5.2 Summary metrics

Pierre Denelle, Boris Leroy and Maxime Lenormand

2026-01-23

In this vignette, we describe two functions to compute summary metrics:

1 1. Terminology clarification

The bioregion is focused on bioregionalization, i.e. clustering of geographical areas on the basis of species data. However, there are several cases where species can also become part of the clustering (for example, in bipartite network clustering), which poses terminology issues.

To be conceptually accurate, we have chosen to name species clusters as ‘chorotypes’:

1.1 Possible cases of chorotypes

Clustering scenario Site clusters Species clusters Conceptual basis
Site-only clustering Bioregions Sites grouped by compositional similarity
Bipartite network clustering Bioregions Chorotypes (same cluster IDs) Sites and species grouped by shared network structure
Species-only clustering Chorotypes Species grouped by distributional similarity
Post-hoc species assignment Bioregions Chorotypes (derived) Species assigned to bioregions based on specificity/IndVal

1.1.1 Bipartite network clustering

In bipartite network clustering, both sites and species are assigned to the same clusters (network modules). A species assigned to cluster 1 belongs to the same bioregion as sites assigned to cluster 1. We use the term chorotype to refer to the set of species assigned to a given bioregion, but it is important to understand that:

In bipartite clustering, bioregion ID = chorotype ID. They are two perspectives on the same network partition: bioregion refers to the sites in a cluster, chorotype refers to the species in that same cluster.

1.1.2 Site-only clustering with post-hoc species assignment

Species can be secondarily assigned to bioregions based on metrics such as maximum specificity or IndVal. Here, chorotype refers to the group of species most strongly associated with a given bioregion. Unlike bipartite clustering, this assignment is derived rather than intrinsic to the clustering algorithm.

1.1.3 Species-only clustering

When clustering species directly (e.g., by distributional similarity), the resulting groups are true chorotypes in the regional sense (Fattorini, 2015): species with similar distributions within the study area.

2 2. Example data

We use the vegetation dataset included in the bioregion.

data("vegedf")
data("vegemat")

# Calculation of (dis)similarity matrices
vegedissim <- dissimilarity(vegemat, metric = c("Simpson"))
vegesim <- dissimilarity_to_similarity(vegedissim)

3 3. Bioregionalization

We use the same three bioregionalization algorithms as in the visualization vignette, i.e., non-hierarchical, hierarchical, and network bioregionalizations. In addition, we include a network bioregionalization algorithm based on a bipartite network, which assigns clusters to both sites and species. We chose three bioregions for the non-hierarchical and hierarchical bioregionalizations.

# Non hierarchical bioregionalization
vege_nhclu <- nhclu_kmeans(vegedissim, 
                           n_clust = 3, 
                           index = "Simpson",
                           seed = 1)
vege_nhclu$cluster_info 
##     partition_name n_clust
## K_3            K_3       3
# Hierarchical bioregionalization
set.seed(1)
vege_hclu <- hclu_hierarclust(dissimilarity = vegedissim,
                              index = "Simpson",
                              method = "average", 
                              n_clust = 3,
                              optimal_tree_method = "best",
                              verbose = FALSE)
vege_hclu$cluster_info
##   partition_name n_clust requested_n_clust output_cut_height
## 1            K_3       3                 3            0.5625
# Network bioregionalization
set.seed(1)
vege_netclu <- netclu_walktrap(vegesim,
                               index = "Simpson")
vege_netclu$cluster_info 
##     partition_name n_clust
## K_3            K_3       3
# Bipartite network bioregionalization
install_binaries(verbose = FALSE)
vege_netclubip <- netclu_infomap(vegedf,
                                 seed = 1, 
                                 bipartite = TRUE)
vege_netclubip$cluster_info
##     partition_name n_clust
## K_8            K_8       8

4 4. Metric components

Before diving into specific metrics, we can understand the core terms using a simple example. Consider a study area with 4 sites and 4 species, where sites have been assigned to 2 bioregions.

4.1 4.1 Species-derived metrics

The following diagram shows the site-species matrix where sites are grouped by bioregion. Marginal sums give us all the core terms needed to compute metrics:

                          Species
                   sp1   sp2   sp3   sp4      n_b 
                 ┌─────┬─────┬─────┬─────┐
          Site A │  1  │  1  │  ·  │  ·  │
     B1   ───────┼─────┼─────┼─────┼─────┤     2
          Site B │  1  │  1  │  1  │  ·  │
 Bioregion ══════╪═════╪═════╪═════╪═════╪══════
          Site C │  ·  │  1  │  1  │  1  │
     B2   ───────┼─────┼─────┼─────┼─────┤     2
          Site D │  ·  │  ·  │  1  │  1  │
                 └─────┴─────┴─────┴─────┘
                  
     n_sb            sp1   sp2   sp3   sp4     n_b
   (per bioregion) ┌─────┬─────┬─────┬─────┐
              B1   │  2  │  2  │  1  │  0  │   2
                   ├─────┼─────┼─────┼─────┤
              B2   │  0  │  1  │  2  │  2  │   2
                   └─────┴─────┴─────┴─────┘
     n_s (total)      2     3     3     2      n = 4
     K_s (# bioreg)   1     2     2     1      K = 2
Term Meaning Where to find it
\(n\) Total number of sites Bottom-right corner (4)
\(K\) Total number of bioregions Bottom-right corner (2)
\(n_b\) Sites in bioregion \(b\) Right margin per bioregion row
\(n_s\) Sites where species \(s\) occurs Bottom margin per species column
\(K_s\) Number of bioregions where species \(s\) occurs Bottom margin \(n_s\)
\(n_{sb}\) Sites in bioregion \(b\) with species \(s\) The \(n_{sb}\) summary table

4.1.1 Examples of calculations

From the \(n_{sb}\) table, all species-per-bioregion metrics follow directly:

Specificity (fraction of species’ occurrences in a bioregion): \[A_{sp1,B1} = \frac{n_{sp1,B1}}{n_{sp1}} = \frac{2}{2} = 1.00 \quad \text{(sp1 is exclusive to B1)}\] \[A_{sp2,B1} = \frac{n_{sp2,B1}}{n_{sp2}} = \frac{2}{3} = 0.67 \quad \text{(sp2 mostly in B1)}\]

Fidelity (fraction of bioregion’s sites with the species): \[B_{sp2,B1} = \frac{n_{sp2,B1}}{n_{B1}} = \frac{2}{2} = 1.00 \quad \text{(sp2 in all B1 sites)}\] \[B_{sp3,B1} = \frac{n_{sp3,B1}}{n_{B1}} = \frac{1}{2} = 0.50 \quad \text{(sp3 in half of B1)}\]

IndVal (indicator value = Specificity × Fidelity): \[IndVal_{sp1,B1} = 1.00 \times 1.00 = 1.00 \quad \text{(perfect indicator of B1)}\] \[IndVal_{sp2,B1} = 0.67 \times 1.00 = 0.67\]

4.2 4.2 Site-derived metrics

The following diagram shows the same site-species matrix, but now species are grouped by cluster (chorotype). We compute how many species from each cluster occur in each site:

                                Chorotypes 
                        ┌─── C1 ───┐ ┌─── C2 ───┐
                          sp1   sp2   sp3   sp4
                        ┌─────┬─────┬─────┬─────┐
                 Site A │  1  │  1  │  ·  │  ·  │  2
                        ├─────┼─────┼─────┼─────┤
   Sites         Site B │  1  │  1  │  1  │  ·  │  3
                        ├─────┼─────┼─────┼─────┤
                 Site C │  ·  │  1  │  1  │  1  │  3
                        ├─────┼─────┼─────┼─────┤
                 Site D │  ·  │  ·  │  1  │  1  │  2
                        └─────┴─────┴─────┴─────┘
                  n_c          2           2         n = 4
                  
       n_gc                C1      C2          n_g
     (per cluster)     ┌───────┬───────┐
                Site A │   2   │   0   │        2
                       ├───────┼───────┤
                Site B │   2   │   1   │        3
                       ├───────┼───────┤
                Site C │   1   │   2   │        3
                       ├───────┼───────┤
                Site D │   0   │   2   │        2
                       └───────┴───────┘
     n_c                   2       2           n = 4
Term Meaning Where to find it
\(n\) Total number of species Bottom-right corner (4)
\(n_c\) Species in cluster \(c\) Bottom margin per cluster
\(n_g\) Species present in site \(g\) Right margin per site row
\(n_{gc}\) Species from cluster \(c\) present in site \(g\) The \(n_{gc}\) summary table

NOTE: in bipartite clustering, bioregion and chorotypes can be the exact same clusters. Nevertheless, we use different terms here to avoid confusion in the calculation of metrics.

4.2.1 Examples of calculations

Specificity of Site A for C1 (fraction of site’s species belonging to C1): \[A_{A,C1} = \frac{n_{A,C1}}{n_A} = \frac{2}{2} = 1.00 \quad \text{(Site A has only C1 species)}\]

Specificity of Site B for C1: \[A_{B,C1} = \frac{n_{B,C1}}{n_B} = \frac{2}{3} = 0.67 \quad \text{(Site B mostly has C1 species)}\]

Fidelity of Site A for C1 (fraction of C1 species present in Site A): \[B_{A,C1} = \frac{n_{A,C1}}{n_C1} = \frac{2}{2} = 1.00 \quad \text{(Site A has all C1 species)}\]

Fidelity of Site C for C1: \[B_{C,C1} = \frac{n_{C,C1}}{n_{C1}} = \frac{1}{2} = 0.50 \quad \text{(Site C has half of C1 species)}\]

5 5. List of site/species metrics included in the package

5.1 Metrics per cluster

5.1.1 When clusters are assigned to sites (cluster_on = "site" or cluster_on = "both")

Metric Entity Cluster type Based on Occ Ab Formula (occurrence) Interpretation
Specificity Species Bioregion Co-occurrence \(A_{sb} = \frac{n_{sb}}{n_s}\) Fraction of species’ occurrences in bioregion
NSpecificity Species Bioregion Co-occurrence \(\bar{A}_{sb} = \frac{n_{sb}/n_b}{\sum_k n_{sk}/n_k}\) Size-normalized specificity
Fidelity Species Bioregion Co-occurrence \(B_{sb} = \frac{n_{sb}}{n_b}\) Fraction of bioregion’s sites with species
IndVal Species Bioregion Co-occurrence \(A_{sb} \times B_{sb}\) Indicator value (specificity × fidelity)
NIndVal Species Bioregion Co-occurrence \(\bar{A}_{sb} \times B_{sb}\) Size-normalized indicator value
Rho Species Bioregion Co-occurrence See section 7.1.1 Standardized contribution index
CoreTerms Species Bioregion Co-occurrence \(n\), \(n_b\), \(n_s\), \(n_{sb}\) Raw counts for custom calculations
Richness Site Co-occurrence \(S_g = n_g\) Number of species
Rich_Endemics Site Bioregion Co-occurrence \(E_g = \sum{K_s}\) Number of endemic species in the site (i.e., species occurring in only one bioregion)
Prop_Endemics Site Bioregion Co-occurrence \(\bar{PctEnd}_{g} = \frac{E_g}{S_g}\) Proportion of endemic species in the site
MeanSim Site Bioregion Similarity \(\frac{1}{n_b - \delta} \sum_{g' \neq g} sim_{gg'}\) Mean similarity to bioregion
SdSim Site Bioregion Similarity See section 7.2.1 SD of similarity to bioregion

5.1.2 When clusters are assigned to species (cluster_on = "species" or cluster_on = "both")

Metric Entity Cluster type Based on Occ Ab Formula (occurrence) Interpretation
Specificity Site Chorotype Co-occurrence \(A_{gc} = \frac{n_{gc}}{n_g}\) Fraction of site’s species in cluster
NSpecificity Site Chorotype Co-occurrence \(\bar{A}_{gc} = \frac{n_{gc}/n_c}{\sum_k n_{gk}/n_k}\) Size-normalized specificity
Fidelity Site Chorotype Co-occurrence \(B_{gc} = \frac{n_{gc}}{n_c}\) Fraction of cluster’s species in site
IndVal Site Chorotype Co-occurrence \(A_{gc} \times B_{gc}\) Indicator value (specificity × fidelity)
NIndVal Site Chorotype Co-occurrence \(\bar{A}_{gc} \times B_{gc}\) Size-normalized indicator value
Rho Site Chorotype Co-occurrence See section 7.2.2 Standardized contribution index
CoreTerms Site Chorotype Co-occurrence \(n\), \(n_c\), \(n_g\), \(n_{gc}\) Raw counts for custom calculations

5.2 Metrics in bioregionalization/clustering

These metrics summarize how an entity is distributed across all clusters, rather than in relation to each individual cluster.

5.2.1 When cluster_on = "site" (or "both")

Metric Entity Based on Occ Ab Formula Interpretation
P Species Co-occurrence \(1 - \sum_k \left(\frac{n_{sk}}{n_s}\right)^2\) Evenness of species across bioregions (0–1)
Silhouette Site Similarity \(\frac{a_g - b_g}{\max(a_g, b_g)}\) Fit to assigned vs. nearest bioregion

5.2.2 When cluster_on = "species" (or "both")

Metric Entity Based on Occ Ab Formula Interpretation
P Site Co-occurrence \(1 - \sum_k \left(\frac{n_{gk}}{n_g}\right)^2\) Evenness of site across chorotypes (0–1)

6 6. Usage

This section demonstrates how to use site_species_metrics() with all metrics computed for both sites and species. This is only possible in a bipartite network clustering, where both sites and species receive clusters simultaneously.

For this example, we will use the bipartite network bioregionalization from section 3, where both sites and species are assigned to the same clusters. We compute all available metrics for both sites and species.

all_metrics <- site_species_metrics(
  bioregionalization = vege_netclubip,
  bioregion_metrics = c("Specificity", "NSpecificity", "Fidelity", 
                        "IndVal", "NIndVal", "Rho", "CoreTerms",
                        "Richness", "Rich_Endemics", "Prop_Endemics",
                        "MeanSim", "SdSim"), # You can also simply write "all"
  bioregionalization_metrics = c("P", "Silhouette"),
  data_type = "both",
  cluster_on = "both",
  comat = vegemat,
  similarity = vegesim,
  index = "Simpson",
  verbose = FALSE)

Typing the name of the object in the console calls print(), which provides a concise overview of the output, including the settings used, a preview of available metrics, and instructions for accessing the data.

all_metrics
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: sites and species 
##  - Clustering data type: abundance 
##  - Metric data type: occurrence and abundance 
## 
## Computed metrics:
##  - Per-cluster co-occurrence metrics (occurrence): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
##  - Per-cluster co-occurrence metrics (abundance): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
##  - Per-cluster richness & endemism metrics: Richness, Rich_Endemics, Prop_Endemics 
##  - Per-cluster similarity-based metrics: MeanSim, SdSim 
##  - Bioregionalization co-occurrence metrics (occurrence): P 
##  - Bioregionalization co-occurrence metrics (abundance): P 
##  - Bioregionalization similarity-based metrics: Silhouette 
## 
## Data preview:
## $species_bioregions (29576 rows x 20 cols):
##  Species Bioregion n_sb n_s n_b Specificity_occ NSpecificity_occ Fidelity_occ
##    10017         1  392 551 515           0.711            0.148        0.761
##    10017         2   86 551  92           0.156            0.182        0.935
##    10017         3   68 551  75           0.123            0.176        0.907
##  IndVal_occ NIndVal_occ Rho_occ w_sb   w_s     w_b Specificity_abund
##       0.542       0.113  -0.965 4545 10660 2831323             0.426
##       0.146       0.170   4.009 5349 10660 1136829             0.502
##       0.112       0.160   2.960  733 10660  137186             0.069
##  NSpecificity_abund Fidelity_abund IndVal_abund NIndVal_abund Rho_abund
##               0.082          0.002        0.325         0.063    -9.237
##               0.542          0.005        0.469         0.507    15.718
##               0.091          0.005        0.062         0.083    -1.663
## # ... with 29573 more rows
## 
## $species_bioregionalization (3697 rows x 3 cols):
##  Species P_occ P_abund
##    10017 0.454   0.562
##    10024 0.463   0.504
##    10034 0.493   0.264
## # ... with 3694 more rows
## 
## $site_chorotypes (5720 rows x 20 cols):
##  Site Chorotypes n_gc n_g  n_c Specificity_occ NSpecificity_occ Fidelity_occ
##    35          1    1 129 2219           0.008            0.003        0.000
##    35          2  121 129  873           0.938            0.892        0.139
##    35          3    7 129  430           0.054            0.105        0.016
##  IndVal_occ NIndVal_occ Rho_occ w_gc w_g     w_c Specificity_abund
##       0.000       0.000 -13.981    1 423 2873216             0.002
##       0.130       0.124  19.103  411 423 1149003             0.972
##       0.001       0.002  -2.237   11 423  103264             0.026
##  NSpecificity_abund Fidelity_abund IndVal_abund NIndVal_abund Rho_abund
##               0.001              0        0.000         0.000    -7.973
##               0.948              0        0.135         0.131    11.313
##               0.051              0        0.000         0.001    -1.840
## # ... with 5717 more rows
## 
## $site_chorological (715 rows x 3 cols):
##  Site P_occ P_abund
##    35 0.117   0.055
##    36 0.465   0.199
##    37 0.350   0.082
## # ... with 712 more rows
## 
## $site_bioregions (5720 rows x 7 cols):
##  Site Bioregion Richness Rich_Endemics Prop_Endemics MeanSim SdSim
##    35         1      129             0         0.000   0.116 0.123
##    35         2      129             2         0.016   0.809 0.179
##    35         3      129             0         0.000   0.264 0.189
## # ... with 5717 more rows
## 
## $site_bioregionalization (715 rows x 2 cols):
##  Site Silhouette
##    35      0.540
##    36      0.379
##    37      0.511
## # ... with 712 more rows
## 
## Access data with:
##   your_object$species_bioregions
##   your_object$species_bioregionalization
##   your_object$site_chorotypes
##   your_object$site_chorological
##   your_object$site_bioregions
##   your_object$site_bioregionalization

You can also run summary() oçn the object to quickly see a statistical summary for each output table, including the number of rows and summary statistics for numeric columns.

summary(all_metrics)
## 
## Summary of site and species metrics
## ===================================
## 
## Settings:
##  - Number of partitions: 1 
##  - Cluster based on: sites and species 
##  - Clustering data type: abundance 
##  - Metric data type: occurrence and abundance 
## 
## Partition 1: Single partition (8 bioregions, 8 chorotypes)
## ---------------------------------------------------------- 
## 
## Species-per-bioregion metrics ($species_bioregions):
##              Metric      Min      Mean        Median         Max
##                n_sb    0.000     0.000     0.0000000     500.000
##                 n_s    1.000    72.000    72.0000000     671.000
##                 n_b    1.000    15.000    15.0000000     515.000
##     Specificity_occ    0.000     0.000     0.0000000       1.000
##    NSpecificity_occ    0.000     0.000     0.0000000       1.000
##        Fidelity_occ    0.000     0.000     0.0000000       1.000
##          IndVal_occ    0.000     0.000     0.0000000       0.844
##         NIndVal_occ    0.000     0.000     0.0000000       0.996
##             Rho_occ  -18.940    -0.335    -0.3346268      24.233
##                w_sb    0.000     0.000     0.0000000   22716.000
##                 w_s    1.000   422.000   422.0000000   27353.000
##                 w_b 5558.000 55402.000 55402.0000000 2831323.000
##   Specificity_abund    0.000     0.000     0.0000000       1.000
##  NSpecificity_abund    0.000     0.000     0.0000000       1.000
##      Fidelity_abund    0.000     0.000     0.0000000       0.161
##        IndVal_abund    0.000     0.000     0.0000000       0.973
##       NIndVal_abund    0.000     0.000     0.0000000       1.000
##           Rho_abund  -12.483    -0.239    -0.2393045      26.693
## 
## Top species by IndVal_occ:
##   1. 12553 (Bioregion 2): 0.844
##   2. 12749 (Bioregion 1): 0.841
##   3. 11513 (Bioregion 1): 0.841
##   4. 11285 (Bioregion 2): 0.838
##   5. 13550 (Bioregion 2): 0.837
## 
## Species summary metrics ($species_bioregionalization):
##   Metric Min  Mean Median   Max
##    P_occ   0 0.269  0.246 0.719
##  P_abund   0 0.216  0.159 0.739
## 
## Site-per-chorotype metrics ($site_chorotypes):
##              Metric      Min       Mean    Median         Max
##                n_gc    0.000     80.573     1.000    1091.000
##                 n_g    1.000    644.585   673.000    1221.000
##                 n_c    3.000    462.125    76.500    2219.000
##     Specificity_occ    0.000      0.125     0.002       1.000
##    NSpecificity_occ    0.000      0.125     0.028       1.000
##        Fidelity_occ    0.000      0.091     0.015       1.000
##          IndVal_occ    0.000      0.032     0.000       0.524
##         NIndVal_occ    0.000      0.033     0.000       0.661
##             Rho_occ  -27.165     -0.927    -1.144      39.347
##                w_gc    0.000    741.633     3.000   38926.000
##                 w_g    1.000   5933.064  4012.000   43753.000
##                 w_c 2942.000 530267.625 50655.500 2873216.000
##   Specificity_abund    0.000      0.125     0.001       1.000
##  NSpecificity_abund    0.000      0.125     0.010       1.000
##      Fidelity_abund    0.000      0.001     0.000       0.496
##        IndVal_abund    0.000      0.034     0.000       0.701
##       NIndVal_abund    0.000      0.036     0.000       0.991
##           Rho_abund  -20.999     -0.462    -0.777      43.653
## 
## Top sites by IndVal_occ:
##   1. 238 (Chorotype 2): 0.524
##   2. 433 (Chorotype 2): 0.522
##   3. 286 (Chorotype 2): 0.497
##   4. 86 (Chorotype 2): 0.488
##   5. 384 (Chorotype 2): 0.482
## 
## Site chorological summary metrics ($site_chorological):
##   Metric Min  Mean Median   Max
##    P_occ   0 0.294  0.244 0.668
##  P_abund   0 0.254  0.196 0.668
## 
## Site-per-bioregion metrics ($site_bioregions):
##         Metric Min    Mean  Median      Max
##       Richness   1 644.585 673.000 1221.000
##  Rich_Endemics   0   1.185   0.000   71.000
##  Prop_Endemics   0   0.002   0.000    0.156
##        MeanSim   0   0.439   0.452    1.000
##          SdSim   0   0.059   0.037    0.500
## 
## Site summary metrics ($site_bioregionalization):
##      Metric Min  Mean Median   Max
##  Silhouette  -1 -0.02 -0.029 0.789

