
Package ‘pacheck’
January 18, 2026

Type Package

Title Probabilistic Analysis Check Package

Version 0.2.2

Maintainer Xavier Pouwels <x.g.l.v.pouwels@utwente.nl>

Author Xavier Pouwels [aut, cre, cph]

Description Investigate (analytically or visually) the inputs and outputs
of probabilistic analyses of health economic models using standard
health economic visualisation and metamodelling methods.

License GPL (>= 3)

Imports assertthat, boot, dplyr, fitdistrplus, flexsurv, ggplot2,
glue, gtools, interp, moments, randomForestSRC, reshape2,
scales, signal, simsurv, stats, stringi, testthat, tidyr,
glmnet, tibble, survival

Config/testthat/edition 3

Encoding UTF-8

LazyDataCompression xz

LazyData true

RoxygenNote 7.3.2

URL https://xa4p.github.io/pacheck/, https://github.com/Xa4P/pacheck

Suggests knitr, rmarkdown

Depends R (>= 4.1.0)

VignetteBuilder knitr

BugReports https://github.com/Xa4P/pacheck/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-18 11:20:02 UTC

1

https://xa4p.github.io/pacheck/
https://github.com/Xa4P/pacheck
https://github.com/Xa4P/pacheck/issues

2 Contents

Contents
calculate_ceac . 3
calculate_ceac_mult . 4
calculate_nb . 5
calculate_nb_mult . 6
check_binary . 7
check_mean_qol . 8
check_positive . 8
check_psa_darth . 9
check_range . 10
check_sum_probs . 11
check_sum_vars . 12
check_surv_mod . 13
df_ckd_inputs . 14
df_ckd_results . 14
df_iviRA_pa . 15
df_pa . 16
df_pa_psm . 18
do_check . 20
do_discount_check . 21
do_quick_check . 21
estimate_decision_sensitivity . 22
fit_dist . 23
fit_lasso_metamodel . 24
fit_lm_metamodel . 26
fit_rf_metamodel . 28
generate_cor . 30
generate_det_inputs . 31
generate_pa_inputs . 31
generate_pa_inputs_psm . 32
generate_sum_stats . 33
l_psa_aaa . 34
perform_dowsa . 34
perform_simulation . 35
perform_simulation_psm . 36
plot_ce . 36
plot_ceac . 37
plot_ce_mult . 38
plot_convergence . 39
plot_ice . 40
plot_nb . 41
plot_nb_mult . 42
plot_surv_mod . 43
predict_metamodel . 44
summary_ice . 45
validate_metamodel . 46
vis_1_param . 47

calculate_ceac 3

vis_2_params . 48

Index 50

calculate_ceac Calculate cost-effectiveness probabilities for two strategies.

Description

This function calculates the probabilities that each strategy is the cost effective at different willing-
ness to pay thresholds.

Usage

calculate_ceac(
df,
e_int,
e_comp,
c_int,
c_comp,
v_wtp = seq(from = 0, to = 1e+05, by = 1000)

)

Arguments

df a dataframe.
e_int character. Name of variable of the dataframe containing total effects of the in-

tervention strategy.
e_comp character. Name of variable of the dataframe containing total effects of the com-

parator strategy.
c_int character. Name of variable of the dataframe containing total costs of the inter-

vention strategy.
c_comp character. Name of variable of the dataframe containing total costs of the com-

parator strategy.
v_wtp vector of numerical values. Vector of willingness-to-pay threshold for which the

probabilities of cost effectiveness have to be defined. Default is 0:100,000 by
increments of 1,000.

Value

A dataframe with three columns:

• WTP_threshold = The willingness-to-pay thresholds at which the probability of cost effec-
tiveness has been calculated for both strategies

• Prob_int = The probability that the intervention strategy is cost effective at a given willingness-
to-pay threshold

• Prob_comp = The probability that the comparator strategy is cost effective at a given willingness-
to-pay threshold

4 calculate_ceac_mult

Examples

Calculate probabilities of cost effectiveness using the example dataframe,
for willlingness-to-pay thresholds of 0 to 50,0000 euros.
data("df_pa")
calculate_ceac(df = df_pa,

e_int = "t_qaly_d_int",
e_comp = "t_qaly_d_comp",
c_int = "t_costs_d_int",
c_comp = "t_costs_d_comp",
v_wtp = seq(from = 0, to = 50000, by = 1000))

calculate_ceac_mult Calculate cost-effectiveness probabilities.

Description

This function calculates the probabilities that each strategy is the cost effective at different willing-
ness to pay thresholds, for an infinite amount of strategies.

Usage

calculate_ceac_mult(
df,
outcomes,
costs,
v_wtp = seq(from = 0, to = 1e+05, by = 1000)

)

Arguments

df a dataframe.

outcomes character. Vector of variable names containing the outcomes to be plotted on
the x-axis. The variable names should be structured as follows: ’t_qaly_d_’
followed by the name of the strategy: e.g. ’t_qaly_d_intervention’.

costs character. Vector of variable names containing the costs to be plotted on the y-
axis. The variable names should be structured as follows: ’t_costs_d_’ followed
by the name of the strategy: e.g. ’t_costs_d_intervention’.

v_wtp vector of numerical values. Vector of willingness-to-pay threshold for which the
probabilities of cost effectiveness have to be defined. Default is 0:100,000 by
increments of 1,000.

Value

A dataframe with three columns:

• WTP_threshold = The willingness-to-pay thresholds at which the probability of cost effec-
tiveness has been calculated for both strategies

calculate_nb 5

• Prob_int = The probability that the intervention strategy is cost effective at a given willingness-
to-pay threshold

• Prob_comp = The probability that the comparator strategy is cost effective at a given willingness-
to-pay threshold

Examples

Calculate probabilities of cost effectiveness using the example dataframe,
data("df_pa")
df_pa$t_qaly_d_int2 <- df_pa$t_qaly_d_int * 1.5 # creating additional outcome variable
df_pa$t_costs_d_int2 <- df_pa$t_costs_d_int * 1.5 # creating additional cost variable
calculate_ceac_mult(df = df_pa,

outcomes = c("t_qaly_d_int", "t_qaly_d_comp", "t_qaly_d_int2"),
costs = c("t_costs_d_int","t_costs_d_comp", "t_costs_d_int2")
)

calculate_nb Calculate NMB and NHB for two strategies.

Description

This function calculates the Net Monetary Benefits (NMB) and Net Health Benefits (NHB) for each
strategy and the incremental NMB and NHB.

Usage

calculate_nb(df, e_int, e_comp, c_int, c_comp, wtp)

Arguments

df a dataframe.

e_int character. Name of variable of the dataframe containing total effects of the in-
tervention strategy.

e_comp character. Name of variable of the dataframe containing total effects of the com-
parator strategy.

c_int character. Name of variable of the dataframe containing total costs of the inter-
vention strategy.

c_comp character. Name of variable of the dataframe containing total costs of the com-
parator strategy.

wtp numeric. Willingness-to-pay thresholds to use for NMB and NHB calculations.

6 calculate_nb_mult

Value

A dataframe containing the original data and the following variables:

• NMB_int = Net monetary benefit of the intervention

• NMB_comp = Net monetary benefit of the comparator

• iNMB = Incremental net monetary benefit of the intervention versus the comparator

• NHB_int = Net health benefit of the intervention

• NHB_comp = Net health benefit of the comparator

• iNHB = Net health benefit of the intervention versus the comparator

Examples

Calculate NB's at a willingness-to-pay threshold of 80000 per unit of effects
data("df_pa")
calculate_nb(df = df_pa,

e_int = "t_qaly_d_int",
e_comp = "t_qaly_d_comp",
c_int = "t_costs_d_int",
c_comp = "t_costs_d_comp",
wtp = 80000)

calculate_nb_mult Calculate NMB and NHB.

Description

This function calculates the Net Monetary Benefits (NMB) and Net Health Benefits (NHB) for each
strategy and the incremental NMB and NHB.

Usage

calculate_nb_mult(df, outcomes, costs, wtp)

Arguments

df a dataframe.

outcomes character. Vector of variable names containing the outcomes to be plotted on
the x-axis. The variable names should be structured as follows: ’t_qaly_d_’
followed by the name of the strategy: e.g. ’t_qaly_d_intervention’.

costs character. Vector of variable names containing the costs to be plotted on the y-
axis. The variable names should be structured as follows: ’t_costs_d_’ followed
by the name of the strategy: e.g. ’t_costs_d_intervention’.

wtp numeric. Willingness-to-pay thresholds to use for NMB and NHB calculations.

check_binary 7

Value

A dataframe containing the original data and the following variables containing the NMB and NHB
for each strategy. The name of these new variables are structured as ’NMB_strategyname’ and
’NHB_strategyname’

Examples

Calculate NB's at a willingness-to-pay threshold of 80000 per unit of effects
data("df_pa")
df_pa$t_costs_d_comp2 <- df_pa$t_costs_d_comp * 1.09
df_pa$t_qaly_d_comp2 <- df_pa$t_qaly_d_comp * 1.01
calculate_nb_mult(df = df_pa,

outcomes = c("t_qaly_d_comp2", "t_qaly_d_int", "t_qaly_d_comp"),
costs = c("t_costs_d_int", "t_costs_d_comp2", "t_costs_d_comp"),
wtp = 50000
)

check_binary Check binary

Description

This function tests whether the value of variables remain between 0 and 1 (for instance for utility
and probability inputs)

Usage

check_binary(..., df, max_view = 50)

Arguments

... character vector. This character vector contains the name of the variables of
which the sum will be checked.

df a dataframe.
max_view numeric. Determines the number of iterations to display which do not fulfill the

check. Default is 50.

