The RAM-OP Workflow

Ernest Guevarra

The RAM-OP Workflow is summarised in the diagram below.

RAM-OP workflow

The oldr package provides functions to use for all steps after data collection. These functions were developed specifically for the data structure created by the EpiData or the Open Data Kit collection tools. The data structure produced by these collection tools is shown by the dataset testSVY included in the oldr package.

testSVY
#> # A tibble: 192 × 90
#>      ad2   psu    hh    id    d1    d2    d3    d4    d5    f1   f2a   f2b   f2c
#>    <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1     1   201     1     1     1    67     2     5     2     3     2     1     1
#>  2     1   201     2     1     1    74     1     2     2     3     2     1     1
#>  3     1   201     3     1     1    60     1     2     2     2     2     2     2
#>  4     1   201     3     2     1    60     2     2     2     3     2     2     1
#>  5     1   201     4     1     1    85     2     5     2     3     2     1     1
#>  6     1   201     5     1     2    86     1     5     1     4     2     1     1
#>  7     1   201     6     1     1    80     1     5     2     3     2     1     1
#>  8     1   201     6     2     1    60     2     5     2     3     2     2     1
#>  9     1   201     7     1     1    62     1     2     2     2     2     1     1
#> 10     1   201     8     1     1    72     2     5     2     2     2     1     1
#> # ℹ 182 more rows
#> # ℹ 77 more variables: f2d <int>, f2e <int>, f2f <int>, f2g <int>, f2h <int>,
#> #   f2i <int>, f2j <int>, f2k <int>, f2l <int>, f2m <int>, f2n <int>,
#> #   f2o <int>, f2p <int>, f2q <int>, f2r <int>, f2s <int>, f3 <int>, f4 <int>,
#> #   f5 <int>, f6 <int>, f7 <int>, a1 <int>, a2 <int>, a3 <int>, a4 <int>,
#> #   a5 <int>, a6 <int>, a7 <int>, a8 <int>, k6a <int>, k6b <int>, k6c <int>,
#> #   k6d <int>, k6e <int>, k6f <int>, ds1 <int>, ds2 <int>, ds3 <int>, …

Processing and recoding data

Once RAM-OP data is collected, it will need to be processed and recoded based on the definitions of the various indicators included in RAM-OP. The oldr package provides a suite functions to perform this processing and recoding. These functions and their syntax can be easily remembered as the create_op_ functions as their function names start with the create_ verb followed by the op_ label and then followed by an indicator or indicator set specific identifier or short name. Finally, an additional tag for male or female can be added to the main function to provide gender-specific outputs.

Currently, a standard RAM-OP can provide results for the 13 indicators or indicator sets for older people. The following table shows these indicators/indicator sets alongside the functions related to them:

Indicator / Indicator Set Related Functions
Demography and situation create_op_demo; create_op_demo_males; create_op_demo_females
Food intake create_op_food; create_op_food_males; create_op_food_females
Severe food insecurity create_op_hunger; create_op_hunger_males; create_op_hunger_females
Disability create_op_disability; create_op_disability_males; create_op_disability_females
Activities of daily living create_op_adl; create_op_adl_males; create_op_adl_females
Mental health and well-being create_op_mental; create_op_mental_males; create_op_mental_females
Dementia create_op_dementia; create_op_dementia_males; create_op_dementia_females
Health and health-seeking behaviour create_op_health; create_op_health_males; create_op_health_females
Sources of income create_op_income; create_op_income_males; create_op_income_females
Water, sanitation, and hygiene create_op_wash; create_op_wash_males; create_op_wash_females
Anthropometry and anthropometric screening coverage create_op_anthro; create_op_anthro_males; create_op_anthro_females
Visual impairment create_op_visual; create_op_visual_males; create_op_visual_females
Miscellaneous create_op_misc; create_op_misc_males; create_op_misc_females

A final function in the processing and recoding set - create_op - is provided to perform the processing and recoding of all indicators or indicator sets. This function allows for the specification of which indicators or indicator sets to process and recode which is useful for cases where not all the indicators or indicator sets have been collected or if only specific indicators or indicator sets need to be analysed or reported. This function also specifies whether a specific gender subset of the data is needed.

For a standard RAM-OP implementation, this step is performed in R as follows:

## Process and recode all standard RAM-OP indicators in the testSVY dataset
create_op(svy = testSVY)

which results in the following output:

#> # A tibble: 192 × 138
#>      psu  sex1  sex2 resp1 resp2 resp3 resp4   age ageGrp1 ageGrp2 ageGrp3
#>    <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>   <dbl>   <dbl>   <dbl>
#>  1   201     0     1     1     0     0     0    67       0       1       0
#>  2   201     1     0     1     0     0     0    74       0       0       1
#>  3   201     1     0     1     0     0     0    60       0       1       0
#>  4   201     0     1     1     0     0     0    60       0       1       0
#>  5   201     0     1     1     0     0     0    85       0       0       0
#>  6   201     1     0     0     1     0     0    86       0       0       0
#>  7   201     1     0     1     0     0     0    80       0       0       0
#>  8   201     0     1     1     0     0     0    60       0       1       0
#>  9   201     1     0     1     0     0     0    62       0       1       0
#> 10   201     0     1     1     0     0     0    72       0       0       1
#> # ℹ 182 more rows
#> # ℹ 127 more variables: ageGrp4 <dbl>, ageGrp5 <dbl>, marital1 <dbl>,
#> #   marital2 <dbl>, marital3 <dbl>, marital4 <dbl>, marital5 <dbl>,
#> #   marital6 <dbl>, alone <dbl>, MF <dbl>, DDS <dbl>, FG01 <dbl>, FG02 <dbl>,
#> #   FG03 <dbl>, FG04 <dbl>, FG05 <dbl>, FG06 <dbl>, FG07 <dbl>, FG08 <dbl>,
#> #   FG09 <dbl>, FG10 <dbl>, FG11 <dbl>, proteinRich <dbl>, pProtein <dbl>,
#> #   aProtein <dbl>, pVitA <dbl>, aVitA <dbl>, xVitA <dbl>, ironRich <dbl>, …

Estimating indicators

Once data has been processed and appropriate recoding for indicators has been performed, indicator estimates can now be calculated.

It is important to note that estimation procedures need to account for the sample design. All major statistical analysis software can do this (details vary). There are two things to note:

This sample design will need to be specified to statistical analysis software being used. If no weights are provided, then the analysis may produce estimates that place undue weight to observations from smaller communities with confidence intervals with lower than nominal coverage (i.e. they will be too narrow).

Blocked weighted bootstrap

The oldr package uses blocked weighted bootstrap estimation approach:

A total of m PSUs are sampled with-replacement from the survey dataset where m is the number of PSUs in the survey sample. Individual records within each PSU are then sampled with-replacement. A total of n records are sampled with-replacement from each of the selected PSUs where n is the number of individual records in a selected PSU. The resulting collection of records replicates the original survey in terms of both sample design and sample size. A large number of replicate surveys are taken (the standard RAM-OP software uses \(r = 399\) replicate surveys but this can be changed). The required statistic (e.g. the mean of an indicator value) is applied to each replicate survey. The reported estimate consists of the 50th (point estimate), 2.5th (lower 95% confidence limit), and the 97.5th (upper 95% confidence limit) percentiles of the distribution of the statistic observed across all replicate surveys. The blocked weighted bootstrap procedure is outlined in the figure below.

Blocked weighted bootstrap

The principal advantages of using a bootstrap estimator are:

PROBIT estimator

The prevalence of GAM, MAM, and SAM are estimated using a PROBIT estimator. This type of estimator provides better precision than a classic estimator at small sample sizes as discussed in the following literature:

World Health Organisation, Physical Status: The use and interpretation of anthropometry. Report of a WHO expert committee, WHO Technical Report Series 854, WHO, Geneva, 1995

Dale NM, Myatt M, Prudhon C, Briend, A, “Assessment of the PROBIT approach for estimating the prevalence of global, moderate and severe acute malnutrition from population surveys”, Public Health Nutrition, 1–6. https://doi.org/10.1017/s1368980012003345, 2012

Blanton CJ, Bilukha, OO, “The PROBIT approach in estimating the prevalence of wasting: revisiting bias and precision”, Emerging Themes in Epidemiology, 10(1), 2013, p. 8

An estimate of GAM prevalence can be made using a classic estimator:

\[ \text{prevalence} ~ = ~ \frac{\text{Number of respondents with MUAC < 210}}{\text{Total number of respondents}} \]

On the other hand, the estimate of GAM prevalence made from the RAM-OP survey data is made using a PROBIT estimator. The PROBIT function is also known as the inverse cumulative distribution function. This function converts parameters of the distribution of an indicator (e.g. the mean and standard deviation of a normally distributed variable) into cumulative percentiles. This means that it is possible to use the normal PROBIT function with estimates of the mean and standard deviation of indicator values in a survey sample to predict (or estimate) the proportion of the population falling below a given threshold. For example, for data with a mean MUAC of 256 mm and a standard deviation of 28 mm the output of the normal PROBIT function for a threshold of 210 mm is 0.0502 meaning that 5.02% of the population are predicted (or estimated) to fall below the 210 mm threshold.

Both the classic and the PROBIT methods can be thought of as estimating area:

RAM-OP estimators

The principal advantage of the PROBIT approach is that the required sample size is usually smaller than that required to estimate prevalence with a given precision using the classic method.

The PROBIT method assumes that MUAC is a normally distributed variable. If this is not the case then the distribution of MUAC is transformed towards normality.

The prevalence of SAM is estimated in a similar way to GAM. The prevalence of MAM is estimated as the difference between the GAM and SAM prevalence estimates:

\[ \widehat{\text{GAM prevalence}} ~ = ~ \widehat{\text{GAM prevalence}} - \widehat{\text{SAM prevalence}} \]

Classic estimator

The function estimateClassic in oldr implements the blocked weighted bootstrap classic estimator of RAM-OP. This function uses the bootClassic statistic to estimate indicator values.

The estimateClassic function is used for all the standard RAM-OP indicators except for anthropometry. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform classic estimation on recoded data using appropriate weights provided by testPSU
classicDF <- estimate_classic(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 136 × 10
#>    INDICATOR EST.ALL  LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>    <chr>       <dbl>    <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#>  1 resp1      0.828   0.809    0.915     0.854    0.767      0.889       0.870 
#>  2 resp2      0.109   0.0531   0.151     0.0676   0.0588     0.128       0.115 
#>  3 resp3      0.0312  0.0115   0.0698    0.0471   0.00244    0.0958      0.0231
#>  4 resp4      0.0104  0.00104  0.0396    0.0278   0          0.0777      0     
#>  5 age       70.6    69.6     73.0      70.8     68.0       72.5        70.2   
#>  6 ageGrp1    0       0        0         0        0          0           0     
#>  7 ageGrp2    0.573   0.369    0.627     0.527    0.432      0.637       0.548 
#>  8 ageGrp3    0.234   0.156    0.326     0.241    0.173      0.299       0.225 
#>  9 ageGrp4    0.177   0.142    0.276     0.183    0.0912     0.233       0.177 
#> 10 ageGrp5    0.0417  0.0260   0.0562    0.0676   0.0391     0.104       0.0231
#> # ℹ 126 more rows
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

PROBIT estimator

The function estimateProbit in oldr implements the blocked weighted bootstrap PROBIT estimator of RAM-OP. This function uses the probit_GAM and the probit_SAM statistic to estimate indicator values.

The estimateProbit function is used for only the anthropometric indicators. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform probit estimation on recoded data using appropriate weights provided by testPSU
probitDF <- estimate_probit(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 3 × 10
#>   INDICATOR  EST.ALL   LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>   <chr>        <dbl>     <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#> 1 GAM       0.0268     1.13e-2 0.0358   6.87e- 4  6.76e- 5 0.0189       0.0341  
#> 2 MAM       0.0246     1.08e-2 0.0357   6.87e- 4  6.75e- 5 0.0189       0.0290  
#> 3 SAM       0.000133   4.34e-7 0.00835  1.09e-13  2.45e-58 0.0000344    0.000801
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

The two sets of estimates are then merged using the merge_op function as follows:

## Merge classicDF and probitDF
resultsDF <- merge_op(x = classicDF, y = probitDF)

resultsDF

which results in:

#> # A tibble: 139 × 13
#>    INDICATOR GROUP       LABEL TYPE  EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES
#>    <fct>     <fct>       <fct> <fct>   <dbl>   <dbl>   <dbl>     <dbl>     <dbl>
#>  1 resp1     Survey      Resp… Prop…  0.828  8.09e-1  0.915     0.854    0.767  
#>  2 resp2     Survey      Resp… Prop…  0.109  5.31e-2  0.151     0.0676   0.0588 
#>  3 resp3     Survey      Resp… Prop…  0.0312 1.15e-2  0.0698    0.0471   0.00244
#>  4 resp4     Survey      Resp… Prop…  0.0104 1.04e-3  0.0396    0.0278   0      
#>  5 age       Demography… Mean… Mean  70.6    6.96e+1 73.0      70.8     68.0    
#>  6 ageGrp1   Demography… Self… Prop…  0      0        0         0        0      
#>  7 ageGrp2   Demography… Self… Prop…  0.573  3.69e-1  0.627     0.527    0.432  
#>  8 ageGrp3   Demography… Self… Prop…  0.234  1.56e-1  0.326     0.241    0.173  
#>  9 ageGrp4   Demography… Self… Prop…  0.177  1.42e-1  0.276     0.183    0.0912 
#> 10 ageGrp5   Demography… Self… Prop…  0.0417 2.60e-2  0.0562    0.0676   0.0391 
#> # ℹ 129 more rows
#> # ℹ 4 more variables: UCL.MALES <dbl>, EST.FEMALES <dbl>, LCL.FEMALES <dbl>,
#> #   UCL.FEMALES <dbl>

Creating charts

Once indicators has been estimated, the outputs can then be used to create relevant charts to visualise the results. A set of functions that start with the verb chart_op_ is provided followed by the indicator identifier to specify the type of indicator to visualise. The output of the function is a PNG file saved in the specified filename appended to the indicator identifier within the current working directory or saved in the specified filename appended to the indicator identifier in the specified directory path.

The following shows how to produce the chart for ADLs saved with filename test appended at the start inside a temporary directory:

chart_op_adl(x = create_op(testSVY), filename = file.path(tempdir(), "test"))
#> png 
#>   2

The resulting PNG file can be found in the temporary directory

file.exists(path = file.path(tempdir(), "test.png"))
#> [1] FALSE

and will look something like this:

RAM-OP chart showing information on activities of daily living

Reporting estimates

Finally, estimates can be reported through report tables. The report_op_table function facilitates this through the following syntax:

report_op_table(estimates = resultsDF, filename = file.path(tempdir(), "TEST"))

The resulting CSV file is found in the temporary directory

file.exists(path = file.path(tempdir(), "TEST.csv"))
#> [1] FALSE

and will look something like this:

#>                                                                         X  X.1
#> 1                                                                  Survey     
#> 2                                                                             
#> 3                                                               INDICATOR TYPE
#> 4                                                    Respondent : SUBJECT    2
#> 5                                               Respondent : FAMILY CARER    2
#> 6                                                Respondent : OTHER CARER    2
#> 7                                                      Respondent : OTHER    2
#> 8                                                                             
#> 9                                                Demography and situation     
#> 10                                                                            
#> 11                                                              INDICATOR TYPE
#> 12                              Mean self-reported age of subject (years)    1
#> 13                              Self-reported age between 50 and 59 years    2
#> 14                              Self-reported age between 60 and 69 years    2
#> 15                              Self-reported age between 70 and 79 years    2
#> 16                              Self-reported age between 80 and 89 years    2
#> 17                                    Self-reported age 90 years or older    2
#> 18                                                             Sex : MALE    2
#> 19                                                           Sex : FEMALE    2
#> 20                                Marital status : SINGLE (NEVER MARRIED)    2
#> 21                                               Marital status : MARRIED    2
#> 22                                       Marital status : LIVING TOGETHER    2
#> 23                                              Marital status : DIVORCED    2
#> 24                                               Marital status : WIDOWED    2
#> 25                                                 Marital status : OTHER    2
#> 26                                                    Subject lives alone    2
#> 27                                                                            
#> 28                                                                   Diet     
#> 29                                                                            
#> 30                                                              INDICATOR TYPE
#> 31  Meal frequency (i.e. number of meals and snacks in previous 24 hours)    1
#> 32                          Dietary diversity (count from 11 food groups)    1
#> 33                                Consumed CEREALS (in previous 24 hours)    2
#> 34                         Consumed ROOTS / TUBERS (in previous 24 hours)    2
#> 35                    Consumed FRUITS / VEGETABLES (in previous 24 hours)    2
#> 36                                   Consumed MEAT (in previous 24 hours)    2
#> 37                                   Consumed EGGS (in previous 24 hours)    2
#> 38                                   Consumed FISH (in previous 24 hours)    2
#> 39                 Consumed LEGUMES / NUTS / SEEDS (in previous 24 hours)    2
#> 40                   Consumed MILK / MILK PRODUCTS (in previous 24 hours)    2
#> 41                                   Consumed FATS (in previous 24 hours)    2
#> 42                                 Consumed SUGARS (in previous 24 hours)    2
#> 43                                  Consumed OTHER (in previous 24 hours)    2
#> 44                                                                            
#> 45                                                              Nutrients     
#> 46                                                                            
#> 47                                                              INDICATOR TYPE
#> 48                                             PROTEIN rich foods in diet    2
#> 49                          Protein rich plant sources of protein in diet    2
#> 50                         Protein rich animal sources of protein in diet    2
#> 51                                     Plant sources of Vitamin A in diet    2
#> 52                                    Animal sources of Vitamin A in diet    2
#> 53                                                Any source of Vitamin A    2
#> 54                                                IRON rich foods in diet    2
#> 55                                             CALCIUM rich foods in diet    2
#> 56                                                ZINC rich foods in diet    2
#> 57                                          Vitamin B1 rich foods in diet    2
#> 58                                          Vitamin B2 rich foods in diet    2
#> 59                                          Vitamin B3 rich foods in diet    2
#> 60                                          Vitamin B6 rich foods in diet    2
#> 61                                         Vitamin B12 rich foods in diet    2
#> 62                     Vitamin B1 / B2 / B3 / B6 / B12 rich foods in diet    2
#> 63                                                                            
#> 64                                                          Food Security     
#> 65                                                                            
#> 66                                                              INDICATOR TYPE
#> 67                         Little or no hunger in household (HHS = 0 / 1)    2
#> 68                             Moderate hunger in household (HHS = 2 / 3)    2
#> 69                           Severe hunger in household (HHS = 4 / 5 / 6)    2
#> 70                                                                            
#> 71                                                        Disability (WG)     
#> 72                                                                            
#> 73                                                              INDICATOR TYPE
#> 74                                                     Vision : D0 : None    2
#> 75                                                      Vision : D1 : Any    2
#> 76                                       Vision : D2 : Moderate or severe    2
#> 77                                                   Vision : D3:  Severe    2
#> 78                                                    Hearing : D0 : None    2
#> 79                                                     Hearing : D1 : Any    2
#> 80                                      Hearing : D2 : Moderate or severe    2
#> 81                                                  Hearing : D3:  Severe    2
#> 82                                                   Mobility : D0 : None    2
#> 83                                                    Mobility : D1 : Any    2
#> 84                                     Mobility : D2 : Moderate or severe    2
#> 85                                                 Mobility : D3:  Severe    2
#> 86                                                Remembering : D0 : None    2
#> 87                                                 Remembering : D1 : Any    2
#> 88                                  Remembering : D2 : Moderate or severe    2
#> 89                                              Remembering : D3:  Severe    2
#> 90                                                  Self-care : D0 : None    2
#> 91                                                   Self-care : D1 : Any    2
#> 92                                    Self-care : D2 : Moderate or severe    2
#> 93                                                Self-care : D3:  Severe    2
#> 94                                              Communicating : D0 : None    2
#> 95                                               Communicating : D1 : Any    2
#> 96                                Communicating : D2 : Moderate or severe    2
#> 97                                            Communicating : D3:  Severe    2
#> 98                              No disability in Washington Group domains    2
#> 99                             At least 1 domain with any disability (P1)    2
#> 100             At least 1 domain with moderate or severe disability (P2)    2
#> 101                         At least 1 domain with severe disability (P3)    2
#> 102   Multiple disability : More than one domain with any disability (PM)    2
#> 103                                                                           
#> 104                                            Activities of daily living     
#> 105                                                                           
#> 106                                                             INDICATOR TYPE
#> 107                                                 Independent : Bathing    2
#> 108                                                Independent : Dressing    2
#> 109                                               Independent : Toileting    2
#> 110                                 Independent : Transferring (mobility)    2
#> 111                                              Independent : Continence    2
#> 112                                                 Independent : Feeding    2
#> 113                                                        Katz ADL score    1
#> 114                                    Independent (Katz ADL score = 5/6)    2
#> 115                             Partial dependency (Katz ADL score = 3/4)    2
#> 116                            Severe dependency (Katz ADL score = 0/1/2)    2
#> 117      Subject has someone to help them with activities of daily living    2
#> 118                     Subject has ADL needs (ADL < 6) but has no helper    2
#> 119                                                                           
#> 120                                                         Mental health     
#> 121                                                                           
#> 122                                                             INDICATOR TYPE
#> 123                                       K6 psychological distress score    1
#> 124                              Serious psychological distress (K6 > 12)    2
#> 125                                Probable dementia by brief CSID screen    2
#> 126                                                                           
#> 127                                                                Health     
#> 128                                                                           
#> 129                                                             INDICATOR TYPE
#> 130                        Long term disease requiring regular medication    2
#> 131   Takes medication for long term disease requiring regular medication    2
#> 132           Not taking drugs for long term disease : NO DRUGS AVAILABLE    2
#> 133     Not taking drugs for long term disease : TOO EXPENSIVE / NO MONEY    2
#> 134     Not taking drugs for long term disease : TOO OLD TO LOOK FOR CARE    2
#> 135  Not taking drugs for long term disease : USE OF TRADITIONAL MEDICINE    2
#> 136             Not taking drugs for long term disease : DRUGS DON'T HELP    2
#> 137            Not taking drugs for long term disease : NO-ONE TO HELP ME    2
#> 138                      Not taking drugs for long term disease : NO NEED    2
#> 139                        Not taking drugs for long term disease : OTHER    2
#> 140              Not taking drugs for long term disease : NO REASON GIVEN    2
#> 141                         Recent illness (i.e. in the previous 2 weeks)    2
#> 142                                      Accessed care for recent illness    2
#> 143            Not accessing care for recent illness : NO DRUGS AVAILABLE    2
#> 144      Not accessing care for recent illness : TOO EXPENSIVE / NO MONEY    2
#> 145      Not accessing care for recent illness : TOO OLD TO LOOK FOR CARE    2
#> 146   Not accessing care for recent illness : USE OF TRADITIONAL MEDICINE    2
#> 147              Not accessing care for recent illness : DRUGS DON'T HELP    2
#> 148             Not accessing care for recent illness : NO-ONE TO HELP ME    2
#> 149                       Not accessing care for recent illness : NO NEED    2
#> 150                         Not accessing care for recent illness : OTHER    2
#> 151               Not accessing care for recent illness : NO REASON GIVEN    2
#> 152                     Bilateral pitting oedema (may not be nutritional)    2
#> 153       Visual impairment (visual acuity < 6 / 12) by tumbling E method    2
#> 154                                   Problems chewing food (self-report)    2
#> 155                                                                           
#> 156                                                                Income     
#> 157                                                                           
#> 158                                                             INDICATOR TYPE
#> 159                                       Has a personal source of income    2
#> 160                  Source of income : Agriculture / fishing / livestock    2
#> 161                                     Source of income : Wages / salary    2
#> 162                   Source of income : Sale of charcoal / bricks / etc.    2
#> 163                      Source of income : Trading (e.g. market or shop)    2
#> 164                                        Source of income : Investments    2
#> 165                 Source of income : Spending savings / sales of assets    2
#> 166                                            Source of income : Charity    2
#> 167          Source of income : Cash transfer / social security / welfare    2
#> 168                          Source of income : Other source(s) of income    2
#> 169                                                                           
#> 170                                                                  WASH     
#> 171                                                                           
#> 172                                                             INDICATOR TYPE
#> 173                                     Improved source of drinking water    2
#> 174                                                   Safe drinking water    2
#> 175                                          Improved sanitation facility    2
#> 176                               Improved non-shared sanitation facility    2
#> 177                                                                           
#> 178                                                                Relief     
#> 179                                                                           
#> 180                                                             INDICATOR TYPE
#> 181                                  Previously screened (MUAC or oedema)    2
#> 182                                 Anyone in household receives a ration    2
#> 183                      Received non-food relief items in previous month    2
#> 184                                                                           
#> 185                                                         Anthropometry     
#> 186                                                                           
#> 187                                                             INDICATOR TYPE
#> 188                                       Global acute malnutrition : GAM    2
#> 189                                     Moderate acute malnutrition : MAM    2
#> 190                                       Severe acute malnutrition : SAM    2
#>         X.2     X.3     X.4     X.5     X.6     X.7     X.8     X.9    X.10
#> 1                                                                          
#> 2       ALL                   MALES                 FEMALES                
#> 3       EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 4    0.8281  0.8094  0.9146  0.8537  0.7669  0.8885  0.8699  0.8019  0.9021
#> 5    0.1094  0.0531  0.1510  0.0676  0.0588  0.1278  0.1154  0.0717  0.1579
#> 6    0.0312  0.0115  0.0698  0.0471  0.0024  0.0958  0.0231  0.0016  0.0397
#> 7    0.0104  0.0010  0.0396  0.0278  0.0000  0.0777  0.0000  0.0000  0.0086
#> 8                                                                          
#> 9                                                                          
#> 10      ALL                   MALES                 FEMALES                
#> 11      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 12  70.5938 69.6198 72.9552 70.7805 68.0342 72.5137 70.1694 69.0897 71.3545
#> 13   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 14   0.5729  0.3688  0.6271  0.5270  0.4325  0.6366  0.5484  0.4882  0.6745
#> 15   0.2344  0.1562  0.3260  0.2405  0.1727  0.2994  0.2250  0.1113  0.3237
#> 16   0.1771  0.1417  0.2760  0.1829  0.0912  0.2330  0.1774  0.1360  0.2868
#> 17   0.0417  0.0260  0.0563  0.0676  0.0391  0.1036  0.0231  0.0016  0.0398
#> 18   0.4062  0.3427  0.4875  1.0000  1.0000  1.0000  0.0000  0.0000  0.0000
#> 19   0.5938  0.5125  0.6573  0.0000  0.0000  0.0000  1.0000  1.0000  1.0000
#> 20   0.0312  0.0260  0.0417  0.0244  0.0138  0.0481  0.0488  0.0173  0.0847
#> 21   0.3177  0.2240  0.3375  0.5278  0.3721  0.6420  0.1290  0.0935  0.1731
#> 22   0.1146  0.0823  0.1688  0.1818  0.0742  0.2293  0.0692  0.0364  0.0854
#> 23   0.0625  0.0292  0.0719  0.1176  0.0321  0.1981  0.0526  0.0314  0.0912
#> 24   0.4948  0.4135  0.5750  0.1477  0.1018  0.2346  0.7097  0.6602  0.7456
#> 25   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 26   0.1198  0.0750  0.1719  0.1707  0.0930  0.2486  0.1463  0.0806  0.1744
#> 27                                                                         
#> 28                                                                         
#> 29      ALL                   MALES                 FEMALES                
#> 30      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 31   2.5729  2.5323  2.7302  2.4783  2.2714  2.5538  2.6167  2.4629  2.7099
#> 32   4.6146  4.4146  4.9052  4.4412  4.2014  5.0853  4.6810  4.4401  4.8432
#> 33   0.9167  0.8979  0.9531  0.9324  0.8853  0.9454  0.9138  0.8964  0.9494
#> 34   0.5260  0.4729  0.6271  0.5122  0.3456  0.6258  0.5593  0.4374  0.6587
#> 35   0.5990  0.5104  0.6427  0.4865  0.4013  0.5919  0.6271  0.5515  0.7075
#> 36   0.0729  0.0448  0.0969  0.0294  0.0043  0.0908  0.0593  0.0078  0.0863
#> 37   0.0208  0.0031  0.0615  0.0294  0.0115  0.0850  0.0177  0.0018  0.0688
#> 38   0.3385  0.2885  0.3781  0.4118  0.3780  0.5187  0.2389  0.1732  0.3109
#> 39   0.4271  0.3927  0.4917  0.4051  0.2773  0.4854  0.4336  0.3603  0.4633
#> 40   0.0156  0.0052  0.0344  0.0000  0.0000  0.0354  0.0484  0.0176  0.0869
#> 41   0.1927  0.1729  0.2479  0.2353  0.1390  0.3597  0.2258  0.1333  0.2683
#> 42   0.5260  0.4323  0.5927  0.4239  0.3058  0.5807  0.5615  0.3969  0.6655
#> 43   0.9792  0.9438  0.9938  0.9878  0.9437  1.0000  0.9823  0.9443  0.9900
#> 44                                                                         
#> 45                                                                         
#> 46      ALL                   MALES                 FEMALES                
#> 47      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 48   0.5052  0.4719  0.5667  0.4565  0.3181  0.5244  0.4951  0.4451  0.5483
#> 49   0.4271  0.3927  0.4917  0.4051  0.2773  0.4854  0.4336  0.3603  0.4633
#> 50   0.1094  0.0896  0.1708  0.0735  0.0445  0.1585  0.1532  0.0511  0.1892
#> 51   0.6094  0.5417  0.6896  0.5366  0.4325  0.5692  0.6408  0.6109  0.7207
#> 52   0.0469  0.0104  0.0854  0.0541  0.0134  0.0850  0.0813  0.0281  0.1467
#> 53   0.6458  0.5479  0.7260  0.5610  0.4560  0.6307  0.6846  0.6372  0.7845
#> 54   0.6562  0.5833  0.7365  0.6081  0.4948  0.7073  0.6903  0.6558  0.7733
#> 55   0.0156  0.0052  0.0344  0.0000  0.0000  0.0354  0.0484  0.0176  0.0869
#> 56   0.6354  0.5781  0.6844  0.6765  0.5661  0.7911  0.5776  0.5002  0.6180
#> 57   0.6615  0.6094  0.7406  0.6912  0.5874  0.8066  0.6452  0.5880  0.6778
#> 58   0.8229  0.7698  0.8885  0.7703  0.6984  0.9136  0.8615  0.7999  0.9179
#> 59   0.6354  0.5781  0.6844  0.6765  0.5661  0.7911  0.5776  0.5002  0.6180
#> 60   0.8750  0.8115  0.9281  0.8784  0.8040  0.9751  0.8692  0.8112  0.9290
#> 61   0.4010  0.3344  0.4708  0.4756  0.3953  0.5811  0.3398  0.2590  0.4045
#> 62   0.3958  0.3240  0.4708  0.4583  0.3931  0.5811  0.3204  0.2530  0.3843
#> 63                                                                         
#> 64                                                                         
#> 65      ALL                   MALES                 FEMALES                
#> 66      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 67   0.7552  0.7177  0.7948  0.7647  0.6990  0.9003  0.8154  0.7280  0.8870
#> 68   0.1875  0.1479  0.2094  0.1932  0.0997  0.2381  0.1154  0.0597  0.1850
#> 69   0.0260  0.0062  0.0542  0.0217  0.0000  0.0980  0.0308  0.0000  0.0575
#> 70                                                                         
#> 71                                                                         
#> 72      ALL                   MALES                 FEMALES                
#> 73      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 74   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 75   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 76   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 77   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 78   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 79   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 80   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 81   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 82   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 83   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 84   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 85   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 86   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 87   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 88   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 89   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 90   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 91   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 92   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 93   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 94   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 95   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 96   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 97   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 98   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 99   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 100  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 101  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 102  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 103                                                                        
#> 104                                                                        
#> 105     ALL                   MALES                 FEMALES                
#> 106     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 107  0.9688  0.9271  0.9865  0.9412  0.8946  0.9754  0.9912  0.9563  1.0000
#> 108  0.9948  0.9594  0.9948  0.9873  0.9401  1.0000  1.0000  0.9860  1.0000
#> 109  0.9948  0.9594  0.9948  0.9873  0.9401  1.0000  1.0000  0.9860  1.0000
#> 110  0.9583  0.9479  0.9740  0.9773  0.9401  1.0000  0.9741  0.8808  0.9984
#> 111  0.7396  0.7104  0.7812  0.7765  0.7026  0.8336  0.7097  0.5744  0.7671
#> 112  1.0000  0.9781  1.0000  1.0000  0.9644  1.0000  1.0000  1.0000  1.0000
#> 113  5.6510  5.5219  5.7062  5.6765  5.4098  5.7664  5.6228  5.5601  5.7348
#> 114  0.9688  0.9479  0.9885  0.9873  0.9401  1.0000  0.9914  0.9449  1.0000
#> 115  0.0104  0.0000  0.0427  0.0000  0.0000  0.0000  0.0086  0.0000  0.0551
#> 116  0.0052  0.0010  0.0406  0.0127  0.0000  0.0599  0.0000  0.0000  0.0000
#> 117  0.5938  0.5448  0.6635  0.5122  0.3710  0.6314  0.5825  0.4523  0.6833
#> 118  0.0990  0.0760  0.1375  0.1471  0.0860  0.2566  0.0923  0.0533  0.1566
#> 119                                                                        
#> 120                                                                        
#> 121     ALL                   MALES                 FEMALES                
#> 122     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 123 12.0156 10.5948 12.2219 11.3472  9.7589 12.1610 12.6525 12.2230 13.2469
#> 124  0.4792  0.3688  0.5240  0.3902  0.2981  0.5208  0.5167  0.4432  0.5698
#> 125  0.1979  0.1479  0.2490  0.1304  0.0523  0.1919  0.2119  0.1687  0.2680
#> 126                                                                        
#> 127                                                                        
#> 128     ALL                   MALES                 FEMALES                
#> 129     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 130  0.4583  0.3896  0.4844  0.3750  0.2917  0.4599  0.5439  0.3761  0.5680
#> 131  0.7742  0.6876  0.8564  0.6667  0.5352  0.8407  0.7973  0.6710  0.9697
#> 132  0.1429  0.0167  0.2649  0.0000  0.0000  0.4182  0.0909  0.0000  0.8667
#> 133  0.5000  0.2026  0.6583  0.3750  0.0909  0.8762  0.5000  0.0625  0.6627
#> 134  0.0741  0.0000  0.1549  0.0000  0.0000  0.0000  0.0625  0.0000  0.4188
#> 135  0.0714  0.0000  0.2444  0.3333  0.0738  0.6000  0.0000  0.0000  0.0000
#> 136  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 137  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 138  0.0000  0.0000  0.1214  0.0000  0.0000  0.0000  0.0000  0.0000  0.1705
#> 139  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 140  0.1154  0.0143  0.5727  0.1667  0.0000  0.3950  0.0909  0.0000  0.4933
#> 141  0.8750  0.8125  0.9177  0.8293  0.8052  0.9308  0.8793  0.8134  0.9373
#> 142  0.8061  0.7833  0.8969  0.6892  0.6370  0.7459  0.9100  0.7685  0.9383
#> 143  0.0571  0.0057  0.1393  0.0417  0.0000  0.4019  0.0625  0.0000  0.2747
#> 144  0.8611  0.7277  0.9342  0.8636  0.4700  0.9433  0.7083  0.5333  0.8482
#> 145  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 146  0.0286  0.0000  0.0971  0.1200  0.0083  0.1358  0.0000  0.0000  0.0000
#> 147  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 148  0.0476  0.0000  0.1102  0.0000  0.0000  0.0000  0.2000  0.0154  0.3111
#> 149  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 150  0.0000  0.0000  0.0457  0.0000  0.0000  0.0000  0.0000  0.0000  0.0967
#> 151  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 152  0.0208  0.0052  0.0469  0.0122  0.0000  0.0352  0.0177  0.0016  0.0525
#> 153  0.4167  0.3635  0.4990  0.4634  0.3720  0.5419  0.3097  0.2010  0.4463
#> 154  0.3073  0.2875  0.3990  0.2973  0.1669  0.3592  0.2966  0.1654  0.4372
#> 155                                                                        
#> 156                                                                        
#> 157     ALL                   MALES                 FEMALES                
#> 158     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 159  0.5677  0.4906  0.6021  0.6463  0.5490  0.7226  0.5000  0.3927  0.5944
#> 160  0.3333  0.2896  0.4344  0.4583  0.4148  0.5634  0.2833  0.2601  0.4487
#> 161  0.1146  0.0833  0.1771  0.1829  0.1455  0.3660  0.0462  0.0106  0.1336
#> 162  0.0208  0.0010  0.0385  0.0380  0.0000  0.0877  0.0081  0.0000  0.0191
#> 163  0.0573  0.0427  0.0823  0.0139  0.0000  0.0649  0.0763  0.0308  0.1625
#> 164  0.0000  0.0000  0.0146  0.0000  0.0000  0.0000  0.0000  0.0000  0.0440
#> 165  0.0104  0.0052  0.0375  0.0366  0.0051  0.0731  0.0000  0.0000  0.0000
#> 166  0.0208  0.0104  0.0312  0.0435  0.0000  0.0566  0.0083  0.0000  0.0336
#> 167  0.3333  0.2969  0.4188  0.3472  0.2381  0.4122  0.3390  0.2285  0.4038
#> 168  0.0208  0.0062  0.0312  0.0000  0.0000  0.0268  0.0081  0.0000  0.0140
#> 169                                                                        
#> 170                                                                        
#> 171     ALL                   MALES                 FEMALES                
#> 172     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 173  0.6094  0.5500  0.6427  0.5556  0.4953  0.6691  0.6210  0.5246  0.7100
#> 174  0.6979  0.6771  0.7500  0.6098  0.5089  0.7713  0.7542  0.6713  0.8157
#> 175  0.2396  0.1990  0.2771  0.2317  0.1271  0.2930  0.1935  0.1602  0.3152
#> 176  0.2344  0.1906  0.2750  0.2317  0.1271  0.2930  0.1864  0.1412  0.3012
#> 177                                                                        
#> 178                                                                        
#> 179     ALL                   MALES                 FEMALES                
#> 180     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 181  0.0312  0.0062  0.0573  0.0000  0.0000  0.0518  0.0244  0.0017  0.0697
#> 182  0.0417  0.0219  0.0688  0.0244  0.0000  0.0568  0.0431  0.0206  0.0759
#> 183  0.0260  0.0156  0.0490  0.0147  0.0000  0.0694  0.0259  0.0039  0.0454
#> 184                                                                        
#> 185                                                                        
#> 186     ALL                   MALES                 FEMALES                
#> 187     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 188  0.0268  0.0113  0.0358  0.0007  0.0001  0.0189  0.0341  0.0134  0.0919
#> 189  0.0246  0.0108  0.0357  0.0007  0.0001  0.0189  0.0290  0.0128  0.0864
#> 190  0.0001  0.0000  0.0083  0.0000  0.0000  0.0000  0.0008  0.0000  0.0090

