
Package ‘EnTraineR’
January 17, 2026

Type Package

Title Enhanced Teaching Assistant (AI) for Statistical Analysis

Version 1.0.0

Description An assistant built on large language models that helps interpret statistical model out-
puts in R by generating concise, audience-specific explanations.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports ollamar, httr2 (>= 1.0.0)

Suggests FactoMineR, commonmark, rmarkdown

SystemRequirements Pandoc (for DOCX/HTML conversion when using
rmarkdown)

RoxygenNote 7.3.2

Depends R (>= 4.1.0)

URL https://github.com/Sebastien-Le/EnTraineR

BugReports https://github.com/Sebastien-Le/EnTraineR/issues

NeedsCompilation no

Author Sébastien Lê [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8814-6714>, Code and documentation
assisted by ChatGPT.)

Maintainer Sébastien Lê <sebastien.le@institut-agro.fr>

Repository CRAN

Date/Publication 2026-01-17 11:30:02 UTC

Contents
deforestation . 2
gemini_generate . 3
ham . 4

1

https://github.com/Sebastien-Le/EnTraineR
https://github.com/Sebastien-Le/EnTraineR/issues
https://orcid.org/0000-0001-8814-6714

2 deforestation

poussin . 6
trainer_AovSum . 6
trainer_chisq_test . 8
trainer_core_actually_shown . 9
trainer_core_audience_profile . 10
trainer_core_build_prompt . 11
trainer_core_conf_label . 12
trainer_core_detect_main_factors . 12
trainer_core_extract_block_after . 13
trainer_core_filter_ttest_by_factors . 13
trainer_core_generate_or_return . 14
trainer_core_llm_generate . 15
trainer_core_prompt_header . 15
trainer_core_summary_only_block . 16
trainer_core_ttest_scope_msg . 16
trainer_cor_test . 17
trainer_LinearModel . 18
trainer_MCA . 19
trainer_PCA . 21
trainer_prop_test . 22
trainer_t_test . 23
trainer_var_test . 24

Index 26

deforestation River deforestation: air and water temperatures before/after

Description

Monitoring data of water and air temperatures before and after riparian deforestation. Useful to
illustrate linear regression with an interaction (Temp_air * Deforestation).

Usage

data(deforestation)

Format

A data frame with 56 rows and 3 variables:

Temp_water numeric; water temperature (deg C).

Temp_air numeric; air temperature (deg C).

Deforestation factor with 2 levels: "BEFORE", "AFTER". 28 periods each.

Details

Brief summary (indicative): Temp_water min ~ 0.55, median ~ 9.28, max ~ 18.89; Temp_air min ~
-3.04, median ~ 6.53, max ~ 15.75.

gemini_generate 3

Examples

data(deforestation)
str(deforestation)
table(deforestation$Deforestation)

Linear model with interaction (FactoMineR):
fit <- FactoMineR::LinearModel(

Temp_water ~ Temp_air * Deforestation,
data = deforestation,
selection = "none"

)
print(fit)

gemini_generate Generate text with Google Gemini (Generative Language API) - robust
w/ retries

Description

Minimal wrapper around the Generative Language API ’:generateContent’ endpoint for text prompts,
with retries, exponential backoff, clearer errors, and optional output compilation (HTML/DOCX)
with auto-open.

Usage

gemini_generate(
prompt,
model = "gemini-2.5-flash",
api_key = Sys.getenv("GEMINI_API_KEY"),
user_agent = NULL,
base_url = "https://generativelanguage.googleapis.com/v1beta",
temperature = NULL,
top_p = NULL,
top_k = NULL,
max_output_tokens = NULL,
stop_sequences = NULL,
system_instruction = NULL,
safety_settings = NULL,
seed = NULL,
timeout = 120,
verbose = FALSE,
max_tries = 5,
backoff_base = 0.8,
backoff_cap = 8,
force_markdown = TRUE,
compile_to = c("none", "html", "docx")

)

4 ham

Arguments

prompt Character scalar. The user prompt (plain text).

model Character scalar. Gemini model id (e.g., "gemini-2.5-flash", "gemini-2.5-pro").
You may also pass "models/..." and it will be normalized.

api_key Character scalar. API key. Defaults to env var ’GEMINI_API_KEY’.

user_agent Character scalar. If NULL, a dynamic value is used.

base_url Character scalar. API base URL.

temperature Optional numeric in [0, 2].

top_p Optional numeric in (0, 1].

top_k Optional integer >= 1.
max_output_tokens

Optional integer > 0.

stop_sequences Optional character vector.
system_instruction

Optional character scalar.
safety_settings

Optional list passed as-is to the API.

seed Optional integer seed.

timeout Numeric seconds for request timeout (default 120).

verbose Logical; if TRUE, prints URL/retries.

max_tries Integer. Max attempts (default 5).

backoff_base Numeric. Initial backoff seconds (default 0.8).

backoff_cap Numeric. Max backoff seconds (default 8).

force_markdown Logical. If TRUE, instructs the model to answer in Markdown.

compile_to Character scalar. One of c("none","html","docx").

Value

If compile_to = "none": character scalar (raw text as returned by the API). If compile_to = "html":
list(markdown = <string>, html_path = <path>), and opens the HTML. If compile_to = "docx":
list(markdown = <string>, docx_path = <path>), and opens the DOCX.

ham Ham: sensory descriptors and overall liking

Description

Sensory profile of hams (quantitative attributes) and an overall liking score. Useful to illustrate
multiple regression and the joint reading of per-term F tests and coefficient T tests.

ham 5

Usage

data(ham)

Format

A data frame with 21 rows (hams) and 15 variables:

Juiciness numeric

Crispy numeric

Tenderness numeric

Pasty numeric

Fibrous numeric

Salty numeric

Sweet numeric

Meaty numeric

Seasoned numeric

Metallic numeric

Ammoniated numeric

Fatty numeric

Braised numeric

Lactic numeric

Overall liking numeric; overall acceptability score

Details

Brief summary (indicative): median Juiciness ~ 3.0; median Tenderness ~ 6.0; mean Salty ~ 5.52;
median Overall liking ~ 6.5.

Examples

data(ham)
summary(ham)

Multiple regression without selection (FactoMineR):
fit <- FactoMineR::LinearModel(
`Overall liking` ~ .,
data = ham,
selection = "none"

)
print(fit)

6 trainer_AovSum

poussin Poussin: weight by brooding temperature and sex

Description

Chick weights measured under three brooding temperatures, with sex recorded. Useful for ANOVA
and linear models with categorical factors.

Usage

data(poussin)

Format

A data frame with 45 rows and 3 variables:

Temperature factor with 3 levels: "T1", "T2", "T3" (15 each).

Gender factor with 2 levels: "Female", "Male" (about 20 and 25).

Weight numeric; weight (units as provided).

Details

Brief summary (indicative): Weight min ~ 15, median ~ 23, max ~ 33.

Examples

data(poussin)
with(poussin, table(Temperature, Gender))
boxplot(Weight ~ Temperature, data = poussin,

main = "Poussin weight by temperature")
Two-factor ANOVA (base stats):
fit <- stats::aov(Weight ~ Temperature * Gender, data = poussin)
summary(fit)

trainer_AovSum Trainer: Interpret ANOVA (AovSum) with an LLM-ready prompt

Description

Builds an English-only, audience-tailored prompt to interpret an ANOVA produced by FactoMineR::AovSum.
The function never invents numbers: it only passes verbatim excerpts to the LLM and instructs how
to interpret deviations (sum-to-zero coding) as performance drivers.

trainer_AovSum 7

Usage

trainer_AovSum(
aovsum_obj,
introduction = NULL,
alpha = 0.05,
t_test = NULL,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

aovsum_obj An object whose printed output contains sections named "Ftest" and "Ttest"
(e.g., FactoMineR::AovSum()).

introduction Optional character context paragraph for the analysis. Defaults to a generic
description.

alpha Numeric significance level used as an instruction for the LLM. Default 0.05.

t_test Optional character vector to filter the T-test section by factor names and/or in-
teractions (e.g. "Factor A" or "Factor A:Factor B").

audience Target audience, one of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a compact 3-bullet executive summary.

llm_model Character model name for the generator (e.g., "llama3").

generate Logical; if TRUE, calls trainer_core_generate_or_return().

Value

Character prompt (if generate = FALSE) or a list.