Value

A dataframe.

Examples

Checking whether a variable is strictly positive
data(df_pa)
check_binary("u_pfs", df = df_pa)
Checking whether two variables are strictly positive
Decreasing the number of iterations to display to 20.
check_binary("u_pfs", "p_pfspd", df = df_pa)

8 check_positive

check_mean_qol Check mean quality of life

Description

This function checks whether the mean quality of life outcome of each iteration remain between the
maximum and minimum utility values of the specific iteration.

Usage

check_mean_qol(df, t_qaly, t_ly, u_values, max_view = 100)

Arguments

df a dataframe.

t_qaly character. Name of the variable containing the total undiscounted quality-adjusted
life years.

t_ly character. Name of the variable containing the total undiscounted life years.

u_values (vector of) character. Name(s) of the variable containing the utility values.

max_view numeric. Determines the number of iterations to display which do not fulfil the
check. Default is 100.

Value

A matrix.

Examples

Check whether mean quality of life is within min-max utility values
check_mean_qol(df = df_pa,

t_ly = "t_ly_comp",
t_qaly = "t_qaly_comp",
u_values = c("u_pfs", "u_pd")
)

check_positive Check whether variables are strictly positive

Description

This function tests whether variables are strictly positive (for instance for costs and relative risks
inputs)

check_psa_darth 9

Usage

check_positive(..., df, max_view = 50)

Arguments

... character vector. This character vector contains the name of the variables of
which the sum will be checked.

df a dataframe.

max_view numeric. Determines the number of iterations to display which do not fulfill the
check. Default is 50.

Value

A dataframe.

Examples

Checking whether a variable is strictly positive
check_positive("c_pfs", df = df_pa)

Checking whether two variables are strictly positive
Descreasing the number of iterations to display to 20.
check_positive("c_pfs", "c_pd", df = df_pa)

check_psa_darth Check PSA inputs & outputs

Description

This function checks whether the value of variables remain between 0 and 1 for utility and prob-
ability inputs, and are strictly positive for costs, hazard ratios, odds ratios, relative risks, and total
outcomes of each strategy.

Usage

check_psa_darth(
l_psa_darth,
utility = "u_",
costs = "c_",
probs = "p_",
rr = "rr_",
hr = "hr_",
or = "or_",
exclude = NULL,
v_outcome = c("effectiveness", "cost")

)

10 check_range

Arguments

l_psa_darth a list of class ’psa’ as obtained by the function [dampack::make_psa_obj()]

utility characters. String used at the start of the variables identifying utility inputs.

costs characters. String used at the start of the variables identifying cost inputs.

probs characters. String used at the start of the variables identifying probability inputs.

rr characters. String used at the start of the variables identifying relative risk in-
puts.

hr characters. String used at the start of the variables identifying hazard ratio in-
puts.

or characters. String used at the start of the variables identifying odds ratio inputs.

exclude vector of strings. Vector containing the name of the input variables not to in-
clude in the checks. Default is NULL, hence all variables from the ’parameters’
dataframe are included.

v_outcome vector of strings. Vector containing the name of the output variables to include
in the checks. Default values are ’effectiveness’ and ’cost’.

Value

A matrix containing the input and output variables that have been checked and the iterations wherein
an erroneous value has been identified.

check_range Check range

Description

This function tests whether an input or output value falls within a user-defined range and return the
proportion of iteration in which this is not the case.

Usage

check_range(df, param, min_val = NULL, max_val = NULL)

Arguments

df a dataframe.

param character string. Name of variable of the dataframe for which to check the range.

min_val numeric. Define the minimum value of the range.

max_val numeric. Define the maximum value of the range.

Details

If only ‘min_val‘ is specified, the proportion of iteration above this value will be computed. If only
‘max_val‘ is specified, the proportion of iteration below this value will be computed.

check_sum_probs 11

Value

A numeric.

Examples

Checking how often the "u_pfs" values falls within 0.55 and 0.72.
data(df_pa)
check_range(df = df_pa,

param = "u_pfs",
min_val = 0.55,
max_val = 0.72

)

check_sum_probs Check sum probabilities

Description

This function checks whether the sum of user-defined variables representing probabilities is below
or equal to 1 for each iteration of the probabilistic inputs.

Usage

check_sum_probs(..., df, digits = NULL, check = "lower", max_view = 100)

Arguments

... character vector. This character vector contains the name of the variables of
which the sum will be checked.

df a dataframe.

digits numeric. Define the number of digits at which the sum of probabilities should
be rounded.

check logical. Define which test to perform."lower" tests whether the sum of the se-
lected variables is lower than or equal to 1 for each iteration. "equal" tests
whether the sum of the selected variables is equal to 1 for each iteration. Default
is "lower".

max_view numeric. Determines the number of iterations to display which do not fulfill the
test Default is 100.

Value

A text indicating whether the sum of the probabilities is belor and/or eual to one or indicating in
which iteration that is not the case.

12 check_sum_vars

Examples

Checking whether the sum of the two probabilities is lower than or equal to 1
check_sum_probs("p_pfspd", "p_pfsd", df = df_pa, check = "lower")

Checking the sum of the two probabilities equals 1 using a vector to select them,
Rounding off to two digits, and extending the number of iterations to display to 250.
check_sum_probs(c("p_pfspd", "p_pfsd"), df = df_pa, digits = 2, check = "equal", max_view = 250)

check_sum_vars Check sum variables

Description

This function tests whether the sum of selected variables are equal to another.

Usage

check_sum_vars(..., df, outcome, digits = 3)

Arguments

... character vector. This character vector contains the name of the variables of
which the sum will be checked.

df a dataframe.

outcome character string. Name of variable of the dataframe which should equal the sum
of variables mentioned in ‘...‘.

digits Define the number of digits at which the sum and the ‘outcome‘ variables are
rounded. Default is 3 digits.

Value

A string.

Examples

Checking whether health state and adverse event costs equal the total discounted costs
check_sum_vars("t_costs_pfs_d_int", "t_costs_pd_d_int", "t_costs_ae_int",

df = head(df_pa),
outcome = "t_costs_d_int",
digits = 0)

check_surv_mod 13

check_surv_mod Check parametric survival models

Description

This function tests whether the first of two parametric survival model is lower than a second para-
metric survival model.

Usage

check_surv_mod(
df,
surv_mod_1,
surv_mod_2,
v_names_param_mod_1,
v_names_param_mod_2,
time = seq(0, 5, 0.1),
label_surv_1 = "first survival",
label_surv_2 = "second survival",
n_view = 10

)

Arguments

df a dataframe.

surv_mod_1 character. Name of the parametric model to use for the first survival model.

surv_mod_2 character. Name of the parametric model to use for the second survival model.
v_names_param_mod_1

(vector of) character. Name of the columns containing the parameter values for
the first survival model.

v_names_param_mod_2

(vector of) character. Name of the columns containing the parameter values for
the second survival model.

time a numerical vector. Determine at which time points survival probabilities have
to be estimated for both survival models. For each of these time points, it will be
checked whether the first survival model results in higher survival probabilities
than the second survival model.

label_surv_1 character vector. The label to provide to the first survival curve (relevant for
export).

label_surv_2 character vector. The label to provide to the second survival curve (relevant for
export).

n_view integer. Number of iterations to mention in which the curves are crossing. De-
fault is 10.

14 df_ckd_results

Details

The parametric models that can be used are the following: exponential (exp), Weibull (weibull),
gamma (gamma), loglogistic (logis), and lognormal (lnorm). All these functions are implemented
following their distribution function as documented in the stats package.

Value

A list. The first element is a message, the second element contains the number of the iterations in
which the the first curve is higher than the second curve.

df_ckd_inputs A dataframe containing probabilistic inputs for testing

Description

A dataframe containing 1,000 sets of probabilistic inputs from a health state transition model de-
veloped in Python.

Usage

df_ckd_inputs

Format

The dataframe contains the 1,000 probabilistic inputs (indexes 1 to 1000) from the PSA.xlsx file
available on the github repository of the model.

Source

Marika M. Cusick, Rebecca L. Tisdale, Glenn M. Chertow, et al. Population-Wide Screening
for Chronic Kidney Disease: A Cost-Effectiveness Analysis. Ann Intern Med.2023;176:788-797.
[Epub 23 May 2023]. doi:10.7326/M22-3228.