We can see it also displays the top sites or species for IndVal for a convenient quick look at our clustering structure.

You can also use str() to display the internal structure of the object, showing the settings and the dimensions and column types of each data frame component.

str(all_metrics)
## bioregion.site.species.metrics object
##  - Partitions: 1 
##  - Cluster based on: sites and species 
##  - Clustering data type: abundance 
##  - Metric data type: occurrence and abundance 
##  - Per-cluster co-occurrence metrics (occurrence): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
##  - Per-cluster co-occurrence metrics (abundance): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
##  - Per-cluster richness & endemism metrics: Richness, Rich_Endemics, Prop_Endemics 
##  - Per-cluster similarity-based metrics: MeanSim, SdSim 
##  - Bioregionalization co-occurrence metrics (occurrence): P 
##  - Bioregionalization co-occurrence metrics (abundance): P 
##  - Bioregionalization similarity-based metrics: Silhouette 
## 
## List of 6
##  $ species_bioregions        :'data.frame':  29576 obs. of  20 variables:
##   ..$ Species           : chr [1:29576] "10017" "10017" "10017" "10017" ...
##   ..$ Bioregion         : chr [1:29576] "1" "2" "3" "4" ...
##   ..$ n_sb              : num [1:29576] 392 86 68 1 2 1 0 1 153 74 ...
##   ..$ n_s               : num [1:29576] 551 551 551 551 551 551 551 551 232 232 ...
##   ..$ n_b               : int [1:29576] 515 92 75 26 4 1 1 1 515 92 ...
##   ..$ Specificity_occ   : num [1:29576] 0.71143 0.15608 0.12341 0.00181 0.00363 ...
##   ..$ NSpecificity_occ  : num [1:29576] 0.14806 0.18183 0.17636 0.00748 0.09726 ...
##   ..$ Fidelity_occ      : num [1:29576] 0.7612 0.9348 0.9067 0.0385 0.5 ...
##   ..$ IndVal_occ        : num [1:29576] 5.42e-01 1.46e-01 1.12e-01 6.98e-05 1.81e-03 ...
##   ..$ NIndVal_occ       : num [1:29576] 0.112695 0.169968 0.159897 0.000288 0.048628 ...
##   ..$ Rho_occ           : num [1:29576] -0.965 4.009 2.96 -9.04 -1.29 ...
##   ..$ w_sb              : int [1:29576] 4545 5349 733 1 2 18 0 12 3781 3549 ...
##   ..$ w_s               : int [1:29576] 10660 10660 10660 10660 10660 10660 10660 10660 7361 7361 ...
##   ..$ w_b               : int [1:29576] 2831323 1136829 137186 83829 26975 12303 8138 5558 2831323 1136829 ...
##   ..$ Specificity_abund : num [1:29576] 4.26e-01 5.02e-01 6.88e-02 9.38e-05 1.88e-04 ...
##   ..$ NSpecificity_abund: num [1:29576] 0.082265 0.541967 0.091103 0.000359 0.004661 ...
##   ..$ Fidelity_abund    : num [1:29576] 1.61e-03 4.71e-03 5.34e-03 1.19e-05 7.41e-05 ...
##   ..$ IndVal_abund      : num [1:29576] 3.25e-01 4.69e-01 6.23e-02 3.61e-06 9.38e-05 ...
##   ..$ NIndVal_abund     : num [1:29576] 6.26e-02 5.07e-01 8.26e-02 1.38e-05 2.33e-03 ...
##   ..$ Rho_abund         : num [1:29576] -9.24 15.72 -1.66 -2.73 -1.02 ...
##  $ species_bioregionalization:'data.frame':  3697 obs. of  3 variables:
##   ..$ Species: chr [1:3697] "10017" "10024" "10034" "10035" ...
##   ..$ P_occ  : num [1:3697] 0.4542 0.4631 0.4929 0.0588 0.3132 ...
##   ..$ P_abund: num [1:3697] 0.5617 0.5037 0.26396 0.00308 0.05098 ...
##  $ site_chorotypes           :'data.frame':  5720 obs. of  20 variables:
##   ..$ Site              : chr [1:5720] "35" "35" "35" "35" ...
##   ..$ Chorotypes        : chr [1:5720] "1" "2" "3" "4" ...
##   ..$ n_gc              : num [1:5720] 1 121 7 0 0 0 0 0 241 585 ...
##   ..$ n_g               : num [1:5720] 129 129 129 129 129 129 129 129 867 867 ...
##   ..$ n_c               : int [1:5720] 2219 873 430 137 16 16 3 3 2219 873 ...
##   ..$ Specificity_occ   : num [1:5720] 0.00775 0.93798 0.05426 0 0 ...
##   ..$ NSpecificity_occ  : num [1:5720] 0.0029 0.8923 0.1048 0 0 ...
##   ..$ Fidelity_occ      : num [1:5720] 0.000451 0.138603 0.016279 0 0 ...
##   ..$ IndVal_occ        : num [1:5720] 3.49e-06 1.30e-01 8.83e-04 0.00 0.00 ...
##   ..$ NIndVal_occ       : num [1:5720] 1.31e-06 1.24e-01 1.71e-03 0.00 0.00 ...
##   ..$ Rho_occ           : num [1:5720] -13.981 19.103 -2.237 -2.268 -0.762 ...
##   ..$ w_gc              : int [1:5720] 1 411 11 0 0 0 0 0 4139 38926 ...
##   ..$ w_g               : int [1:5720] 423 423 423 423 423 423 423 423 43753 43753 ...
##   ..$ w_c               : int [1:5720] 2873216 1149003 103264 85285 16026 9049 3356 2942 2873216 1149003 ...
##   ..$ Specificity_abund : num [1:5720] 0.00236 0.97163 0.026 0 0 ...
##   ..$ NSpecificity_abund: num [1:5720] 0.000907 0.947603 0.05149 0 0 ...
##   ..$ Fidelity_abund    : num [1:5720] 3.48e-07 3.58e-04 1.07e-04 0.00 0.00 ...
##   ..$ IndVal_abund      : num [1:5720] 1.07e-06 1.35e-01 4.23e-04 0.00 0.00 ...
##   ..$ NIndVal_abund     : num [1:5720] 4.09e-07 1.31e-01 8.38e-04 0.00 0.00 ...
##   ..$ Rho_abund         : num [1:5720] -7.973 11.313 -1.84 -1.282 -0.431 ...
##  $ site_chorological         :'data.frame':  715 obs. of  3 variables:
##   ..$ Site   : chr [1:715] "35" "36" "37" "38" ...
##   ..$ P_occ  : num [1:715] 0.117 0.465 0.35 0.293 0.387 ...
##   ..$ P_abund: num [1:715] 0.0553 0.1993 0.0825 0.0694 0.1883 ...
##  $ site_bioregions           :'data.frame':  5720 obs. of  7 variables:
##   ..$ Site         : chr [1:5720] "35" "35" "35" "35" ...
##   ..$ Bioregion    : chr [1:5720] "1" "2" "3" "4" ...
##   ..$ Richness     : num [1:5720] 129 129 129 129 129 129 129 129 867 867 ...
##   ..$ Rich_Endemics: num [1:5720] 0 2 0 0 0 0 0 0 0 43 ...
##   ..$ Prop_Endemics: num [1:5720] 0 0.0155 0 0 0 ...
##   ..$ MeanSim      : num [1:5720] 0.1156 0.8088 0.2635 0.0143 0.0291 ...
##   ..$ SdSim        : num [1:5720] 0.12299 0.17917 0.18876 0.01273 0.00742 ...
##  $ site_bioregionalization   :'data.frame':  715 obs. of  2 variables:
##   ..$ Site      : chr [1:715] "35" "36" "37" "38" ...
##   ..$ Silhouette: num [1:715] 0.54 0.379 0.511 0.541 0.433 ...
##  - attr(*, "n_partitions")= num 1
##  - attr(*, "cluster_on")= chr "both"
##  - attr(*, "clustering_data_type")= chr "abundance"
##  - attr(*, "index_data_type")= chr "both"
##  - attr(*, "has_similarity")= logi TRUE
##  - attr(*, "has_comat")= logi TRUE
##  - attr(*, "bioregion_metrics_occ")= chr [1:7] "Specificity" "NSpecificity" "Fidelity" "IndVal" ...
##  - attr(*, "bioregion_metrics_abd")= chr [1:7] "Specificity" "NSpecificity" "Fidelity" "IndVal" ...
##  - attr(*, "bioregionalization_metrics_occ")= chr "P"
##  - attr(*, "bioregionalization_metrics_abd")= chr "P"
##  - attr(*, "similarity_metrics")= chr [1:6] "Richness" "Rich_Endemics" "Prop_Endemics" "MeanSim" ...
##  - attr(*, "class")= chr [1:2] "bioregion.site.species.metrics" "list"