The RAM-OP workflow in R using pipe operators

The oldr package functions were designed in such a way that they can be piped to each other to provide the desired output. Below we use the base R pipe operator |>.

Piped operation to get output estimates table

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_table(filename = file.path(tempdir(), "TEST"))

This results in a CSV file TEST.report.csv in the temporary directory

file.exists(file.path(tempdir(), "TEST.report.csv"))
#> [1] TRUE

with the following structure:

#>                                                                         X  X.1
#> 1                                                                  Survey     
#> 2                                                                             
#> 3                                                               INDICATOR TYPE
#> 4                                                    Respondent : SUBJECT    2
#> 5                                               Respondent : FAMILY CARER    2
#> 6                                                Respondent : OTHER CARER    2
#> 7                                                      Respondent : OTHER    2
#> 8                                                                             
#> 9                                                Demography and situation     
#> 10                                                                            
#> 11                                                              INDICATOR TYPE
#> 12                              Mean self-reported age of subject (years)    1
#> 13                              Self-reported age between 50 and 59 years    2
#> 14                              Self-reported age between 60 and 69 years    2
#> 15                              Self-reported age between 70 and 79 years    2
#> 16                              Self-reported age between 80 and 89 years    2
#> 17                                    Self-reported age 90 years or older    2
#> 18                                                             Sex : MALE    2
#> 19                                                           Sex : FEMALE    2
#> 20                                Marital status : SINGLE (NEVER MARRIED)    2
#> 21                                               Marital status : MARRIED    2
#> 22                                       Marital status : LIVING TOGETHER    2
#> 23                                              Marital status : DIVORCED    2
#> 24                                               Marital status : WIDOWED    2
#> 25                                                 Marital status : OTHER    2
#> 26                                                    Subject lives alone    2
#> 27                                                                            
#> 28                                                                   Diet     
#> 29                                                                            
#> 30                                                              INDICATOR TYPE
#> 31  Meal frequency (i.e. number of meals and snacks in previous 24 hours)    1
#> 32                          Dietary diversity (count from 11 food groups)    1
#> 33                                Consumed CEREALS (in previous 24 hours)    2
#> 34                         Consumed ROOTS / TUBERS (in previous 24 hours)    2
#> 35                    Consumed FRUITS / VEGETABLES (in previous 24 hours)    2
#> 36                                   Consumed MEAT (in previous 24 hours)    2
#> 37                                   Consumed EGGS (in previous 24 hours)    2
#> 38                                   Consumed FISH (in previous 24 hours)    2
#> 39                 Consumed LEGUMES / NUTS / SEEDS (in previous 24 hours)    2
#> 40                   Consumed MILK / MILK PRODUCTS (in previous 24 hours)    2
#> 41                                   Consumed FATS (in previous 24 hours)    2
#> 42                                 Consumed SUGARS (in previous 24 hours)    2
#> 43                                  Consumed OTHER (in previous 24 hours)    2
#> 44                                                                            
#> 45                                                              Nutrients     
#> 46                                                                            
#> 47                                                              INDICATOR TYPE
#> 48                                             PROTEIN rich foods in diet    2
#> 49                          Protein rich plant sources of protein in diet    2
#> 50                         Protein rich animal sources of protein in diet    2
#> 51                                     Plant sources of Vitamin A in diet    2
#> 52                                    Animal sources of Vitamin A in diet    2
#> 53                                                Any source of Vitamin A    2
#> 54                                                IRON rich foods in diet    2
#> 55                                             CALCIUM rich foods in diet    2
#> 56                                                ZINC rich foods in diet    2
#> 57                                          Vitamin B1 rich foods in diet    2
#> 58                                          Vitamin B2 rich foods in diet    2
#> 59                                          Vitamin B3 rich foods in diet    2
#> 60                                          Vitamin B6 rich foods in diet    2
#> 61                                         Vitamin B12 rich foods in diet    2
#> 62                     Vitamin B1 / B2 / B3 / B6 / B12 rich foods in diet    2
#> 63                                                                            
#> 64                                                          Food Security     
#> 65                                                                            
#> 66                                                              INDICATOR TYPE
#> 67                         Little or no hunger in household (HHS = 0 / 1)    2
#> 68                             Moderate hunger in household (HHS = 2 / 3)    2
#> 69                           Severe hunger in household (HHS = 4 / 5 / 6)    2
#> 70                                                                            
#> 71                                                        Disability (WG)     
#> 72                                                                            
#> 73                                                              INDICATOR TYPE
#> 74                                                     Vision : D0 : None    2
#> 75                                                      Vision : D1 : Any    2
#> 76                                       Vision : D2 : Moderate or severe    2
#> 77                                                   Vision : D3:  Severe    2
#> 78                                                    Hearing : D0 : None    2
#> 79                                                     Hearing : D1 : Any    2
#> 80                                      Hearing : D2 : Moderate or severe    2
#> 81                                                  Hearing : D3:  Severe    2
#> 82                                                   Mobility : D0 : None    2
#> 83                                                    Mobility : D1 : Any    2
#> 84                                     Mobility : D2 : Moderate or severe    2
#> 85                                                 Mobility : D3:  Severe    2
#> 86                                                Remembering : D0 : None    2
#> 87                                                 Remembering : D1 : Any    2
#> 88                                  Remembering : D2 : Moderate or severe    2
#> 89                                              Remembering : D3:  Severe    2
#> 90                                                  Self-care : D0 : None    2
#> 91                                                   Self-care : D1 : Any    2
#> 92                                    Self-care : D2 : Moderate or severe    2
#> 93                                                Self-care : D3:  Severe    2
#> 94                                              Communicating : D0 : None    2
#> 95                                               Communicating : D1 : Any    2
#> 96                                Communicating : D2 : Moderate or severe    2
#> 97                                            Communicating : D3:  Severe    2
#> 98                              No disability in Washington Group domains    2
#> 99                             At least 1 domain with any disability (P1)    2
#> 100             At least 1 domain with moderate or severe disability (P2)    2
#> 101                         At least 1 domain with severe disability (P3)    2
#> 102   Multiple disability : More than one domain with any disability (PM)    2
#> 103                                                                           
#> 104                                            Activities of daily living     
#> 105                                                                           
#> 106                                                             INDICATOR TYPE
#> 107                                                 Independent : Bathing    2
#> 108                                                Independent : Dressing    2
#> 109                                               Independent : Toileting    2
#> 110                                 Independent : Transferring (mobility)    2
#> 111                                              Independent : Continence    2
#> 112                                                 Independent : Feeding    2
#> 113                                                        Katz ADL score    1
#> 114                                    Independent (Katz ADL score = 5/6)    2
#> 115                             Partial dependency (Katz ADL score = 3/4)    2
#> 116                            Severe dependency (Katz ADL score = 0/1/2)    2
#> 117      Subject has someone to help them with activities of daily living    2
#> 118                     Subject has ADL needs (ADL < 6) but has no helper    2
#> 119                                                                           
#> 120                                                         Mental health     
#> 121                                                                           
#> 122                                                             INDICATOR TYPE
#> 123                                       K6 psychological distress score    1
#> 124                              Serious psychological distress (K6 > 12)    2
#> 125                                Probable dementia by brief CSID screen    2
#> 126                                                                           
#> 127                                                                Health     
#> 128                                                                           
#> 129                                                             INDICATOR TYPE
#> 130                        Long term disease requiring regular medication    2
#> 131   Takes medication for long term disease requiring regular medication    2
#> 132           Not taking drugs for long term disease : NO DRUGS AVAILABLE    2
#> 133     Not taking drugs for long term disease : TOO EXPENSIVE / NO MONEY    2
#> 134     Not taking drugs for long term disease : TOO OLD TO LOOK FOR CARE    2
#> 135  Not taking drugs for long term disease : USE OF TRADITIONAL MEDICINE    2
#> 136             Not taking drugs for long term disease : DRUGS DON'T HELP    2
#> 137            Not taking drugs for long term disease : NO-ONE TO HELP ME    2
#> 138                      Not taking drugs for long term disease : NO NEED    2
#> 139                        Not taking drugs for long term disease : OTHER    2
#> 140              Not taking drugs for long term disease : NO REASON GIVEN    2
#> 141                         Recent illness (i.e. in the previous 2 weeks)    2
#> 142                                      Accessed care for recent illness    2
#> 143            Not accessing care for recent illness : NO DRUGS AVAILABLE    2
#> 144      Not accessing care for recent illness : TOO EXPENSIVE / NO MONEY    2
#> 145      Not accessing care for recent illness : TOO OLD TO LOOK FOR CARE    2
#> 146   Not accessing care for recent illness : USE OF TRADITIONAL MEDICINE    2
#> 147              Not accessing care for recent illness : DRUGS DON'T HELP    2
#> 148             Not accessing care for recent illness : NO-ONE TO HELP ME    2
#> 149                       Not accessing care for recent illness : NO NEED    2
#> 150                         Not accessing care for recent illness : OTHER    2
#> 151               Not accessing care for recent illness : NO REASON GIVEN    2
#> 152                     Bilateral pitting oedema (may not be nutritional)    2
#> 153       Visual impairment (visual acuity < 6 / 12) by tumbling E method    2
#> 154                                   Problems chewing food (self-report)    2
#> 155                                                                           
#> 156                                                                Income     
#> 157                                                                           
#> 158                                                             INDICATOR TYPE
#> 159                                       Has a personal source of income    2
#> 160                  Source of income : Agriculture / fishing / livestock    2
#> 161                                     Source of income : Wages / salary    2
#> 162                   Source of income : Sale of charcoal / bricks / etc.    2
#> 163                      Source of income : Trading (e.g. market or shop)    2
#> 164                                        Source of income : Investments    2
#> 165                 Source of income : Spending savings / sales of assets    2
#> 166                                            Source of income : Charity    2
#> 167          Source of income : Cash transfer / social security / welfare    2
#> 168                          Source of income : Other source(s) of income    2
#> 169                                                                           
#> 170                                                                  WASH     
#> 171                                                                           
#> 172                                                             INDICATOR TYPE
#> 173                                     Improved source of drinking water    2
#> 174                                                   Safe drinking water    2
#> 175                                          Improved sanitation facility    2
#> 176                               Improved non-shared sanitation facility    2
#> 177                                                                           
#> 178                                                                Relief     
#> 179                                                                           
#> 180                                                             INDICATOR TYPE
#> 181                                  Previously screened (MUAC or oedema)    2
#> 182                                 Anyone in household receives a ration    2
#> 183                      Received non-food relief items in previous month    2
#> 184                                                                           
#> 185                                                         Anthropometry     
#> 186                                                                           
#> 187                                                             INDICATOR TYPE
#> 188                                       Global acute malnutrition : GAM    2
#> 189                                     Moderate acute malnutrition : MAM    2
#> 190                                       Severe acute malnutrition : SAM    2
#>          X.2      X.3      X.4      X.5      X.6      X.7      X.8      X.9
#> 1                                                                          
#> 2        ALL                      MALES                    FEMALES         
#> 3        EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 4    84.3750  79.6875  86.2500  83.5616  79.7967  90.3743  84.4828  77.9286
#> 5    11.4583   7.9167  14.2708   7.3171   2.6662  14.2226  13.6752   9.9969
#> 6     4.1667   0.7292   6.1458   5.8824   3.4884   8.6209   1.6667   0.0000
#> 7     1.0417   0.1042   2.5000   2.1978   0.2439   4.7407   0.8621   0.0000
#> 8                                                                          
#> 9                                                                          
#> 10       ALL                      MALES                    FEMALES         
#> 11       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 12   70.4792  70.0875  72.1906  70.8293  70.0312  72.8752  71.3661  70.1139
#> 13    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 14   53.6458  43.2292  58.5417  48.7500  42.2955  55.8747  51.2821  46.3793
#> 15   24.4792  19.2708  28.9583  26.5060  21.4205  32.9583  21.6667  14.9244
#> 16   17.7083  14.0625  25.8333  15.0685   9.3316  26.7646  24.1071  16.3030
#> 17    4.6875   2.0833   8.4375   3.8961   1.2108  11.7582   3.4483   0.0000
#> 18   42.7083  33.4375  54.0625 100.0000 100.0000 100.0000   0.0000   0.0000
#> 19   57.2917  45.9375  66.5625   0.0000   0.0000   0.0000 100.0000 100.0000
#> 20    4.1667   1.2500   6.5625   1.4706   0.0000   6.1258   3.4188   2.6047
#> 21   31.7708  25.5208  37.2917  50.6849  40.7973  59.4098  16.1017   8.6001
#> 22   10.4167   5.7292  15.0000  16.4384   8.3356  25.7792   6.3063   3.4483
#> 23    6.2500   3.7500  12.3958   8.7500   2.8998  18.8863   5.0847   0.8698
#> 24   45.3125  39.8958  56.1458  19.7531  11.0924  27.6291  70.2479  61.4802
#> 25    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 26   14.0625   9.5833  18.1250  17.2840   9.3316  24.3474   9.9099   7.0690
#> 27                                                                         
#> 28                                                                         
#> 29       ALL                      MALES                    FEMALES         
#> 30       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 31    2.5625   2.4437   2.7073   2.5926   2.2986   2.6895   2.6577   2.4653
#> 32    4.4792   4.3625   4.8083   4.4787   4.0865   4.9376   4.6942   4.5209
#> 33   92.1875  89.7917  98.3333  89.7059  83.6254  94.3748  93.2203  88.0000
#> 34   51.5625  46.6667  61.2500  44.1558  33.3957  61.0760  56.0345  48.0296
#> 35   57.2917  44.6875  65.9375  58.5366  39.4646  66.8449  59.4828  56.5104
#> 36    6.2500   2.9167   8.2292   5.8824   2.9570  10.2565   9.8214   1.9890
#> 37    1.5625   0.1042   3.9583   6.2500   1.6583   9.3734   0.8475   0.0000
#> 38   31.7708  28.2292  38.3333  44.6809  32.1605  49.7059  28.8288  23.4070
#> 39   40.1042  39.0625  45.0000  37.5000  28.4607  46.1618  41.3793  35.7966
#> 40    3.1250   0.6250   4.1667   0.0000   0.0000   2.4045   2.5862   1.0315
#> 41   20.8333  15.1042  22.2917  22.8916  17.0681  32.2549  20.8333  12.8487
#> 42   47.3958  43.9583  56.3542  48.9362  35.0130  53.3280  58.0357  44.8718
#> 43   96.3542  94.3750  98.8542  96.2963  94.4722 100.0000  97.4138  92.9453
#> 44                                                                         
#> 45                                                                         
#> 46       ALL                      MALES                    FEMALES         
#> 47       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 48   46.8750  43.8542  53.4375  45.0000  35.4489  56.0158  50.0000  40.2989
#> 49   40.1042  39.0625  45.0000  37.5000  28.4607  46.1618  41.3793  35.7966
#> 50   10.9375   6.3542  13.8542  13.2353   5.6943  22.0344  13.5593   6.8410
#> 51   59.8958  52.2917  65.0000  58.5366  47.3767  68.2811  62.9310  59.6523
#> 52    4.1667   2.2917   7.9167   6.2500   1.6583  11.7779   4.5045   1.2069
#> 53   62.5000  53.6458  67.0833  61.7284  48.4405  70.8938  65.8333  60.4187
#> 54   66.6667  61.3542  76.5625  62.6374  52.6049  68.9111  68.1034  63.2273
#> 55    3.1250   0.6250   4.1667   0.0000   0.0000   2.4045   2.5862   1.0315
#> 56   58.3333  56.1458  65.6250  67.5325  52.9815  75.6343  62.8099  49.6036
#> 57   63.5417  61.0417  67.6042  69.5122  56.4444  76.3572  66.3793  54.5766
#> 58   82.2917  79.4792  84.6875  79.1209  72.5679  85.4926  86.6071  75.0175
#> 59   58.3333  56.1458  65.6250  67.5325  52.9815  75.6343  62.8099  49.6036
#> 60   85.9375  82.2917  90.2083  86.8132  84.1605  93.6074  89.2562  77.3503
#> 61   37.5000  31.6667  44.4792  49.3506  39.1481  54.6168  36.2069  29.0026
#> 62   36.4583  31.5625  43.6458  49.3506  36.9012  51.4204  36.2069  28.1690
#> 63                                                                         
#> 64                                                                         
#> 65       ALL                      MALES                    FEMALES         
#> 66       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 67   76.0417  69.7917  85.2083  76.4706  65.5749  84.2881  76.0684  70.9661
#> 68   17.7083  11.8750  23.6458  20.0000  12.4363  28.2820  16.0714   8.7147
#> 69    2.0833   1.5625   3.1250   2.9412   1.1108   6.7140   3.3333   1.2315
#> 70                                                                         
#> 71                                                                         
#> 72       ALL                      MALES                    FEMALES         