Link to Github repository: https://github.com/marikamaecusick/CKDScreeningCEA

df_ckd_results A dataframe containing probabilistic outputs for testing

Description

A dataframe containing 1,000 sets of probabilistic outputs from a health state transition model
developed in Python for individuals aged 35, screened every 10 years, versus no screening.

Usage

df_ckd_results

https://github.com/marikamaecusick/CKDScreeningCEA

df_iviRA_pa 15

Format

The dataframe contains the 1,000 probabilistic outputs from the CKD Screening CEA health eco-
nomic model.

Source

Marika M. Cusick, Rebecca L. Tisdale, Glenn M. Chertow, et al. Population-Wide Screening
for Chronic Kidney Disease: A Cost-Effectiveness Analysis. Ann Intern Med.2023;176:788-797.
[Epub 23 May 2023]. doi:10.7326/M22-3228.

Link to Github repository: https://github.com/marikamaecusick/CKDScreeningCEA

df_iviRA_pa Dataframe of inputs and outputs of a health economic model devel-
oped and evaluated with the iviRA R package for testing

Description

A dataframe containing 1,000 sets of probabilistic inputs and outputs of a individual-level health
state transition model developed using iviRA package available on Github.

Usage

df_iviRA_pa

Format

See the documentation of the ‘sample_pars‘ function of the iviRA package for details.

Source

Incerti D, Curtis JR, Shafrin J, Lakdawalla DN, Jansen JP (2019). “ A Flexible Open-Source Deci-
sion Model for Value Assessment of Biologic Treatment for Rheumatoid Arthritis.” PharmacoEco-
nomics. doi: 10.1007/s40273-018-00765-2.

Link to Github repository: https://innovationvalueinitiative.github.io/IVI-RA/index.
html

Link to iviRA website: https://innovationvalueinitiative.github.io/IVI-RA/

https://github.com/marikamaecusick/CKDScreeningCEA
https://innovationvalueinitiative.github.io/IVI-RA/index.html
https://innovationvalueinitiative.github.io/IVI-RA/index.html
https://innovationvalueinitiative.github.io/IVI-RA/

16 df_pa

df_pa Dataframe for testing

Description

A dataframe containing 1,000 iterations of a probabilistic analysis of a health state transition model.
To access the original dataframe used in the scientific publication of PACBOARD (Pouwels et al.
2024), follow the link below.

Usage

df_pa

Format

A dataframe with 1,000 rows, each row being the inputs and (intermediate) outputs of a single
probabilistic iteration, and 44 variables:

p_pfspd Probability to transit from the progression-free survival (PFS) to progressed disease (PD)
health state

p_pfsd Probability to transit from the PFS to Death (D) health state

p_pdd Probability to transit from the PD to D health state

p_dd Probability to transit from the D to D health state

p_ae Probability of occurence of an adverse event in the intervention stategy

rr Relative effectiveness of the treatment (_int)

u_pfs Utility value (per cycle) associated with PFS health state

u_pd Utility value (per cycle) associated with PD health state

u_d Utility value (per cycle) associated with D health state

u_ae Utility decrement associated with the occurrence of an adverse event

c_pfs Costs (per cycle) associated with PFS health state

c_pd Costs (per cycle) associated with PD health state

c_d Costs (per cycle) associated with D health state

c_thx Costs (per cycle) associated with receiving treatment, in the PFS health state

c_ae Costs associated with experiencing an adverse event

t_qaly_comp Total undiscounted QALY obtained with the comparator, i.e. no treatment adminis-
tered

t_qaly_int Total undiscounted QALY obtained with the intervention, i.e. treatment administered

t_qaly_d_comp Total discounted QALY obtained with the comparator, i.e. no treatment adminis-
tered

t_qaly_d_int Total discounted QALY obtained with the intervention, i.e. treatment administered

t_costs_comp Total undiscounted costs obtained with the comparator, i.e. no treatment adminis-
tered

df_pa 17

t_costs_int Total undiscounted costs obtained with the intervention, i.e. treatment administered

t_costs_d_comp Total discounted costs obtained with the comparator, i.e. no treatment adminis-
tered

t_costs_d_int Total discounted costs obtained with the intervention, i.e. treatment administered

t_ly_comp Total undiscounted LY obtained with the comparator, i.e. no treatment administered

t_ly_int Total undiscounted LY obtained with the intervention, i.e. treatment administered

t_ly_d_comp Total discounted LY obtained with the comparator, i.e. no treatment administered

t_ly_d_int Total discounted LY obtained with the intervention, i.e. treatment administered

t_ly_pfs_d_comp Total discounted life years accrued in PFS health state, comparator strategy

t_ly_pfs_d_int Total discounted life years accrued in PFS health state, intervention strategy

t_ly_pd_d_comp Total discounted life years accrued in PD health state, comparator strategy

t_ly_pd_d_int Total discounted life years accrued in PD health state, intervention strategy

t_qaly_pfs_d_comp Total discounted quality-adjusted life years accrued in PFS health state, com-
parator strategy

t_qaly_pfs_d_int Total discounted quality-adjusted life years accrued in PFS health state, inter-
vention strategy

t_qaly_pd_d_comp Total discounted quality-adjusted life years accrued in PD health state, com-
parator strategy

t_qaly_pd_d_int Total discounted quality-adjusted life years accrued in PD health state, interven-
tion strategy

t_costs_pfs_d_comp Total discounted costs accrued in PFS health state, comparator strategy

t_costs_pfs_d_int Total discounted costs accrued in PFS health state, intervention strategy

t_costs_pd_d_comp Total discounted costs accrued in PD health state, comparator strategy

t_costs_pd_d_int Total discounted costs accrued in PD health state, intervention strategy

t_qaly_ae_int Quality-adjusted life year decrement associated with the occurence of adverse events,
intervention strategy

t_costs_ae_int Costs associated with the occurence of adverse events, intervention strategy

inc_ly Incremental QALYs obtained with the intervention versus the comparator

inc_qaly Incremental QALYs obtained with the intervention versus the comparator

inc_costs Incremental costs obtained with the intervention versus the comparator

Source

Pouwels XGLV, Kroeze K, van der Linden N, Kip MMA, Koffijberg H. Validating Health Economic
Models With the Probabilistic Analysis Check dashBOARD. Value Health. 2024 Aug;27(8):1073-
1084. doi: 10.1016/j.jval.2024.04.008.

Link to the original data ("df_pa") used in the PACBOARD publication: https://github.com/
Xa4P/pacheck/tree/master/data-raw

https://github.com/Xa4P/pacheck/tree/master/data-raw
https://github.com/Xa4P/pacheck/tree/master/data-raw

18 df_pa_psm

df_pa_psm Dataframe for testing

Description

A dataframe containing 10,000 iterations of a probabilistic analysis of a partitioned survival model.
To access the original dataframe used in the scientific publication of PACBOARD (Pouwels et al.
2024), follow the link below.

Usage

df_pa_psm

Format

A dataframe with 10,000 rows, each row being the inputs and (intermediate) outputs of a single
probabilistic iteration, and 46 variables:

p_ae Probability of occurence of an adverse event in the intervention stategy

r_exp_pfs_comp Rate of the exponential survival model used to estimate PFS of the comparator

rr_thx_pfs Relative risk of the occurrence of progression of the intervention versus the comparator,
used to estimate PFS of the intervention

r_exp_pfs_int Rate of the exponential survival model used to estimate PFS of the intervention

shape_weib_os Shape of the Weibull survival model used to estimate OS of the comparator and
intervention

scale_weib_os_comp Scale of the Weibull survival model used to estimate OS of the comparator

rr_thx_os Relative risk of the occurrence of death of the intervention versus the comparator, used
to estimate PFS of the intervention

scale_weib_os_int Scale of the Weibull survival model used to estimate OS of the intervention

u_pfs Utility value (per cycle) associated with PFS health state

u_pd Utility value (per cycle) associated with PD health state

u_d Utility value (per cycle) associated with D health state

u_ae Utility decrement associated with the occurrence of an adverse event

c_pfs Costs (per cycle) associated with PFS health state

c_pd Costs (per cycle) associated with PD health state

c_d Costs (per cycle) associated with D health state

c_thx Costs (per cycle) associated with receiving treatment, in the PFS health state

c_ae Costs associated with experiencing an adverse event

t_qaly_comp Total undiscounted QALY obtained with the comparator, i.e. no treatment adminis-
tered

t_qaly_int Total undiscounted QALY obtained with the intervention, i.e. treatment administered

df_pa_psm 19

t_qaly_d_comp Total discounted QALY obtained with the comparator, i.e. no treatment adminis-
tered

t_qaly_d_int Total discounted QALY obtained with the intervention, i.e. treatment administered
t_costs_comp Total undiscounted costs obtained with the comparator, i.e. no treatment adminis-

tered
t_costs_int Total undiscounted costs obtained with the intervention, i.e. treatment administered
t_costs_d_comp Total discounted costs obtained with the comparator, i.e. no treatment adminis-

tered
t_costs_d_int Total discounted costs obtained with the intervention, i.e. treatment administered
t_ly_comp Total undiscounted LY obtained with the comparator, i.e. no treatment administered
t_ly_int Total undiscounted LY obtained with the intervention, i.e. treatment administered
t_ly_d_comp Total discounted LY obtained with the comparator, i.e. no treatment administered
t_ly_d_int Total discounted LY obtained with the intervention, i.e. treatment administered
t_ly_pfs_d_comp Total discounted life years accrued in PFS health state, comparator strategy
t_ly_pfs_d_int Total discounted life years accrued in PFS health state, intervention strategy
t_ly_pd_d_comp Total discounted life years accrued in PD health state, comparator strategy
t_ly_pd_d_int Total discounted life years accrued in PD health state, intervention strategy
t_qaly_pfs_d_comp Total discounted quality-adjusted life years accrued in PFS health state, com-

parator strategy
t_qaly_pfs_d_int Total discounted quality-adjusted life years accrued in PFS health state, inter-

vention strategy
t_qaly_pd_d_comp Total discounted quality-adjusted life years accrued in PD health state, com-

parator strategy
t_qaly_pd_d_int Total discounted quality-adjusted life years accrued in PD health state, interven-

tion strategy
t_costs_pfs_d_comp Total discounted costs accrued in PFS health state, comparator strategy
t_costs_pfs_d_int Total discounted costs accrued in PFS health state, intervention strategy
t_costs_pd_d_comp Total discounted costs accrued in PD health state, comparator strategy
t_costs_pd_d_int Total discounted costs accrued in PD health state, intervention strategy
t_qaly_ae_int Quality-adjusted life year decrement associated with the occurence of adverse events,

intervention strategy
t_costs_ae_int Costs associated with the occurence of adverse events, intervention strategy
inc_ly Incremental QALYs obtained with the intervention versus the comparator
inc_qaly Incremental QALYs obtained with the intervention versus the comparator
inc_costs Incremental costs obtained with the intervention versus the comparator

Source

Pouwels XGLV, Kroeze K, van der Linden N, Kip MMA, Koffijberg H. Validating Health Economic
Models With the Probabilistic Analysis Check dashBOARD. Value Health. 2024 Aug;27(8):1073-
1084. doi: 10.1016/j.jval.2024.04.008.

Link to the original data ("df_pa_psm") used in the PACBOARD publication: https://github.
com/Xa4P/pacheck/tree/master/data-raw

https://github.com/Xa4P/pacheck/tree/master/data-raw
https://github.com/Xa4P/pacheck/tree/master/data-raw

20 do_check

do_check Perform a check

Description

Checks whether variables fulfill a specific test.

Usage

do_check(
df,
v_vars,
check,
label_check,
template_ok = "all variables are {label_check}",
template_fail = "{var} is not {label_check}"

)

Arguments

df a dataframe.

v_vars character vector of variables on which to apply the test.

check a function to apply to the ‘vars‘.

label_check character string. Text describing the test to pass.

template_ok character string. Text to display when a test is passed by a variable.

template_fail character string. Text to display when a test is not passed by a variable.

Value

List containing the results of the check (checks), and a tibble of status and message for each test
(messages). The list of messages in the result contains a single line if the test passed, or if a test
failed for one or more variables, a line for each failure.

Examples

data(df_pa)
do_check(df = df_pa,

v_vars = c("u_pfs", "u_pd"),
check = ~ .x >= 0,
label_check = "positive"
)

do_discount_check 21

do_discount_check Perform discounted and undiscounted results check

Description

This function performs multiple checks on user-defined columns.

Usage

do_discount_check(df, v_outcomes = NULL, v_outcomes_d = NULL)

Arguments

df a dataframe.

v_outcomes (a vector of) character. Name of the variables containing undiscounted outcomes
of the model.

v_outcomes_d (a vector of) character. Name of the variables containing discounted outcomes
of the model.

Details

The variables contained in ‘v_outcomes‘ and ‘v_outcomes_d‘ should be in the same order.

Value

A matrix.

Examples

Checking whether discounted QALYs are lower than undiscounted QALYs using the example data
do_discount_check(df = df_pa,

v_outcomes = "t_qaly_comp",
v_outcomes_d = "t_qaly_d_comp")

do_quick_check Perform quick checks of inputs and outputs

Description

This function performs multiple checks on user-defined columns.

22 estimate_decision_sensitivity

Usage

do_quick_check(
df,
v_probs = NULL,
v_utilities = NULL,
v_costs = NULL,
v_hr = NULL,
v_rr = NULL,
v_r = NULL,
v_outcomes = NULL

)

Arguments

df a dataframe.

v_probs (a vector of) character. Name of variables containing probabilities.

v_utilities (a vector of) character. Name of the variables containing utility values.

v_costs (a vector of) character. Name of the variables containing cost estimates.

v_hr (a vector of) character. Name of the variables containing hazard ratios.

v_rr (a vector of) character. Name of the variables containing relative risks.

v_r (a vector of) character. Name of the variables containing rates.

v_outcomes (a vector of) character. Name of the variables containing outcomes of the model.

Value

A matrix.

Examples

Checking costs and utility values of the example data

do_quick_check(df = df_pa,
v_utilities = c("u_pfs", "u_pd"),
v_costs = c("c_pfs", "c_pd")
)

estimate_decision_sensitivity

Estimate decision sensitivy DSA using linear metamodel

Description

This function performs a logistic regression analysis and determines the decision sensitivity to pa-
rameter value using the logistic regression. (STILL IN DEVELOPMENT)

fit_dist 23

Usage

estimate_decision_sensitivity(df, y, x, y_binomial = FALSE, limit = 0)

Arguments

df a dataframe. This dataframe should contain both dependent and independent
variables.

y character. Name of the output variable in the dataframe. This will be the depen-
dent variable of the logistic regression model.

x character or a vector for characters. Name of the input variable in the dataframe.
This(these) will be the independent variable(s) of the logistic regression model.

y_binomial logical. Is ‘y‘ already a binomial outcome? Default is ‘FALSE.‘ If ‘TRUE‘, the
‘y‘ variable will be used as such, otherwise, the ‘y‘ variable will be converted to
a binomial variable using the ‘limit‘ argument.

limit numeric. Determines the limit when outcomes from ‘y‘ are categorised as ’suc-
cess’ (1) or not (0).

Details

The method for these analyses is described in [Merz et al. 1992](https://doi.org/10.1177

Value

A dataframe with the parameter values of the fitted logistic regression and the decision sensitivity
associated with each parameter included in the logistic regression model.

Examples

Determining decision sensitivity using a non-binomial outcome
data(df_pa)
df_pa$inmb <- df_pa$inc_qaly * 100000 - df_pa$inc_costs
estimate_decision_sensitivity(df = df_pa,

y = "inmb",
x = c("p_pfsd", "p_pdd"),
y_binomial = FALSE
)

fit_dist Fit distribution to parameter

Description

This function fits statistical distributions to a user-defined parameter.

Usage

fit_dist(df, param, dist = c("norm", "beta", "gamma", "lnorm"))

24 fit_lasso_metamodel

Arguments

df a dataframe.

param character. Name of variable of the dataframe on which to fit the distributions.

dist character or vector of character. Determine which distribution to fit on the den-
sity plot.

Details

The available distributions are: "norm" (normal), "beta", "gamma", "lnorm" (lognormal). The
arguments of the lists are "AIC" which contains the Akaike Information Criteria for each fitted
distribution and "Dist_parameters" which contains the parameters of the fitted distributions. The
distributions are fitted using the fitdistrplus::fitdist()

Value

A list with two objects:

• Statistical_fit: a dataframe containing the statistical fit criteria of the fitted distributions.

• Dist_parameters: a dataframe containing the parameter value of the fitted distributions.

Examples

Fitting normal and beta distribution to the "u_pfs" variable of the example dataframe.
data(df_pa)
fit_dist(df = df_pa,

param = "u_pfs",
dist = c("norm", "beta"))

fit_lasso_metamodel Fit LASSO metamodel

Description

This function fits a lasso metamodel using the glmnet package.

