This R package implements S-type ridge regression: a robust and
multicollinearity-aware linear regression estimator that combines S-type
robust weighting with ridge penalization. The method targets two common
hurdles in linear modeling simultaneously: sensitivity to outliers and
inflated variance due to severe multicollinearity. The S-type estimators
were introduced by Sazak and Mutlu (2023) in “Comparison of the Robust
Methods in the General Linear Regression Model.” The ridge parameter k
is selected automatically via the approach implemented in the
ridgregextra R package (Karadağ et al., 2023; Karadağ and
Sazak, 2022), which targets variance inflation factor (VIF) values close
to but not below 1 (following Kutner et al., 2004). For automatic ridge
parameter selection, the package leverages the approach operationalized
in the ridgregextra package, so users do not need to tune k
manually. This package, in conjunction with the Stype.est
package, offers a robust ridge regression solution adept at addressing
issues of extreme multicollinearity and outliers, providing S-type ridge
estimates without requiring manual adjustment of the ridge parameter.
There are two functions in this package:
Weightedridge.reg (sub-function): Given a data set
and a user-supplied weight vector w, it returns the weighted ridge
regression results (coefficients, fitted values, residuals, standard
errors, and related diagnostics).
regstyperidge (main function): Given x and y, it
automatically determines the ridge parameter and returns the S-type
ridge regression results end-to-end.
regstyperidge) with familiar
x/y interface.To install the package from GitHub, use the following command:
Styperidge.reg development versionPlease make sure that you installed devtools package
first:
install.packages("devtools")
devtools::install_github("filizkrgd/Styperidge.reg")
Styperidge.reg from CRANinstall.packages( “Styperidge.reg”)
Installing Styperidge.reg development version
When you install Styperidge.reg, required packages such
as ridgregextra and Stype.est will be
installed automatically via dependencies. For example data, you can
install and load the isdals package (it contains the
bodyfat data set). - Prepare an example data set (bodyfat) from
isdals:
library(isdals)
data(bodyfat)
x=bodyfat[,-1]
y=bodyfat[,1]
regstyperidge function to get ridge regression
results using the S-type ridge regression estimators.regstyperidge=regstyperidge(x,y)
regstyperidge$MSE
regstyperidge$stdbeta
weightedridgereg=Weightedridge.reg(x,y,W)
weightedridgereg$MSE
weightedridgereg$stdbeta
## References - Karadağ, F. and Sazak, H.S., “R Algorithm for Ridge Parameter Estimation in Ridge Regression” Why R? Turkey 2022 Conference, online, Verbal, Summary Text, p.13, 2022. (https://www.nobelyayin.com/why-r-turkiye-2022-konferansi-18447.html) - Karadağ, F., Sazak, H. S., and Aydın, O. (2023). ridgregextra: Ridge Regression Parameter Estimation. R package version 0.1.1. Available at CRAN. URL: https://CRAN.R-project.org/package=ridgregextra - Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2004). Applied Linear Statistical Models - Sazak, H. S., Karadağ, F., and Aydın, O. (2025). Stype.est: S-Type Estimators. R package version 0.1.0. URL: https://cran.r-project.org/web/packages/Stype.est/Stype.est.pdf - Sazak, H. S., & Mutlu, N. (2021). Comparison of the robust methods in the general linear regression model. Communications in Statistics – Simulation and Computation, 52(7), 1–38. https://doi.org/10.1080/03610918.2021.1928196
For any questions please contact: