in physical units, e.g. lcm, 0.05m, 10mm, 5in and 10pt, and relative units, which are relative to the largest
dimension of the page, including 5%, 1/20, 0.05.

1.4.6 Color theme

From version 1.26, widgets are colored automatically using the color theme. This theme is specified in the main
document widget settings. Widgets are given the colors in order given the order in a graph widget. The default theme
can be specified in the preferences dialog box.

To override a theme, the user can manually specify the individual colors in the custom definitions dialog box. Color
themel is used as the first theme color, then theme2, etc.

1.4.7 Axis numeric scales

The way in which numbers are formatted in axis scales is chosen automatically. For standard numerical axes, values
are shown with the %Vg formatting (see below). For date axes, an appropriate date formatting is used so that the
interval shown is correct. A format can be given for an axis in the axis number formatting panel can be given to
explicitly choose a format. Some examples are given in the drop down axis menu. Hold the mouse over the example
for detail.

8 Chapter 1. Introduction

Veusz Documentation, Release 3.3.1

C-style number formatting is used with a few Veusz specific extensions. Text can be mixed with format specifiers,
which start with a % sign. Examples of C-style formatting include: %.2f (decimal number with two decimal places,
e.g. 2.01), %.3e (scientific formatting with three decimal places, e.g. 2.123e-02), %g (general formatting, switching
between %f and %e as appropriate). See http://opengroup.org/onlinepubs/007908799/xsh/fprintf.html for details.

Veusz extensions include % Ve, which is like %e except it displays scientific notation as written, e.g. 1.2x10/23, rather
than 1.2e+23. %Vg switches between standard numbers and Veusz scientific notation for large and small numbers.
%VE using engineering SI suffixes to represent large or small numbers (e.g. 1000 is 1k).

Veusz allows dates and times to be formatted using % VDX where X is one of the formatting characters for strftime
(see http://opengroup.org/onlinepubs/007908799/xsh/strftime.html for details). These include a for an abbreviated
weekday name, A for full weekday name, b for abbreviated month name, B for full month name, ¢ date and time
representation, d day of month 01..31, H hour as 00..23, I hour as 01..12, j as day of year 001..366, m as month 01..12,
M minute as 00..59, p AM/PM, § second 00..61, U week number of year 00..53 (Sunday as first day of week), w
weekday as decimal number 0..6, W week number of year (Monday as first day of week), x date representation, X
time representation, y year without century 00..99 and Y year. %VDVS is a special Veusz addon format which shows
seconds and fractions of seconds (e.g. 12.2).

1.4.8 Three dimensional (3D) plots

When drawing in three dimensions, Veusz builds up a 3D “scene” for the graph from the various plotting widgets,
made up of triangles, line segments, points and text. Veusz does not use a standard (e.g. OpenGL) drawing method,
but renders the scene itself. The advantage of this is that it can produce vector rather than bitmap or raster output.
OpenGL, for example, is based around bitmaps.

Veusz applies lighting to the scene. The lighting depends on enabled light sources, which are set in the scene3d widget.
Light sources have a color, intensity and position. Note that only the angle of the light to a surface affects its lighting,
not its distance. The position of the light is relative to the viewer (camera), not the graph. Positive light coordinates are
towards the graph (z), upwards (y) and rightwards (x). Normally each solid surface has an intrinsic color, which can
be seen without any lighting. If a light source is enabled, the color of the light is added to the surface color, depending
on the reflectivity of the surface. Each surface also has a transparency setting.

By default, Veusz uses a naive Painter’s Algorithm to draw the scene. It draws from the back of scene to the front. The
main problem with this algorithm is that shapes and lines overlapping in depth can be confused as the depth of each
object is calculated at only one point. In addition objects may i