Usage

fit_lasso_metamodel(
df,
y_var = NULL,
x_vars = NULL,
seed_num = 1,
standardise = FALSE,
tune_plot = TRUE,
x_poly_2 = NULL,
x_poly_3 = NULL,
x_exp = NULL,

fit_lasso_metamodel 25

x_log = NULL,
x_inter = NULL

)

Arguments

df a dataframe.

y_var character. Name of the output variable in the dataframe. This will be the depen-
dent variable of the metamodel.

x_vars character or a vector for characters. Name of the input variable(s) in the dataframe.
This will be the independent variable of the metamodel.

seed_num numeric. Determine which seed number to use to split the dataframe in fitting
an validation sets.

standardise logical. Determine whether the parameter of the linear regression should be
standardised. Default is FALSE.

tune_plot logical. Determine whether the plot of the results of tuning the lambda should
be shown.

x_poly_2 character. character or a vector for characters. Name of the input variable in the
dataframe. These variables will be exponentiated by factor 2.

x_poly_3 character. character or a vector for characters. Name of the input variable in the
dataframe. These variables will be exponentiated by factor 3.

x_exp character. character or a vector for characters. Name of the input variable in the
dataframe. The exponential of these variables will be included in the metamodel.

x_log character. character or a vector for characters. Name of the input variable in the
dataframe. The logarithm of these variables will be included in the metamodel.

x_inter character. character or a vector for characters. Name of the input variables
in the dataframe. This vector contains the variables for which the interaction
should be considered. The interaction terms of two consecutive variables will
be considered in the linear model; hence, the length of this vector should be
even.

Value

A list contaning the following elements:

• An object of the fitted metamodel,

• The coefficient of the fitted metamodel,

• information on the data used to fit the metamodel and its form.

Examples

#Fit lasso metamodel with two variables using the probabilistic data
data(df_pa)
fit_lasso_metamodel(df = df_pa,

y_var = "inc_qaly",
x_vars = c("p_pfsd", "p_pdd"),

26 fit_lm_metamodel

tune_plot = TRUE
)

fit_lm_metamodel Fit linear metamodel

Description

This function fits and provides summary statistics of a linear regression model fitted on the input
and output values of a probabilistic analysis.

Usage

fit_lm_metamodel(
df,
y_var = NULL,
x_vars = NULL,
standardise = FALSE,
partition = 1,
seed_num = 1,
validation = FALSE,
folds = 5,
show_intercept = FALSE,
x_poly_2 = NULL,
x_poly_3 = NULL,
x_exp = NULL,
x_log = NULL,
x_inter = NULL

)

Arguments

df a dataframe.

y_var character. Name of the output variable in the dataframe. This will be the depen-
dent variable of the metamodel.

x_vars character or a vector for characters. Name of the input variable in the dataframe.
This will be the independent variable of the metamodel.

standardise logical. Determine whether the parameter of the linear regression should be
standardised. Default is FALSE.

partition numeric. Value between 0 and 1 to determine the proportion of the observa-
tions to use to fit the metamodel. Default is 1 (fitting the metamodel using all
observations).

seed_num numeric. Determine which seed number to use to split the dataframe in fitting
and validation sets.

fit_lm_metamodel 27

validation logical or character. Determine whether to validate the linear model. Choices
are "test_train_split" and "cross_validation".

folds numeric. Number of folds for the cross-validation. Default is 5.

show_intercept logical. Determine whether to show the intercept of the perfect prediction line
(x = 0, y = 0). Default is FALSE.

x_poly_2 character. character or a vector for characters. Name of the input variable in the
dataframe. These variables will be exponentiated by factor 2.

x_poly_3 character. character or a vector for characters. Name of the input variable in the
dataframe. These variables will be exponentiated by factor 3.

x_exp character. character or a vector for characters. Name of the input variable in the
dataframe. The exponential of these variables will be included in the metamodel.

x_log character. character or a vector for characters. Name of the input variable in the
dataframe. The logarithm of these variables will be included in the metamodel.

x_inter character. character or a vector for characters. Name of the input variables
in the dataframe. This vector contains the variables for which the interaction
should be considered. The interaction terms of two consecutive variables will
be considered in the linear model; hence, the length of this vector should be
even.

Details

Standardisation of the parameters is obtained by

(x− u(x))/sd(x)

where x is the variable value, u(x) the mean over the variable and sd(x) the standard deviation of
x.

For more details, see Jalal H, Dowd B, Sainfort F, Kuntz KM. Linear Regression Metamodel-
ing as a Tool to Summarize and Present Simulation Model Results. Medical Decision Making.
2013;33(7):880-890. doi:10.1177/0272989X13492014

Value

A list containing the fit of the model and validation estimates and plots when selected.

Examples

Fitting linear meta model with two variables using the probabilistic data
data(df_pa)
fit_lm_metamodel(df = df_pa,

y_var = "inc_qaly",
x_vars = c("p_pfsd", "p_pdd")
)

28 fit_rf_metamodel

fit_rf_metamodel Fit random forest metamodel

Description

This function fits a random forest metamodel using the randomForestSRC package.

Usage

fit_rf_metamodel(
df,
y_var = NULL,
x_vars = NULL,
ntree = 500,
seed_num = 1,
tune = FALSE,
var_importance = FALSE,
pm_plot = FALSE,
pm_vars = x_vars[1],
validation = FALSE,
folds = 5,
show_intercept = FALSE,
partition = 1,
fit_complete_model = TRUE

)

Arguments

df a dataframe.
y_var character. Name of the output variable in the dataframe. This will be the depen-

dent variable of the metamodel.
x_vars character or a vector for characters. Name of the input variable(s) in the dataframe.

This will be the independent variable of the metamodel.
ntree Number of trees to grow.
seed_num numeric. Determine which seed number to use to split the dataframe in fitting

an validation sets.
tune logical. Determine whether nodesize and mtry should be tuned. Nodesize is the

minimum size of terminal nodes, mtry is number of variables to possibly split
at each node. If FALSE, nodesize = 15 (for regression), and mtry = number of
x-variables / 3 (for regression). Default is FALSE.

var_importance logical or character. Determine whether to compute variable importance (TRUE/FALSE),
or how to compute variable importance (permute/random/anti). Default is FALSE.
TRUE corresponds to "anti".

pm_plot logical or character. Determine whether to plot the partial ("partial") or marginal
("marginal") effect or both ("both") of an x-variable (which is denoted by pm_vars).
Default is FALSE. TRUE corresponds to "both".

fit_rf_metamodel 29

pm_vars character. Name of the input variable(s) for the partial/marginal plot. Default is
the first variable from the x_vars.

validation logical or character. Determine whether to validate the RF model. Choices are
"test_train_split" and "cross-validation". TRUE corresponds to "cross-validation",
default is FALSE.

folds numeric. Number of folds for the cross-validation. Default is 5.

show_intercept logical. Determine whether to show the intercept of the perfect prediction line
(x = 0, y = 0). Default is FALSE.

partition numeric. Value between 0 and 1 to determine the proportion of the observa-
tions to use to fit the metamodel. Default is 1 (fitting the metamodel using all
observations).

fit_complete_model

logical. Determine whether to fit the (final) full model. So the model trained on
all available data (as opposed to the model used in validation which is trained
on the test data).

Value

A list containing the following elements:

• fit: a list, see randomForestSRC::rfsrc() for a description of the outputs contained in this
list.

• model_info: a list containing the following elements:

– x_vars: vector of names of parameters included in the metamodel;
– y_var: name outcome variable;
– form: formula of the metamodel based on ‘x_vars‘ and ‘y_var‘;
– data: dataframe containing the inputs and output values used to fit (and fit) the metamodel;
– type: "rf" for "random forest".

• (if ‘tune‘ = TRUE) tune_fit: a list containing the results of the tuning process, see randomForestSRC::tune()
for a description of the elements containd in this list.

• (if ‘tune‘ = TRUE) tune_plot: plot showing the out-of-bag error for each tested combination
of ’mtry’ and ’nodesize’.

• (if validation != FALSE) stats_validation: data frame containing the R-squared, Mean absolute
error, Mean relative error, Mean squared error in the test validation set.

• (if validation = "test_train_split") calibration_plot: plot showing the rf-predicted versus ob-
served output values in the test validation set.

If ‘var_importance‘ is set to TRUE, the variable importance plot is printed in the console. If
‘pm_plot‘is used, the marginal/ partial importance plot(s) - drawn using randomForestSRC::plot.variable.rfsrc()
- is (are) printed in the console.

Examples

Fitting and tuning a random forest meta model with two variables using the example data
data(df_pa)

30 generate_cor

fit_rf_metamodel(df = df_pa,
y_var = "inc_qaly",
x_vars = c("p_pfsd", "p_pdd"),
tune = FALSE
)

generate_cor Generate correlation matrix

Description

This function generates the correlation matrix of input and output values of a probabilistic analysis.

Usage

generate_cor(df, vars = NULL, figure = FALSE, digits = 3)

Arguments

df a dataframe. This dataframe contains the probabilistic inputs and outputs of the
health economic model.

vars a vector of strings. Contains the name of the variables to include in the correla-
tion matrix. Default is NULL meaning all variables will be included.

figure logical. Should the correlation matrix be plotted in a figure? Default is FALSE
(no figure generated).

digits integer. Number of decimals to display in correlation matrix. Default is 3.

Value

If figure == FALSE: a matrix with summary statistics for the selected inputs and outputs. If figure
== TRUE: a tile ggplot2 of the correlation matrix.

Examples

Generating summary data of all inputs using the example dataframe
data(df_pa)
generate_cor(df_pa)

generate_det_inputs 31

generate_det_inputs Generate deterministic model inputs.

Description

This function generates the deterministic model inputs for the example health economic model
developed to test the functionalities of the package.

Usage

generate_det_inputs()

Value

A list. A description of the inputs parameters is available in the documentation of the df_pa
dataframe.

Examples

Generating deterministic model inputs and storing them in an object.
l_inputs_det <- generate_det_inputs()

generate_pa_inputs Generate probabilistic model inputs.

Description

This function generates the probabilistic model inputs for the example health economic model de-
veloped to test the functionalities of the package.

Usage

generate_pa_inputs(n_sim = 10000, sd_var = 0.2, seed_num = 452)

Arguments

n_sim integer. Number of probabilistic value to draw for each model input. Default is
10,000.

sd_var numeric. Determines the standard error of the mean to use for the normal distri-
butions when the standard error not known. Default is 0.2 (20%).

seed_num integer. The seed number to use when drawing the probabilistic values. Default
is 452.

Value

A dataframe. A description of the variables of the returned dataframe is available in the documen-
tation of the df_pa dataframe.

32 generate_pa_inputs_psm

Examples

Generating deterministic model inputs and storing them in an object.
df_inputs_prob <- generate_pa_inputs()

generate_pa_inputs_psm

Generate probabilistic model inputs for partitioned survival model.

Description

This function generates the probabilistic model inputs for the example health economic model de-
veloped to test the functionalities of the package.

Usage

generate_pa_inputs_psm(n_sim = 10000, sd_var = 0.2, seed_num = 452)

Arguments

n_sim integer. Number of probabilistic value to draw for each model input. Default is
10,000.

sd_var numeric. Determines the standard error of the mean to use for the normal distri-
butions when the standard error not known. Default is 0.2 (20%).

seed_num integer. The seed number to use when drawing the probabilistic values. Default
is 452.

Value

A dataframe. A description of the variables of the returned dataframe is available in the documen-
tation of the df_pa_psm dataframe.

Examples

Generating probabilistic model inputs and storing them in an object.

df_inputs_prob <- generate_pa_inputs_psm(n_sim = 10)

generate_sum_stats 33

generate_sum_stats Generate summary statistics

Description

This function generates summary statistics of input and output values of a probabilistic analysis.

Usage

generate_sum_stats(df, vars = NULL)

Arguments

df a dataframe. This dataframe contains the probabilistic inputs and outputs of the
health economic model.

vars a vector of strings. Contains the name of the variables to include in the summary
statistics table. Default is NULL meaning all variables will be included.

Value

A dataframe with summary statistics for the selected variables. The returned summary statistics are:

• Mean

• Standard deviation

• 2.5th percentile

• 97.5th percentile

• Minimum

• Maximum

• Median

• Skewness

• Kurtosis

Examples

Generating summary data of all inputs
data(df_pa)
df_summary <- generate_sum_stats(df_pa)

34 perform_dowsa

l_psa_aaa A dataframe containing probabilistic inputs for testing

Description

A list containing 1,000 sets of probabilistic inputs and outputs from a discrete event simulation
developed in R.

Usage

l_psa_aaa

Format

The dataframe contains the 1,000 probabilistic inputs and outputs obtained by executing the Main
file_men 30years_FullModel.R’ script (for 1,000 individuals) under the ’models’ folder on the
github repository of the model.

Source

Sweeting MJ, Masconi KL, Jones E, Ulug P, Glover MJ, Michaels JA, Bown MJ, Powell JT,
Thompson SG. Analysis of clinical benefit, harms, and cost-effectiveness of screening women for
abdominal aortic aneurysm. Lancet. 2018 Aug 11;392(10146):487-495. doi: 10.1016/S0140-
6736(18)31222-4.

Link to Github repository: https://github.com/mikesweeting/AAA_DES_model

perform_dowsa Perform deterministic one-way sensitivity analyses using probabilistic
inputs and outputs.

Description

This function performs the deterministic one-way sensitivity analyses (DOWSA) using probabilistic
inputs and outputs for the health economic model developed to test the package. The outcome of
the DOWSA is the incremental net monetary benefit.

Usage

perform_dowsa(df, vars, wtp = 120000)

https://github.com/mikesweeting/AAA_DES_model

perform_simulation 35

Arguments

df a dataframe. This dataframe contains the probabilistic inputs and outputs of the
health economic model.

vars a vector of strings. Contains the name of the variables for which to perform the
deterministic one-way sensitivity analysis.

wtp numeric. The willingness to pay per QALY in euros. Default is 120,000 euros
per QALY.

Value

A dataframe. The outcome of the deterministic one-way sensitivity analyses is the iNMB by default.

Examples

Perform the deterministic one-way sensitivity analyses for a selection of parameters

data(df_pa)
df_res_dowsa <- perform_dowsa(df = df_pa,

vars = c("rr", "c_pfs"))

perform_simulation Perform the health economic simulation.

Description

This function performs the simulation of the health economic model developed to test the function-
alities of the package.

Usage

perform_simulation(l_params)

Arguments

l_params list. List of inputs of the health economic model

Value

A vector. This vector contains the (un)discounted intermediate and final outcomes of the health
economic model.

Examples

Perform the simulation using the deterministic model inputs
l_inputs_det <- generate_det_inputs()
v_results_det <- perform_simulation(l_inputs_det)

36 plot_ce

perform_simulation_psm

Perform the health economic simulation using partitioned survival
model.

Description

This function performs the simulation of the partitioned survival health economic model developed
to test the functionalities of the package.

Usage

perform_simulation_psm(l_params, min_fct = TRUE)

Arguments

l_params list. List of inputs of the health economic model.

min_fct logical. Should a minimum function be used to ensure PFS remains lower than
OS? Default is TRUE.

Value

A vector. This vector contains the (un)discounted intermediate and final outcomes of the health
economic model.

Examples

Perform the simulation using one iteration of the probabilistic model inputs
l_inputs_det <- as.list(generate_pa_inputs_psm(n_sim = 1))
v_results_det <- perform_simulation_psm(l_inputs_det)

plot_ce Plotting cost-effectiveness plane for two strategies.

Description

This function plots the cost-effectiveness plane for two strategies.

Usage

plot_ce(df, e_int, e_comp, c_int, c_comp, currency = "euro", axes = TRUE)

plot_ceac 37

Arguments

df a dataframe.

e_int character. Name of variable of the dataframe containing total effects of the in-
tervention strategy.

e_comp character. Name of variable of the dataframe containing total effects of the com-
parator strategy.

c_int character. Name of variable of the dataframe containing total costs of the inter-
vention strategy.

c_comp character. Name of variable of the dataframe containing total costs of the com-
parator strategy.

currency character. Default is "euro". Determines the currency sign to use in the in-
cremental cost effectiveness plane. Currently included signs: "euro", "dollar",
"yen", "none".

axes logical. Default is TRUE, axes are plotted at x = 0 and y = 0. If FALSE, no axes
are plotted.

Value

A ggplot2 graph.

Examples

Plot cost effectiveness plane
data("df_pa")
plot_ce(df = df_pa,

e_int = "t_qaly_d_int",
e_comp = "t_qaly_d_comp",
c_int = "t_costs_d_int",
c_comp = "t_costs_d_comp",
currency = "none"
)

plot_ceac Plotting the cost-effectiveness acceptability curves.

Description

This function plots cost-effectiveness acceptability curves.

Usage

plot_ceac(df, name_wtp, currency = "euro")

38 plot_ce_mult

Arguments

df a dataframe obtained through the ‘calculate_ceac()‘ or ‘calculate_ceac_mult()‘.

name_wtp character. Name of variable of the dataframe containing the willingness-to-pay
thresholds at which the probability of cost effectiveness have been defined.

currency character. Default is "euro". Determines the currency sign to use in the in-
cremental cost effectiveness plane. Currently included signs: "euro", "dollar",
"yen", "none".

Value

A ggplot2 graph.

Examples

Plot CEAC based on results from calculate_ceac()
data("df_pa")
df_ceac_p <- calculate_ceac(df = df_pa,

e_int = "t_qaly_d_int",
e_comp = "t_qaly_d_comp",
c_int = "t_costs_d_int",
c_comp = "t_costs_d_comp")

plot_ceac(df = df_ceac_p,
name_wtp = "WTP_threshold",
currency = "none")

plot_ce_mult Plotting cost-effectiveness plane.

Description

This function plots the cost-effectiveness plane for an infinite amount of strategies .