Examples

Not run:
Example 1: SensoMineR chocolates (requires SensoMineR)
if (requireNamespace("SensoMineR", quietly = TRUE)) {
Load data from SensoMineR
data("chocolates", package = "SensoMineR")
ANOVA summary with Product and Panelist
res <- FactoMineR::AovSum(Granular ~ Product * Panelist, data = sensochoc)

intro <- "Six chocolates have been evaluated by a sensory panel,
during two days, according to a sensory attribute: granular.
The panel has been trained according to this attribute
and panellists should be reproducible when rating this attribute."
intro <- gsub("\n", " ", intro)
intro <- gsub("\\s+", " ", intro)
cat(intro)

8 trainer_chisq_test

prompt <- trainer_AovSum(res, audience = "beginner",
t_test = c("Product", "Panelist"),
introduction = intro)

cat(prompt)

res <- gemini_generate(prompt, compile_to = "html")
}

Example 2: Poussin dataset (shipped with this package)
data(poussin)
intro <- "For incubation, 45 chicken eggs were randomly assigned to three batches of 15.
Three treatments (different incubation temperatures) were then applied to the batches.
We assume that after hatching, all chicks were raised under identical conditions
and then weighed at a standard reference age.
At that time, the sex of the chicks - a factor known beforehand to cause
significant weight differences - could also be observed.
The objective is to choose the treatment that maximizes chick weight."
intro <- gsub("\n", " ", intro)
intro <- gsub("\\s+", " ", intro)
cat(intro)

res <- FactoMineR::AovSum(Weight ~ Gender * Temperature, data = poussin)

prompt <- trainer_AovSum(res,
audience = "beginner",
t_test = c("Gender", "Temperature"),
introduction = intro)

cat(prompt)

res <- gemini_generate(prompt, compile_to = "html")

End(Not run)

trainer_chisq_test Interpret a chi-squared test (chisq.test) with an audience-aware LLM
prompt

Description

Builds a clear, audience-tailored prompt to interpret base R stats::chisq.test() results, handling both
goodness-of-fit and contingency-table tests. Aligned with other TraineR trainers: no invented num-
bers; audience-specific guidance.

Usage

trainer_chisq_test(
csq_obj,
introduction = NULL,
alpha = 0.05,

trainer_core_actually_shown 9

audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

csq_obj An htest object returned by stats::chisq.test().

introduction Optional character string giving the study context.

alpha Numeric significance level (default 0.05).

audience One of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a 3-bullet executive summary regardless of audience
depth (uses trainer_core_summary_only_block()).

llm_model Character; model name for the generator (default "llama3").

generate Logical; if TRUE, call the generator and return prompt + response.

Value

If generate = FALSE, a prompt string. If TRUE, a list with prompt, response, and model.

Examples

GOF
set.seed(1); x <- c(18, 22, 20, 25, 15)
csq1 <- chisq.test(x, p = rep(1/5, 5))
cat(trainer_chisq_test(csq1, audience = "beginner"))

Contingency (independence)
tbl <- matrix(c(12,5,7,9), nrow=2)
csq2 <- chisq.test(tbl) # Yates for 2x2 by default
cat(trainer_chisq_test(csq2, audience = "applied"))

trainer_core_actually_shown

Determine which requested items were actually shown after filtering

Description

Determine which requested items were actually shown after filtering

Usage

trainer_core_actually_shown(req_main, req_inter, ttest_filtered)

10 trainer_core_audience_profile

Arguments

req_main Character vector of requested main factors.

req_inter Character vector of requested interactions ("A:B").

ttest_filtered Filtered T-test lines.

Value

Character vector of actually shown specifiers.

Examples

trainer_core_actually_shown("A", "A:B", c("A - a", "A - a : B - b"))

trainer_core_audience_profile

Build an audience profile (beginner / applied / advanced) with optional
summary-only mode

Description

Build an audience profile (beginner / applied / advanced) with optional summary-only mode

Usage

trainer_core_audience_profile(
audience = c("beginner", "applied", "advanced"),
alpha = 0.05,
summary_only = FALSE

)

Arguments

audience Character: one of c("beginner","applied","advanced").

alpha Numeric alpha (only to instruct the LLM; no computation).

summary_only Logical; if TRUE, enforce a short 3-bullet executive summary regardless of au-
dience depth.

Value

List with flags, tone, and guardrails: - audience, summary_only, tone - show_verbatim, show_diagnostics
- include_df, include_equations - max_bullets, max_words_takeaway - guard, alpha_round

Examples

trainer_core_audience_profile("applied", 0.05, summary_only = FALSE)

trainer_core_build_prompt 11

trainer_core_build_prompt

Assemble a standard prompt with common sections

Description

Assemble a standard prompt with common sections

Usage

trainer_core_build_prompt(
header,
context,
setup,
verbatim,
output_requirements,
show_verbatim = TRUE,
verbatim_title = "Verbatim output"

)

Arguments

header Character (from trainer_core_prompt_header).

context Character (short paragraph).

setup Character (bullet list or short lines).

verbatim Character (raw printed output, will be fenced).

output_requirements

Character (audience-tailored instructions).

show_verbatim Logical; include verbatim block.

verbatim_title Character section title.