7 7. Metrics per cluster

7.1 7.1 Species-per-bioregion metrics

These metrics are computed when sites have clusters (i.e., cluster_on = "site" (or "both")). In the following example, we compute all metrics (bioregion_metrics = c("Specificity", "NSpecificity", "Fidelity", "IndVal", "NIndVal", "Rho", "CoreTerms")). To compute these metrics, we need to provide comat.

7.1.1 7.1.1 Co-occurrence metrics: occurrence version

The occurrence metrics are computed when data_type = "occurrence". By default, the function will detect the type of data used for the clustering. However, this parameter can be overriden by users, such that occurrence metrics can be calculated for abundance clustering, and vice-versa. Users can also specify data_type = "both" if they want to obtain both versions of co-occurrence metrics.

nsb <- site_species_metrics(bioregionalization = vege_nhclu,
                            bioregion_metrics = c("Specificity", "NSpecificity",
                                                  "Fidelity", "IndVal", "NIndVal",
                                                  "Rho", 
                                                  "CoreTerms"),
                            bioregionalization_metrics = NULL,
                            data_type = "occurrence",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = NULL,
                            index = NULL, # Name of similarity column
                            verbose = FALSE)

nsb
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: occurrence 
##  - Metric data type: occurrence 
## 
## Computed metrics:
##  - Per-cluster co-occurrence metrics (occurrence): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
## 
## Data preview:
## $species_bioregions (11091 rows x 11 cols):
##  Species Bioregion n_sb n_s n_b Specificity_occ NSpecificity_occ Fidelity_occ
##    10001         1   27 254 358           0.106            0.056        0.075
##    10001         2   97 254 150           0.382            0.479        0.647
##    10001         3  130 254 207           0.512            0.465        0.628
##  IndVal_occ NIndVal_occ Rho_occ
##       0.008       0.004 -15.645
##       0.247       0.310   8.384
##       0.321       0.292   9.722
## # ... with 11088 more rows
## 
## Access data with:
##   your_object$species_bioregions

7.1.1.1 Specificity (occurrence)

The specificity \(A_{sb}\) of species \(s\) for bioregion \(b\) (De Cáceres & Legendre, 2009) is defined as

\[A_{sb} = \frac{n_{sb}}{n_s}\]

and measures the fraction of occurrences of species \(s\) that belong to bioregion \(b\). It therefore reflects the uniqueness of a species to a particular bioregion.

7.1.1.2 NSpecificity (occurrence)

A normalized version that accounts for the size of each bioregion is also available, as defined in (De Cáceres & Legendre, 2009):

\[\bar{A}_{sb} = \frac{n_{sb}/n_b}{\sum_{k=1}^K n_{sk}/n_k}\]

It corresponds to a normalized specificity value that adjusts for differences in bioregion size.

7.1.1.3 Fidelity (occurrence)

The fidelity \(B_{sb}\) of species \(s\) for bioregion \(b\) (De Cáceres & Legendre, 2009) is defined as

\[B_{sb} = \frac{n_{sb}}{n_b}\]

and measures the fraction of sites in bioregion \(b\) where species \(s\) is present. It therefore reflects the frequency of occurrence of a species within a bioregion.