Usage

plot_ce_mult(df, outcomes, costs, ellipse = FALSE, currency = "euro")

Arguments

df a dataframe.

outcomes character. Vector of variable names containing the outcomes to be plotted on
the x-axis. The variable names should be structured as follows: ’t_qaly_d_’
followed by the name of the strategy: e.g. ’t_qaly_d_intervention’.

costs character. Vector of variable names containing the costs to be plotted on the y-
axis. The variable names should be structured as follows: ’t_costs_d_’ followed
by the name of the strategy: e.g. ’t_costs_d_intervention’.

plot_convergence 39

ellipse logical. Determines whether plot should plot the dots of each iteration (default,
ellipse = FALSE), or whether the mean outcomes and costs and their 95procent
confidence ellipses should be plotted (TRUE).

currency character. Default is "euro". Determines the currency sign to use in the in-
cremental cost effectiveness plane. Currently included signs: "euro", "dollar",
"yen", "none".

Value

A ggplot2 graph. # Plot cost effectiveness plane as ellipses data("df_pa") df_pa$t_qaly_d_int2 <-
df_pa$t_qaly_d_int * 1.5 # creating additional outcome variable df_pa$t_costs_d_int2 <- df_pa$t_costs_d_int
* 1.5 # creating additional cost variable plot_ce_mult(df = df_pa, outcomes = c("t_qaly_d_int",
"t_qaly_d_comp", "t_qaly_d_int2"), costs = c("t_costs_d_int","t_costs_d_comp", "t_costs_d_int2"),
ellipse = TRUE, currency = "none")

plot_convergence Plot moving average

Description

This function plots the moving average of a user-defined variable.

Usage

plot_convergence(
df,
param,
block_size = 500,
conv_limit = 0,
y_min = NULL,
y_max = NULL,
breaks = NULL,
variance = FALSE

)

Arguments

df a dataframe.

param character string. Name of variable of the dataframe for which to plot the moving
average.

block_size numeric. Define the size of the blocks at which the mean of the variable (‘param‘)
has to be defined and plotted. Default is 500 iterations.

conv_limit numeric. Define the convergence limit, under which the relative change between
block of iterations should lie.

y_min numeric. Define the minimum value of the parameter to display on th y-axis of
the convergence plot.If NULL (default, not defined), this will automatically be
set near the minimum value of ‘param‘.

40 plot_ice

y_max numeric. Define the maximum value of the parameter to display on th y-axis of
the convergence plot. If NULL (default, not defined), this will automatically be
set near the maximum value of ‘param‘.

breaks numeric. Number of iterations at which the breaks should be placed on the plot.
Default is NULL, hence a tenth of the length of the vector ‘param‘ is used.

variance logical. Determine whether the variance of the vector should be plotted instead
of the mean. Default is FALSE.

Value

A ggplot graph.

Examples

Checking the moving average of the incremental QALYs using the example data.
data(df_pa)
plot_convergence(df = df_pa,

param = "inc_qaly"
)

plot_ice Plotting the incremental cost-effectiveness plane.

Description

This function plots the incremental cost-effectiveness plane for two strategies.

Usage

plot_ice(
df,
e_int,
e_comp,
c_int,
c_comp,
col = NULL,
n_it = NULL,
wtp = NULL,
currency = "euro",
axes = TRUE

)

Arguments

df a dataframe.

e_int character. Name of variable of the dataframe containing total effects of the in-
tervention strategy.

plot_nb 41

e_comp character. Name of variable of the dataframe containing total effects of the com-
parator strategy.

c_int character. Name of variable of the dataframe containing total costs of the inter-
vention strategy.

c_comp character. Name of variable of the dataframe containing total costs of the com-
parator strategy.

col character. Name of variable of the dataframe to use to colour (in blue) the plotted
dots. Default is NULL which results in grey dots.

n_it (vector of) numeric value(s). Designate which iteration should be coloured in
the colour red.

wtp numeric. Default is NULL. If different than NULL, plots a linear line with
intercept 0 and the defined slope.

currency character. Default is "euro". Determines the currency sign to use in the in-
cremental cost effectiveness plane. Currently included signs: "euro", "dollar",
"yen", "none".

axes logical. Default is TRUE, axes are plotted at x = 0 and y = 0. If FALSE, no axes
are plotted.

Value

A ggplot2 graph.

Examples

Generating plot using the example dataframe, and a willlingness-to-pay threshold of 80,0000 euros.
data(df_pa)
plot_ice(df = df_pa,

e_int = "t_qaly_d_int",
e_comp = "t_qaly_d_comp",
c_int = "t_costs_d_int",
c_comp = "t_costs_d_comp",
wtp = 8000,
currency = "none")

plot_nb Plot (i)NMB or (i)NHB.

Description

This function plots the Net Monetary Benefits (NMB) and Net Health Benefits (NHB) for each
strategy and the incremental NMB and NHB (only pairwise comparison).

Usage

plot_nb(df, NMB = TRUE, comparators = TRUE, incremental = FALSE)

42 plot_nb_mult

Arguments

df a dataframe obtained through ‘calculate_nb()‘

NMB logical. Should the (i)NMBs be plotted? Default is TRUE, if FALSE, (i)NHBs
are plotted.

comparators logical. Should the NMB/NHB for each comparator be plotted? Default is
TRUE.

incremental logical. Should the incremental NMB/NHB be plotted? Default is FALSE

Details

The use this function, the dataframe ‘df‘ should contain the variables ‘NMB_int‘, ‘NMB_comp‘,
‘iNMB‘, ‘NHB_int‘, ‘NHB_comp‘, and ‘iNHB‘. For instance, use the calculate_nb function to
calculate these outcomes.

Value

A ggplot2 graph.

Examples

Calculate NB's at a willingness-to-pay threshold of 80000 per unit of effects
data("df_pa")
df_nmb <- calculate_nb(df = df_pa,

e_int = "t_qaly_d_int",
e_comp = "t_qaly_d_comp",
c_int = "t_costs_d_int",
c_comp = "t_costs_d_comp",
wtp = 80000)

Plot NMB's for each comparator
plot_nb(df = df_nmb,

NMB = TRUE,
comparators = TRUE)

plot_nb_mult Plot NMB or NHB.

Description

This function plots the Net Monetary Benefits (NMB) and Net Health Benefits (NHB) for an infinite
amount of strategies.

Usage

plot_nb_mult(df, outcomes, costs, wtp, NMB = TRUE)

plot_surv_mod 43

Arguments

df a dataframe.
outcomes character. Vector of variable names containing the outcomes to be plotted on

the x-axis. The variable names should be structured as follows: ’t_qaly_d_’
followed by the name of the strategy: e.g. ’t_qaly_d_intervention’.

costs character. Vector of variable names containing the costs to be plotted on the y-
axis. The variable names should be structured as follows: ’t_costs_d_’ followed
by the name of the strategy: e.g. ’t_costs_d_intervention’.

wtp numeric. Willingness-to-pay thresholds to use for NMB and NHB calculations.
NMB logical. Should the NMBs be plotted? Default is TRUE, if FALSE, NHBs are

plotted.

Value

A ggplot2 graph.

Examples

Plot NMB's at a 50,0000 euro WTP threshold for three strategies
data("df_pa")
df_pa$t_qaly_d_int2 <- df_pa$t_qaly_d_int * 1.5
df_pa$t_costs_d_int2 <- df_pa$t_costs_d_int * 1.5
plot_nb_mult(df = df_pa,

outcomes = c("t_qaly_d_int2", "t_qaly_d_int", "t_qaly_d_comp"),
costs = c("t_costs_d_int", "t_costs_d_int2", "t_costs_d_comp"),
wtp = 50000)

plot_surv_mod Plot parametric survival models

Description

This function plots two parametric survival models based on he functional form of the model and
their parameters.

Usage

plot_surv_mod(
df,
surv_mod_1,
surv_mod_2,
v_names_param_mod_1,
v_names_param_mod_2,
label_surv_1 = "first survival",
label_surv_2 = "second survival",
iteration,
time = seq(0, 5, 1)

)

44 predict_metamodel

Arguments

df a dataframe.

surv_mod_1 character. Name of the parametric model to use for the first survival model.

surv_mod_2 character. Name of the parametric model to use for the second survival model.
v_names_param_mod_1

(vector of) character. Name of the columns containing the parameter values for
the first survival model.

v_names_param_mod_2

(vector of) character. Name of the columns containing the parameter values for
the second survival model.

label_surv_1 character vector. The label to provide to the first survival curve (relevant for
export).

label_surv_2 character vector. The label to provide to the second survival curve (relevant for
export).

iteration integer. The row number of the iterations for which the parametric survival
models have to be plotted.

time a numerical vector. Determine at which time points survival probabilities have
to be estimated for both survival models. For each of these time points, it will be
checked whether the first survival model results in higher survival probabilities
than the second survival model.

Details

The parametric models that can be used are the following: exponential (exp), Weibull (weibull),
gamma (gamma), loglogistic (logis), and lognormal (lnorm). All these functions are implemented
following their distribution function as documented in the stats package.