#> 73       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 74  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 75    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 76    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 77    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 78  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 79    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 80    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 81    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 82  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 83    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 84    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 85    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 86  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 87    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 88    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 89    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 90  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 91    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 92    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 93    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 94  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 95    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 96    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 97    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 98  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 99    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 100   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 101   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 102   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 103                                                                        
#> 104                                                                        
#> 105      ALL                      MALES                    FEMALES         
#> 106      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 107  96.3542  94.3750  98.4375  96.2963  88.4502  99.7059  97.3214  95.0287
#> 108  98.4375  97.3958  99.4792  96.2963  92.2198 100.0000 100.0000  96.4865
#> 109  98.4375  97.3958  99.4792  96.2963  92.2198 100.0000 100.0000  96.4865
#> 110  96.3542  92.2917  98.7500  96.2963  90.6453 100.0000  94.6429  91.0579
#> 111  72.9167  69.6875  77.3958  79.0123  74.2845  85.1984  68.3333  62.5627
#> 112 100.0000  98.5417 100.0000  98.7013  93.5567 100.0000 100.0000 100.0000
#> 113   5.6302   5.5323   5.6844   5.6049   5.3423   5.8149   5.6198   5.5009
#> 114  97.3958  94.3750  98.9583  96.2963  92.2198 100.0000  96.5812  94.2715
#> 115   1.5625   0.1042   3.5417   0.0000   0.0000   0.0000   3.4188   0.1724
#> 116   1.0417   0.1042   2.5000   3.7037   0.0000   7.7802   0.0000   0.0000
#> 117  54.6875  48.9583  68.7500  56.2500  44.0185  69.1979  64.6552  46.9231
#> 118  11.9792   7.7083  14.0625  12.9870   6.3926  19.0462  10.7143   4.3103
#> 119                                                                        
#> 120                                                                        
#> 121      ALL                      MALES                    FEMALES         
#> 122      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 123  11.7917  10.9604  12.3812  11.9877  10.5406  12.3535  12.4380  11.0107
#> 124  47.3958  36.9792  50.7292  51.6484  38.8861  54.8115  49.5868  42.6219
#> 125  18.2292  13.3333  21.6667  21.9178  15.1793  30.4772  24.1379  16.1068
#> 126                                                                        
#> 127                                                                        
#> 128      ALL                      MALES                    FEMALES         
#> 129      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 130  42.7083  35.3125  50.7292  39.3617  24.4897  45.4945  49.1071  36.9938
#> 131  76.5432  69.9255  85.8000  72.7273  53.8095  86.7568  84.0000  69.5699
#> 132  24.0000   1.2500  40.6061  28.5714   0.0000  61.3333  12.5000   0.0000
#> 133  40.0000  19.8086  57.6431  44.4444  11.3333  79.6078  44.4444  35.2381
#> 134   8.0000   0.0000  32.6797   0.0000   0.0000   0.0000  23.8095  12.5000
#> 135   3.7037   0.0000  23.7500  16.6667   0.0000  50.0000   0.0000   0.0000
#> 136   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 137   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 138   0.0000   0.0000   7.4667   0.0000   0.0000   0.0000   0.0000   0.0000
#> 139   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 140  16.0000   0.7407  45.1675  14.2857   0.0000  39.3333   0.0000   0.0000
#> 141  85.9375  80.2083  90.9375  80.8824  76.1373  90.6294  89.8305  79.1379
#> 142  82.6087  75.9257  86.5794  77.6316  65.2870  80.8882  85.8586  82.4611
#> 143   9.3023   0.0000  24.2029   7.1429   0.0000  29.4154   7.1429   0.0000
#> 144  86.2069  72.0807  97.6744  85.7143  50.5231  94.3791  85.7143  60.8088
#> 145   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 146   0.0000   0.0000  10.6404   5.8824   0.0000  21.1888   0.0000   0.0000
#> 147   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 148   0.0000   0.0000  11.5987   0.0000   0.0000   0.0000   0.0000   0.0000
#> 149   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 150   0.0000   0.0000   3.4783   0.0000   0.0000   0.0000   0.0000   0.0000
#> 151   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 152   1.5625   1.0417   3.9583   0.0000   0.0000   3.9925   4.3103   1.0476
#> 153  39.0625  35.5208  49.7917  44.5783  35.5588  60.7343  38.8430  31.7514
#> 154  28.1250  19.0625  32.6042  25.9740  14.0349  34.0142  33.6207  26.2999
#> 155                                                                        
#> 156                                                                        
#> 157      ALL                      MALES                    FEMALES         
#> 158      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 159  56.2500  48.1250  61.1458  60.2740  48.3904  69.8061  53.3898  43.5181
#> 160  37.5000  31.5625  49.7917  45.0000  25.8145  52.0882  33.3333  19.1394
#> 161  13.0208   6.9792  16.5625  21.9512  13.4906  24.5453   5.3571   2.6731
#> 162   2.0833   1.1458   3.5417   5.1948   1.2378   8.3842   0.0000   0.0000
#> 163   4.6875   2.8125   7.9167   0.0000   0.0000   5.6815   9.8214   5.6255
#> 164   0.0000   0.0000   1.3542   0.0000   0.0000   0.0000   0.0000   0.0000
#> 165   1.5625   0.5208   4.0625   2.5000   0.2410   6.2907   0.0000   0.0000
#> 166   1.5625   0.7292   3.9583   1.4706   0.0000   7.0638   0.8621   0.0000
#> 167  33.8542  26.1458  36.5625  26.5060  16.4759  38.0828  36.6667  31.5525
#> 168   1.0417   0.1042   2.5000   2.1277   0.0000   3.9470   0.0000   0.0000
#> 169                                                                        
#> 170                                                                        
#> 171      ALL                      MALES                    FEMALES         
#> 172      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 173  62.5000  58.4375  66.8750  61.5385  54.2246  69.0073  60.3306  56.2458
#> 174  71.8750  66.8750  75.5208  65.8537  55.9436  75.4230  75.8621  67.2147
#> 175  27.0833  19.8958  30.2083  29.2683  21.2206  39.2762  23.9669  16.4933
#> 176  27.0833  18.5417  29.5833  29.2683  21.2206  39.2762  22.2222  14.1233
#> 177                                                                        
#> 178                                                                        
#> 179      ALL                      MALES                    FEMALES         
#> 180      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 181   3.1250   0.6250   4.5833   3.8961   0.0000   8.0568   4.3103   1.0230
#> 182   4.1667   3.1250   7.0833   6.0241   1.2818   7.6036   4.3103   0.6612
#> 183   2.6042   1.6667   4.1667   2.5000   0.0000   5.4594   2.5862   0.1786
#> 184                                                                        
#> 185                                                                        
#> 186      ALL                      MALES                    FEMALES         
#> 187      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 188   1.8130   1.0630   5.2885   0.3554   0.0563   1.1869   3.8523   1.4438
#> 189   1.6398   0.9404   5.2042   0.3553   0.0553   1.1868   3.8503   0.9093
#> 190   0.0697   0.0000   0.3752   0.0000   0.0000   0.0066   0.3502   0.0252
#>         X.10
#> 1           
#> 2           
#> 3        UCL
#> 4    87.8223
#> 5    16.7381
#> 6     4.7816
#> 7     2.5648
#> 8           
#> 9           
#> 10          
#> 11       UCL
#> 12   72.5655
#> 13    0.0000
#> 14   56.5198
#> 15   26.9906
#> 16   28.1640
#> 17    6.6839
#> 18    0.0000
#> 19  100.0000
#> 20    9.8023
#> 21   22.8767
#> 22    8.5632
#> 23    6.9109
#> 24   75.6897
#> 25    0.0000
#> 26   17.8974
#> 27          
#> 28          
#> 29          
#> 30       UCL
#> 31    2.8276
#> 32    4.8290
#> 33   97.4993
#> 34   64.7216
#> 35   69.1783
#> 36   15.4052
#> 37    4.0855
#> 38   36.2349
#> 39   54.7164
#> 40    5.2774
#> 41   25.3325
#> 42   62.5762
#> 43   99.8347
#> 44          
#> 45          
#> 46          
#> 47       UCL
#> 48   61.1273
#> 49   54.7164
#> 50   21.3492
#> 51   68.4500
#> 52    7.6252
#> 53   71.4900
#> 54   76.0232
#> 55    5.2774
#> 56   66.8742
#> 57   72.7320
#> 58   92.9443
#> 59   66.8742
#> 60   94.3236
#> 61   46.3680
#> 62   42.7966
#> 63          
#> 64          
#> 65          
#> 66       UCL
#> 67   84.8977
#> 68   22.7648
#> 69    6.9761
#> 70          
#> 71          
#> 72          
#> 73       UCL
#> 74  100.0000
#> 75    0.0000
#> 76    0.0000
#> 77    0.0000
#> 78  100.0000
#> 79    0.0000
#> 80    0.0000
#> 81    0.0000
#> 82  100.0000
#> 83    0.0000
#> 84    0.0000
#> 85    0.0000
#> 86  100.0000
#> 87    0.0000
#> 88    0.0000
#> 89    0.0000
#> 90  100.0000
#> 91    0.0000
#> 92    0.0000
#> 93    0.0000
#> 94  100.0000
#> 95    0.0000
#> 96    0.0000
#> 97    0.0000
#> 98  100.0000
#> 99    0.0000
#> 100   0.0000
#> 101   0.0000
#> 102   0.0000
#> 103         
#> 104         
#> 105         
#> 106      UCL
#> 107  99.8305
#> 108 100.0000
#> 109 100.0000
#> 110  99.6694
#> 111  75.3759
#> 112 100.0000
#> 113   5.6854
#> 114  99.8276
#> 115   5.7285
#> 116   0.0000
#> 117  77.8818
#> 118  17.6757
#> 119         
#> 120         
#> 121         
#> 122      UCL
#> 123  13.7706
#> 124  57.7069
#> 125  30.3897
#> 126         
#> 127         
#> 128         
#> 129      UCL
#> 130  53.8506
#> 131  86.7390
#> 132  40.9524
#> 133  72.5000
#> 134  42.2222
#> 135   0.0000
#> 136   0.0000
#> 137   0.0000
#> 138  10.0000
#> 139   0.0000
#> 140  25.0000
#> 141  92.1402
#> 142  90.0758
#> 143  23.5294
#> 144 100.0000
#> 145   0.0000
#> 146   0.0000
#> 147   0.0000
#> 148  23.1092
#> 149   0.0000
#> 150   5.7143
#> 151   0.0000
#> 152   8.0989
#> 153  46.4780
#> 154  43.8621
#> 155         
#> 156         
#> 157         
#> 158      UCL
#> 159  68.9369
#> 160  54.4020
#> 161  10.6999
#> 162   2.5690
#> 163  15.0196
#> 164   2.3153
#> 165   0.0000
#> 166   4.7143
#> 167  46.7599
#> 168   0.8874
#> 169         
#> 170         
#> 171         
#> 172      UCL
#> 173  68.8978
#> 174  79.8030
#> 175  28.2759
#> 176  27.2414
#> 177         
#> 178         
#> 179         
#> 180      UCL
#> 181   7.1217
#> 182   5.3958
#> 183   3.4366
#> 184         
#> 185         
#> 186         
#> 187      UCL
#> 188   6.6098
#> 189   5.9258
#> 190   1.0052

Piped operation to get output an HTML report

If the preferred output is a report with combined charts and tables of results, the following piped operations can be performed:

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_html(
    svy = testSVY, filename = file.path(tempdir(), "ramOPreport")
  )

which results in an HTML file saved in the specified output directory that looks something like this:

Example of a RAM-OP HTML report