7.1.1.4 IndVal (occurrence)

The indicator value \(IndVal_{sb}\) of species \(s\) for bioregion \(b\) can be defined as the product of specificity and fidelity (De Cáceres & Legendre, 2009):

\[IndVal_{sb} = A_{sb} \times B_{sb}\]

This index quantifies the strength of association between a species and a bioregion by combining its specificity (uniqueness to that bioregion) and fidelity (consistency of occurrence within that bioregion). High IndVal values identify species that are both frequent and restricted to a single bioregion, making them good indicators of that region.

7.1.1.5 NIndVal (occurrence)

A normalized version of the indicator value is also available:

\[\bar{IndVal}_{sb} = \bar{A}_{sb} \times B_{sb}\]

This normalization adjusts for differences in bioregion size, allowing more comparable indicator values across regions with unequal sampling effort or extent.

7.1.1.6 Rho (occurrence)

The contribution index \(\rho\) can also be calculated following (Lenormand et al., 2019):

\[\rho_{sb} = \frac{n_{sb} - n_s\frac{n_b}{n}}{\sqrt{\frac{n_b(n - n_b)}{n - 1} \frac{n_s}{n}(1 - \frac{n_s}{n}) }}\]

This index measures the deviation between the observed number of occurrences of species \(s\) in bioregion \(b\) and the expected value under random association, providing a standardized measure of contribution to the bioregional structure.

7.1.2 Co-occurrence metrics: abundance version

The occurrence metrics are computed when data_type = "occurrence". By default, the function will detect the type of data used for the clustering. However, this parameter can be overriden by users, such that occurrence metrics can be calculated for abundance clustering, and vice-versa.

The abundance version of these metrics can also be computed when data_type = "abundance" (or data_type = "both"). In this case the core terms and associated metrics are:

  • \(w_{sb}\) is the sum of abundances of species s in sites of bioregion b.
  • \(w_s\) is the total abundance of species s.
  • \(w_b\) is the total abundance of all species present in sites of bioregion b.
wsb <- site_species_metrics(bioregionalization = vege_nhclu,
                            bioregion_metrics = c("Specificity", "NSpecificity",
                                                  "Fidelity",
                                                  "IndVal", "NIndVal",
                                                  "Rho",
                                                  "CoreTerms"),
                            bioregionalization_metrics = NULL,
                            data_type = "abundance",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = NULL, # Name of similarity column
                            index = NULL,
                            verbose = FALSE)

wsb
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: occurrence 
##  - Metric data type: abundance 
## 
## Computed metrics:
##  - Per-cluster co-occurrence metrics (abundance): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
## 
## Data preview:
## $species_bioregions (11091 rows x 11 cols):
##  Species Bioregion w_sb  w_s     w_b Specificity_abund NSpecificity_abund
##    10001         1   85 6255 1889243             0.014              0.007
##    10001         2 3037 6255 1081424             0.486              0.568
##    10001         3 3133 6255 1271474             0.501              0.425
##  Fidelity_abund IndVal_abund NIndVal_abund Rho_abund
##           0.000        0.001         0.001    -6.806
##           0.003        0.314         0.368     4.731
##           0.002        0.315         0.267     3.256
## # ... with 11088 more rows
## 
## Access data with:
##   your_object$species_bioregions

7.1.2.1 Specificity (abundance)

\[A_{sb} = \frac{w_{sb}}{w_s}\]

7.1.2.2 NSpecificity (abundance)

\[\bar{A}_{sb} = \frac{w_{sb}/n_b}{\sum_{k=1}^K w_{sk}/n_k}\]

7.1.2.3 Fidelity (abundance)

\[B_{sb} = \frac{w_{sb}}{w_b}\]

7.1.2.4 IndVal (abundance)

\[IndVal_{sb} = A_{sb} \times \frac{n_{sb}}{n_b}\] Note that the fidelity based on occurrence is used here (De Cáceres & Legendre, 2009).

7.1.2.5 NIndVal (abundance)

\[\bar{IndVal}_{sb} = \bar{A}_{sb} \times \frac{n_{sb}}{n_b}\]

Note that the fidelity based on occurrence is used here (De Cáceres & Legendre, 2009).

7.1.2.6 Rho (abundance)

\[\rho_{sb} = \frac{\mu_{sb} - \mu_s}{\sqrt{\left(\frac{n - n_b}{n-1}\right) \left(\frac{{\sigma_s}^2}{n_b}\right)}}\] where

  • \(\mu_{sb} = \frac{w_{sb}}{n_b}\) the average abundance of species \(s\) in bioregion \(b\) (as in NSpecificity and NIndVal)
  • \(\mu_s = \frac{w_s}{n}\) the average abundance of species \(s\)
  • \(\sigma_s\) the associated standard deviation.

7.2 7.2 Site metrics

For sites, two types of metrics can be computed, depending on whether the clustering is based on site or species:

7.2.1 7.2.1 Diversity & endemicity site metrics

When clusters are assigned to sites (bioregions), we can compute basic diversity metrics:

  • Richness = number of species in the site
  • Rich_Endemics = number of species in the site that are endemic to a single region (i.e., occur in only one bioregion)
  • Prop_Endemics = proportion of endemic species, i.e. ratio between Rich_Endemics and Richness
sim_metrics <- site_species_metrics(bioregionalization = vege_nhclu,
                            bioregion_metrics = c("Richness", "Rich_Endemics",
                                                  "Prop_Endemics"),
                            bioregionalization_metrics = NULL,
                            data_type = "occurrence",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = vegesim,
                            index = "Simpson", # Name of similarity column
                            verbose = FALSE)

sim_metrics
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: occurrence 
## 
## Computed metrics:
##  - Per-cluster richness & endemism metrics: Richness, Rich_Endemics, Prop_Endemics 
## 
## Data preview:
## $site_bioregions (2145 rows x 5 cols):
##  Site Bioregion Richness Rich_Endemics Prop_Endemics
##    35         1      129             0         0.000
##    35         2      129             2         0.016
##    35         3      129             0         0.000
## # ... with 2142 more rows
## 
## Access data with:
##   your_object$site_bioregions

7.2.2 7.2.2 Similarity-based site metrics

To compute similarity-based metrics for sites, we need to provide the site similarity matrix (vegesim).

These metrics include the average similarity of each site to the sites of
each bioregion (\(MeanSim\)) and the associated standard deviation (\(SdSim\)).
When computing the average similarity, the focal site itself is not included
in the calculation for its own bioregion.

sim_metrics <- site_species_metrics(bioregionalization = vege_nhclu,
                            bioregion_metrics = c("MeanSim", "SdSim"),
                            bioregionalization_metrics = NULL,
                            data_type = "occurrence",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = vegesim,
                            index = "Simpson", # Name of similarity column
                            verbose = FALSE)

sim_metrics
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: occurrence 
## 
## Computed metrics:
##  - Per-cluster similarity-based metrics: MeanSim, SdSim 
## 
## Data preview:
## $site_bioregions (2145 rows x 4 cols):
##  Site Bioregion MeanSim SdSim
##    35         1   0.055 0.033
##    35         2   0.554 0.340
##    35         3   0.251 0.195
## # ... with 2142 more rows
## 
## Access data with:
##   your_object$site_bioregions

7.2.2.1 MeanSim

Let \(g\) be a site and \(b\) a bioregion with sites \(g' \in b\), then:

\[MeanSim_{gb} = \frac{1}{n_b - \delta_{g \in b}} \sum_{g' \in b, g' \neq g} sim_{gg'}\] where \(sim_{gg'}\) is the similarity between sites \(g\) and \(g'\), \(n_b\) is the number of sites in bioregion \(b\), and \(\delta_{g \in b}\) is 1 if site \(g\) belongs to bioregion \(b\) (to exclude itself), 0 otherwise.

7.2.2.2 SdSim

The standard deviation of similarities of site \(g\) to bioregion \(b\) is:

\[SdSim_{gb} = \sqrt{\frac{1}{n_b - 1 - \delta_{g \in b}} \sum_{g' \in b, g' \neq g} \left( sim_{gg'} - MeanSim_{gb} \right)^2}\] where \(sim_{gg'}\) is the similarity between sites \(g\) and \(g'\), \(n_b\) is the number of sites in bioregion \(b\), and \(\delta_{g \in b}\) is 1 if site \(g\) belongs to bioregion \(b\) (to exclude itself), 0 otherwise.

7.2.3 7.2.3 Chorotype/Cluster-based site metrics

In the following example we compute only metrics for sites, on the basis of species clusters (cluster_on = "species").

gc <- site_species_metrics(bioregionalization = vege_netclubip,
                            bioregion_metrics = c("Specificity", "NSpecificity",
                                                  "Fidelity",
                                                  "IndVal", "NIndVal",
                                                  "Rho",
                                                  "CoreTerms"),
                            bioregionalization_metrics = "P",
                            data_type = "both",
                            cluster_on = "species",
                            comat = vegemat,
                            similarity = NULL,
                            index = NULL,
                            verbose = FALSE)

gc
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: species 
##  - Clustering data type: abundance 
##  - Metric data type: occurrence and abundance 
## 
## Computed metrics:
##  - Per-cluster co-occurrence metrics (occurrence): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
##  - Per-cluster co-occurrence metrics (abundance): Specificity, NSpecificity, Fidelity, IndVal, NIndVal, Rho, CoreTerms 
##  - Bioregionalization co-occurrence metrics (occurrence): P 
##  - Bioregionalization co-occurrence metrics (abundance): P 
## 
## Data preview:
## $site_chorotypes (5720 rows x 20 cols):
##  Site Chorotypes n_gc n_g  n_c Specificity_occ NSpecificity_occ Fidelity_occ
##    35          1    1 129 2219           0.008            0.003        0.000
##    35          2  121 129  873           0.938            0.892        0.139
##    35          3    7 129  430           0.054            0.105        0.016
##  IndVal_occ NIndVal_occ Rho_occ w_gc w_g     w_c Specificity_abund
##       0.000       0.000 -13.981    1 423 2873216             0.002
##       0.130       0.124  19.103  411 423 1149003             0.972
##       0.001       0.002  -2.237   11 423  103264             0.026
##  NSpecificity_abund Fidelity_abund IndVal_abund NIndVal_abund Rho_abund
##               0.001              0        0.000         0.000    -7.973
##               0.948              0        0.135         0.131    11.313
##               0.051              0        0.000         0.001    -1.840
## # ... with 5717 more rows
## 
## $site_chorological (715 rows x 3 cols):
##  Site P_occ P_abund
##    35 0.117   0.055
##    36 0.465   0.199
##    37 0.350   0.082
## # ... with 712 more rows
## 
## Access data with:
##   your_object$site_chorotypes
##   your_object$site_chorological

8 8. Metrics over the entire bioregionalization (i.e., over all clusters)

8.1 8.1 Site metrics

Based on \(MeanSim\), it is possible to derive aggregated metrics that assess
how well a site fits within its assigned bioregion relative to others.

For now, only the Silhouette index (Rousseeuw, 1987) is proposed.

8.1.1 Silhouette

The Silhouette index for a site \(g\) is defined as:

\[Silhouette_g = \frac{a_g - b_g}{\max(a_g, b_g)}\]

where:

  • \(a_g\) is the average similarity of site \(g\) to all other sites in its own bioregion,
  • \(b_g\) is the average similarity of site \(g\) to all sites belonging to the nearest bioregion.

This index reflects how strongly a site is associated with its assigned bioregion relative to the most similar alternative bioregion, ranging from -1, when the site may be misassigned (i.e., more similar to another bioregion than its own), to 1, when the site is well matched to its own bioregion, and around 0 when the site lies near the boundary between bioregions.

sil_metrics <- site_species_metrics(bioregionalization = vege_nhclu,
                            bioregion_metrics = NULL,
                            bioregionalization_metrics = "Silhouette",
                            data_type = "occurrence",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = vegesim,
                            index = "Simpson", # Name of similarity column
                            verbose = FALSE)

sil_metrics
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: occurrence 
## 
## Computed metrics:
##  - Bioregionalization similarity-based metrics: Silhouette 
## 
## Data preview:
## $site_bioregionalization (715 rows x 2 cols):
##  Site Silhouette
##    35      0.548
##    36      0.308
##    37      0.441
## # ... with 712 more rows
## 
## Access data with:
##   your_object$site_bioregionalization

8.1.2 Site participation coefficient

We can compute the participation coefficient \(P_s\) of a species \(s\) to the bioregionalization as described in (Denelle et al., 2020), available in both its occurrence and abundance versions.

These metrics measure whether a site has species from a single region or from multiple regions - useful when investigating transition zones (Leroy et al., 2019). There are ranging from 0 to 1. Values close to 0 indicate that the site only has species from a single chorotype (i.e., not a transition zone), whereas values close to 1 indicate that the site has species evenely distributed across multiple chorotypes (i.e., likely a transition zone).

8.1.3 P (occurrence)

\[ P_s = 1 - \sum_{k=1}^K \left(\frac{n_{sk}}{n_s}\right)^2 \]

p_occ_site <- site_species_metrics(bioregionalization = vege_netclubip,
                            bioregion_metrics = NULL,
                            bioregionalization_metrics = "P",
                            data_type = "occurrence",
                            cluster_on = "species",
                            comat = vegemat,
                            similarity = NULL,
                            index = "Simpson", # Name of similarity column
                            verbose = FALSE)

p_occ_site
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: species 
##  - Clustering data type: abundance 
##  - Metric data type: occurrence 
## 
## Computed metrics:
##  - Bioregionalization co-occurrence metrics (occurrence): P 
## 
## Data preview:
## $site_chorological (715 rows x 2 cols):
##  Site P_occ
##    35 0.117
##    36 0.465
##    37 0.350
## # ... with 712 more rows
## 
## Access data with:
##   your_object$site_chorological

8.1.4 P (abundance)

\[ P_s = 1 - \sum_{k=1}^K \left(\frac{w_{sk}}{w_s}\right)^2 \]

p_ab_site <- site_species_metrics(bioregionalization = vege_netclubip,
                            bioregion_metrics = NULL,
                            bioregionalization_metrics = "P",
                            data_type = "abundance",
                            cluster_on = "species",
                            comat = vegemat,
                            similarity = NULL,
                            index = "Simpson", # Name of similarity column
                            verbose = FALSE)

p_ab_site
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: species 
##  - Clustering data type: abundance 
##  - Metric data type: abundance 
## 
## Computed metrics:
##  - Bioregionalization co-occurrence metrics (abundance): P 
## 
## Data preview:
## $site_chorological (715 rows x 2 cols):
##  Site P_abund
##    35   0.055
##    36   0.199
##    37   0.082
## # ... with 712 more rows
## 
## Access data with:
##   your_object$site_chorological

8.2 8.2 Species metrics

We can compute the participation coefficient \(P_s\) of a species \(s\) to the bioregionalization for species as well.