Value

Full prompt string.

Examples

trainer_core_build_prompt("H", "Context", "- a\n- b", "raw", "Reqs")

12 trainer_core_detect_main_factors

trainer_core_conf_label

Confidence level label helper

Description

Returns a short label for a confidence level, e.g. "95 If conf_level is NA or NULL, returns fallback.

Usage

trainer_core_conf_label(conf_level, fallback = "the reported")

Arguments

conf_level Numeric in (0,1), or NA/NULL.

fallback Character string to use when conf_level is missing. Default is "the reported".

Value

A character scalar such as "95%" or the fallback string.

Examples

trainer_core_conf_label(0.95)
trainer_core_conf_label(NA)
trainer_core_conf_label(NULL, fallback = "not reported")

trainer_core_detect_main_factors

Detect main-effect factor names present in T-test lines (ignore interac-
tions) Space-safe: captures everything before " - " on non-interaction
rows.

Description

Detect main-effect factor names present in T-test lines (ignore interactions) Space-safe: captures
everything before " - " on non-interaction rows.

Usage

trainer_core_detect_main_factors(tt_lines)

Arguments

tt_lines Character vector.

trainer_core_extract_block_after 13

Value

Character vector of factor names.

trainer_core_extract_block_after

Extract lines following a header (up to first blank line)

Description

Extract lines following a header (up to first blank line)

Usage

trainer_core_extract_block_after(txt, header)

Arguments

txt Printed object as a single string.

header Exact header text to search.

Value

Character vector of lines until first blank line.

Examples

trainer_core_extract_block_after("Head\nA\n\nB", "Head")

trainer_core_filter_ttest_by_factors

Filter T-test lines by requested factors (main and/or interactions)

Description

Filter T-test lines by requested factors (main and/or interactions)

Usage

trainer_core_filter_ttest_by_factors(
tt_lines,
keep_factors = NULL,
keep_intercept = TRUE

)

14 trainer_core_generate_or_return

Arguments

tt_lines Character vector of T-test lines.

keep_factors Character vector of factor names or "A:B".

keep_intercept Logical; keep (Intercept) line.

Value

Filtered character vector.

Examples

trainer_core_filter_ttest_by_factors(c("(Intercept)", "A - a", "A - b:B - c"), "A", TRUE)

trainer_core_generate_or_return

Generate or return a prompt, depending on ‘generate‘

Description

Generate or return a prompt, depending on ‘generate‘

Usage

trainer_core_generate_or_return(prompt, llm_model = "llama3", generate = FALSE)

Arguments

prompt Character prompt to return or send.

llm_model Character model name.

generate Logical flag.

Value

Character prompt or list(prompt, response, model).

Examples

trainer_core_generate_or_return("hello", "llama3", generate = FALSE)

trainer_core_llm_generate 15

trainer_core_llm_generate

LLM generation helper for TraineR

Description

Thin wrapper around the chosen LLM backend. By default, uses ollamar if installed; otherwise
returns only the prompt so the caller can still inspect it without failing.

Usage

trainer_core_llm_generate(model, prompt, engine = c("ollamar", "none"), ...)

Arguments

model Character scalar, model name (e.g., "llama3").

prompt Character scalar, the prompt to send.

engine Character scalar, backend engine. Currently "ollamar" or "none". If "none" or if
the backend is not available, returns the prompt only.

... Passed to the backend generator.

Value

A list with elements prompt, response, model, and engine. If the backend isn’t available, response
is NULL.

trainer_core_prompt_header

Build the standard header for prompts

Description

Build the standard header for prompts

Usage

trainer_core_prompt_header(profile)

Arguments

profile List from trainer_core_audience_profile().

Value

Character header.

16 trainer_core_ttest_scope_msg

Examples

pr <- trainer_core_audience_profile("applied", 0.05)
cat(trainer_core_prompt_header(pr))

trainer_core_summary_only_block

Utility: render a standard 3-bullet summary-only instruction

Description

Utility: render a standard 3-bullet summary-only instruction

Usage

trainer_core_summary_only_block(
words_limit = 50,
bullets = 3,
label = "the analysis"

)

Arguments

words_limit Integer maximum total words (default 50).

bullets Integer number of bullets (default 3).

label Character label to include (e.g., the test name).

Value

Character instruction block.