Value

A ggplot object.

predict_metamodel Predict using a fitted metamodel

Description

Predict using a fitted metamodel

Usage

predict_metamodel(model = NULL, inputs = NULL, output_type = "vector")

summary_ice 45

Arguments

model model object. Built using a function from the PACHECK package.

inputs dataframe or vector. When choosing a vector in the case of a three-variable
model: the first, second, third, and fourth value represent the input for the first,
second, third, and FIRST variable, respectively. Default gives the predictions
based on the training data.

output_type character. Choose an output: ’dataframe’, ’long_df’ (long data.frame) or ’vec-
tor’.

Value

returns a vector of the the predictions (’vector’ output_type) or the parameter values used for the
predictions and the predictions (’dataframe’ or ’long_df’ output_type).

Examples

#Making 3 predictions for a two-variable metamodel,
using a vector as input, and yielding a dataframe as output.
data(df_pa)
lm_fit = fit_lm_metamodel(df = df_pa,

y_var = "inc_qaly",
x_vars = c("p_pfsd", "p_pdd")
)

vec = c(0.1,0.2,0.08,0.15,0.06,0.25)

predict_metamodel(model = lm_fit,
inputs = vec,
output_type = "dataframe"
)

summary_ice Summary statistics of the incremental cost-effectiveness plane.

Description

This function computes the probability that the probabilistic outcome is in each of the quadrants.

Usage

summary_ice(df, e_int, e_comp, c_int, c_comp)

Arguments

df a dataframe.

e_int character. Name of variable of the dataframe containing total effects of the in-
tervention strategy.

46 validate_metamodel

e_comp character. Name of variable of the dataframe containing total effects of the com-
parator strategy.

c_int character. Name of variable of the dataframe containing total costs of the inter-
vention strategy.

c_comp character. Name of variable of the dataframe containing total costs of the com-
parator strategy.

Value

A dataframe.

Examples

Generating statistics of the incremental cost-effectiveness plane using the example data.
data(df_pa)
summary_ice(df = df_pa,

e_int = "t_qaly_d_int",
e_comp = "t_qaly_d_comp",
c_int = "t_costs_d_int",
c_comp = "t_costs_d_comp"
)

validate_metamodel Validate metamodels

Description

Validate metamodels

Usage

validate_metamodel(
model = NULL,
method = NULL,
partition = 1,
folds = 1,
show_intercept = FALSE,
seed_num = 1,
df_validate = NULL

)

Arguments

model model object. Built using a function from the PACHECK package.

method character, validation method. Choices are: cross-validation (’cross_validation’),
train-test split (’train_test_split’), or the user can input a new dataframe which
will be used as the test-set (’new_test_set’). No default.

vis_1_param 47

partition numeric. Value between 0 and 1 to determine the proportion of the observa-
tions to use to fit the metamodel. Default is 1 (fitting the metamodel using all
observations).

folds numeric. Number of folds for the cross-validation. Default is 1 (so an error
occurs when not specifying this argument when cross-validation is chosen).

show_intercept logical. Determine whether to show the intercept of the perfect prediction line
(x = 0, y = 0). Default is FALSE.

seed_num numeric. Determine which seed number to use to split the dataframe in fitting
and validation sets.

df_validate dataframe. The dataframe to be used for validating the model. By default the
dataframe used when building the model is used.

Value

.........................

Examples

#Validating meta model with two variables using the probabilistic data, using cross-validation.
data(df_pa)
lm_fit = fit_lm_metamodel(df = df_pa,

y_var = "inc_qaly",
x_vars = c("p_pfsd", "p_pdd")
)

validate_metamodel(model = lm_fit,
method = "cross_validation",
folds = 5
)

vis_1_param Visualise the distribution of a single parameter

Description

This function plots the distribution of a single parameter.

Usage

vis_1_param(
df,
param = NULL,
binwidth = NULL,
type = "histogram",
dist = NULL,
user_dist = NULL,
user_param_1 = NULL,

48 vis_2_params

user_param_2 = NULL,
user_mean = NULL

)

Arguments

df a dataframe.

param character. Name of variable of the dataframe for which the distribution should
be plotted.

binwidth numeric. Determine the width of the bins to use, only applied in combination
with "histogram". Default is 30 bins.

type character. Determine which plot to return: "histogram" for a histogram, "den-
sity" for a density plot. Default is "histogram".

dist character or vector of character. Determine which distribution to fit on the den-
sity plot.

user_dist character string. User-defined distribution to fit. Default value is NULL.

user_param_1 character string. First parameter of the user-defined distribution to fit.

user_param_2 character string. Second parameter of the user-defined distribution to fit.

user_mean numeric value. mean value to plot on the graph. Default is NULL

Details

The available distributions are: "norm" (normal), "beta", "gamma", "lnorm" (lognormal). TO
CHECK –> ask for mean and SD/SE for the user-defined distribution???

Value

A ggplot2 graph.

Examples

Generating histogram for the costs of progression-free health state, bins of 50 euros
data(df_pa)
vis_1_param(df = df_pa, param = "c_pfs", binwidth = 50)

vis_2_params Visualise the distribution of two parameters

Description

This function plots the distribution of two parameters in a scatterplot.

vis_2_params 49

Usage

vis_2_params(
df,
param_1,
param_2,
slope = NULL,
intercept = 0,
check = NULL,
fit = NULL

)

Arguments

df a dataframe.

param_1 character. Name of variable of the dataframe to be plotted on the x-axis.

param_2 character. Name of variable of the dataframe to be plotted on the y-axis.

slope numeric. Default is NULL. If different than 0, plots a linear line with a user-
defined intercept and the defined slope.

intercept numeric. Default is 0. Intercept of the user-defined slope.

check character. Default is NULL. When set to "param_2 > param_1". The dots ful-
filling the condition are coloured in red.

fit character. Designate the type of smooth model to fit to the relation of ‘param_1‘
(x) and ‘param_2‘ (y). It can take the values "lm, "glm", "gam", and "loess". A
model will be fitted according to the methods described in ggplot2::geom_smooth().

Value

A ggplot graph.

Examples

Generating plot for the costs of progression-free health state versus incremental costs
data(df_pa)
vis_2_params(df = df_pa, param_1 = "c_pfs", "inc_costs")

Index

∗ datasets
df_ckd_inputs, 14
df_ckd_results, 14
df_iviRA_pa, 15
df_pa, 16
df_pa_psm, 18
l_psa_aaa, 34

calculate_ceac, 3
calculate_ceac_mult, 4
calculate_nb, 5, 42
calculate_nb_mult, 6
check_binary, 7
check_mean_qol, 8
check_positive, 8
check_psa_darth, 9
check_range, 10
check_sum_probs, 11
check_sum_vars, 12
check_surv_mod, 13

df_ckd_inputs, 14
df_ckd_results, 14
df_iviRA_pa, 15
df_pa, 16, 31
df_pa_psm, 18, 32
do_check, 20
do_discount_check, 21
do_quick_check, 21

estimate_decision_sensitivity, 22
exp, 14, 44

fit_dist, 23
fit_lasso_metamodel, 24
fit_lm_metamodel, 26
fit_rf_metamodel, 28
fitdistrplus::fitdist(), 24

gamma, 14, 44
generate_cor, 30

generate_det_inputs, 31
generate_pa_inputs, 31
generate_pa_inputs_psm, 32
generate_sum_stats, 33
ggplot2::geom_smooth(), 49
glmnet, 24

l_psa_aaa, 34
lnorm, 14, 44
logis, 14, 44

perform_dowsa, 34
perform_simulation, 35
perform_simulation_psm, 36
plot_ce, 36
plot_ce_mult, 38
plot_ceac, 37
plot_convergence, 39
plot_ice, 40
plot_nb, 41
plot_nb_mult, 42
plot_surv_mod, 43
predict_metamodel, 44

randomForestSRC, 28
randomForestSRC::plot.variable.rfsrc(),

29
randomForestSRC::rfsrc(), 29
randomForestSRC::tune(), 29

stats, 14, 44
summary_ice, 45

validate_metamodel, 46
vis_1_param, 47
vis_2_params, 48

weibull, 14, 44

50

	calculate_ceac
	calculate_ceac_mult
	calculate_nb
	calculate_nb_mult
	check_binary
	check_mean_qol
	check_positive
	check_psa_darth
	check_range
	check_sum_probs
	check_sum_vars
	check_surv_mod
	df_ckd_inputs
	df_ckd_results
	df_iviRA_pa
	df_pa
	df_pa_psm
	do_check
	do_discount_check
	do_quick_check
	estimate_decision_sensitivity
	fit_dist
	fit_lasso_metamodel
	fit_lm_metamodel
	fit_rf_metamodel
	generate_cor
	generate_det_inputs
	generate_pa_inputs
	generate_pa_inputs_psm
	generate_sum_stats
	l_psa_aaa
	perform_dowsa
	perform_simulation
	perform_simulation_psm
	plot_ce
	plot_ceac
	plot_ce_mult
	plot_convergence
	plot_ice
	plot_nb
	plot_nb_mult
	plot_surv_mod
	predict_metamodel
	summary_ice
	validate_metamodel
	vis_1_param
	vis_2_params
	Index