8.2.1 P (occurrence)

\[ P_s = 1 - \sum_{k=1}^K \left(\frac{n_{sk}}{n_s}\right)^2 \]

p_occ_sp <- site_species_metrics(bioregionalization = vege_netclubip,
                            bioregion_metrics = NULL,
                            bioregionalization_metrics = "P",
                            data_type = "occurrence",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = NULL,
                            index = "Simpson", # Name of similarity column
                            verbose = FALSE)

p_occ_sp
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: abundance 
##  - Metric data type: occurrence 
## 
## Computed metrics:
##  - Bioregionalization co-occurrence metrics (occurrence): P 
## 
## Data preview:
## $species_bioregionalization (3697 rows x 2 cols):
##  Species P_occ
##    10001 0.598
##    10002 0.188
##    10003 0.068
## # ... with 3694 more rows
## 
## Access data with:
##   your_object$species_bioregionalization

8.2.2 P (abundance)

\[ P_s = 1 - \sum_{k=1}^K \left(\frac{w_{sk}}{w_s}\right)^2 \]

p_ab_sp <- site_species_metrics(bioregionalization = vege_netclubip,
                            bioregion_metrics = NULL,
                            bioregionalization_metrics = "P",
                            data_type = "abundance",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = NULL,
                            index = "Simpson", # Name of similarity column
                            verbose = FALSE)

p_ab_sp
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: abundance 
##  - Metric data type: abundance 
## 
## Computed metrics:
##  - Bioregionalization co-occurrence metrics (abundance): P 
## 
## Data preview:
## $species_bioregionalization (3697 rows x 2 cols):
##  Species P_abund
##    10001   0.509
##    10002   0.090
##    10003   0.022
## # ... with 3694 more rows
## 
## Access data with:
##   your_object$species_bioregionalization

These metrics measure how evenly a species is distributed among bioregions. There are ranging from 0 to 1. Values close to 0 indicate that the species is largely restricted to a single bioregion, while values close to 1 indicate that the species is evenly distributed across multiple bioregions.

Calculations on both occurrence & abundance at the same time:

ps <- site_species_metrics(bioregionalization = vege_nhclu,
                           bioregion_metrics = NULL,
                            bioregionalization_metrics = "P",
                            data_type = "both",
                            cluster_on = "site",
                            comat = vegemat,
                            similarity = NULL,
                            index = NULL,
                            verbose = FALSE)

ps
## Site and species metrics
## ========================
## 
## Settings:
##  - Number of partitions: 1 
##  - Clusters based on: site 
##  - Clustering data type: occurrence 
##  - Metric data type: occurrence and abundance 
## 
## Computed metrics:
##  - Bioregionalization co-occurrence metrics (occurrence): P 
##  - Bioregionalization co-occurrence metrics (abundance): P 
## 
## Data preview:
## $species_bioregionalization (3697 rows x 3 cols):
##  Species P_occ P_abund
##    10001 0.581   0.513
##    10002 0.460   0.413
##    10003 0.089   0.022
## # ... with 3694 more rows
## 
## Access data with:
##   your_object$species_bioregionalization

9 9. Bioregion metrics & spatial coherence

At the granularity of bioregions, we can calculate the number of sites it contains and the number of species present in those sites. The number and proportion of endemic species are also computed. Endemic species are defined as those occurring only in sites assigned to a particular bioregion (i.e., species that occur in only one bioregion).

bioregion_summary <- bioregion_metrics(bioregionalization = vege_nhclu,
                                       comat = vegemat)
bioregion_summary
##   Bioregion Site_number Species_number Endemics Percentage_Endemic
## 1         2         150           2688      133           4.947917
## 2         3         207           3090       58           1.877023
## 3         1         358           2821      407          14.427508

We use the metric of spatial coherence as in (Divíšek et al., 2016), except that we replace the number of pixels per bioregion with the area of each coherent part.

The spatial coherence is expressed in percentage, and has the following formula:

\[SC_j = 100 \times \frac{LargestPatch_j}{Area_j}\]

where \(j\) is a bioregion.

Here is an example with the vegetation dataset.

# Spatial coherence
vegedissim <- dissimilarity(vegemat)
hclu <- nhclu_kmeans(dissimilarity = vegedissim, n_clust = 4)
vegemap <- map_bioregions(hclu, vegesf, write_clusters = TRUE, plot = FALSE)

bioregion_metrics(bioregionalization = hclu, comat = vegemat, map = vegemap,
col_bioregion = 2) 
##   Bioregion Site_number Species_number Endemics Percentage_Endemic Coherence
## 1         2         128           2527       90           3.561535  49.21875
## 2         1         169           2983       45           1.508548  56.21302
## 3         4         298           2936       56           1.907357  98.99329
## 4         3         120           2262       67           2.961981  79.16667

The bioregion 4 is almost constituted of one homogeneous block, which is why the spatial coherence is very close to 100 %.

ggplot(vegemap) +
  geom_sf(aes(fill = as.factor(K_4))) +
  scale_fill_viridis_d("Bioregion") +
  theme_bw() +
  theme(legend.position = "bottom")

10. References

Baroni Urbani C, Ruffo S & Vigna Taglianti A (1978) Materiali per una biogeografia italiana fondata su alcuni generi di coleotteri cicindelidi, carabidi e crisomelidi. Memorie della Società Entomologica Italiana 56, 35–92.
De Cáceres M & Legendre P (2009) Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574.
Denelle P, Violle C & Munoz F (2020) Generalist plants are more competitive and more functionally similar to each other than specialist plants: Insights from network analyses. Journal of Biogeography 47, 1922–1933.
Divíšek J, Storch D, Zelený D & Culek M (2016) Towards the spatial coherence of biogeographical regionalizations at subcontinental and landscape scales. Journal of biogeography 43, 2489–2501.
Fattorini S (2015) On the concept of chorotype. Journal of Biogeography 42, 2246–2251.
Lenormand M, Papuga G, Argagnon O, Soubeyrand M, Alleaume S & Luque S (2019) Biogeographical network analysis of plant species distribution in the mediterranean region. Ecology and evolution 9, 237–250.
Leroy B, Dias MS, Giraud E et al. (2019) Global biogeographical regions of freshwater fish species. Journal of Biogeography 2407–2419.
Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65.