Examples

cat(trainer_core_summary_only_block(50, 3, "t-test"))

trainer_core_ttest_scope_msg

Scope message for T-test section based on requested & found factors

Description

Scope message for T-test section based on requested & found factors

Usage

trainer_core_ttest_scope_msg(t_test, requested, actually_shown)

trainer_cor_test 17

Arguments

t_test User request vector.

requested Vector of normalized requested items.

actually_shown Vector from trainer_core_actually_shown().

Value

Single character scope message.

Examples

trainer_core_ttest_scope_msg(c("A"), c("A"), c("A"))

trainer_cor_test Interpret a correlation test (cor.test) with an audience-aware LLM
prompt

Description

Builds a clear, audience-tailored prompt to interpret stats::cor.test() results for Pearson, Spearman,
or Kendall correlation. Supports three audiences ("beginner", "applied", "advanced") and an op-
tional summary_only mode.

Usage

trainer_cor_test(
ct_obj,
introduction = NULL,
alpha = 0.05,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

ct_obj An htest object returned by stats::cor.test().

introduction Optional character string giving the study context.

alpha Numeric significance level (default 0.05).

audience One of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a 3-bullet executive summary regardless of audience
depth (uses trainer_core_summary_only_block()).

llm_model Character; model name for the generator (default "llama3").

generate Logical; if TRUE, call the generator and return prompt + response.

18 trainer_LinearModel

Value

If generate = FALSE, a prompt string. If TRUE, a list with prompt, response, and model.

Examples

set.seed(1)
x <- rnorm(30); y <- 0.5*x + rnorm(30, sd = 0.8)
ct <- cor.test(x, y, method = "pearson")
cat(trainer_cor_test(ct, audience = "applied", summary_only = FALSE))

trainer_LinearModel Trainer: Interpret FactoMineR::LinearModel with an LLM-ready
prompt

Description

Builds an English-only, audience-tailored prompt to interpret a FactoMineR::LinearModel result.
Handles model selection (AIC/BIC) and instructs how to interpret deviation contrasts (sum-to-zero)
for factors. Works for ANOVA, ANCOVA, and multiple regression.

Usage

trainer_LinearModel(
lm_obj,
introduction = NULL,
alpha = 0.05,
t_test = NULL,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

lm_obj An object returned by FactoMineR::LinearModel(...).

introduction Optional character string giving the study context.

alpha Numeric significance level (default 0.05).

t_test Optional character vector to filter the T-test section by factor names and/or in-
teractions (e.g. "FactorA" or "FactorA:FactorB").

audience One of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a 3-bullet executive summary.

llm_model Character model name for the generator (e.g., "llama3").

generate Logical; if TRUE, call the generator.

trainer_MCA 19

Value

Character prompt or list.

Examples

--- Example 1: multiple regression with selection (ham) -------------------
data(ham)
if (requireNamespace("FactoMineR", quietly = TRUE)) {

intro_ham <- "A sensory analysis institute wants to know if it's possible to predict
the overall liking of a ham from its sensory description.
A trained panel used the following attributes to describe 21 hams:
Juiciness, Crispy, Tenderness, Pasty, Fibrous, Salty, Sweet, Meaty,
Seasoned, Metallic, Ammoniated, Fatty, Braised, Lactic.
Afterward, an Overall Liking score was assigned to each of the hams."
collapse whitespace safely without extra packages
intro_ham <- gsub("\n", " ", intro_ham)
intro_ham <- gsub("\\s+", " ", intro_ham)

res <- FactoMineR::LinearModel(`Overall liking` ~ ., data = ham, selection = "bic")
pr <- trainer_LinearModel(res, introduction = intro_ham, audience = "advanced",

generate = FALSE)
cat(pr)

}

--- Example 2: interaction with a categorical factor (deforestation) ------
data(deforestation)
if (requireNamespace("FactoMineR", quietly = TRUE)) {

intro_flume <- "The study's goal is to determine how river deforestation affects
the relationship between water and air temperature.
The dataset contains maximum air and water temperatures measured over
28 ten-day periods before deforestation and 28 periods after deforestation.
The main objective is to understand if and how the link between air and
water temperature changes after deforestation."
intro_flume <- gsub("\n", " ", intro_flume)
intro_flume <- gsub("\\s+", " ", intro_flume)

res <- FactoMineR::LinearModel(Temp_water ~ Temp_air * Deforestation,
data = deforestation, selection = "none")

pr <- trainer_LinearModel(res, introduction = intro_flume, audience = "advanced",
generate = FALSE)

cat(pr)
}

trainer_MCA Trainer: Name an MCA dimension (FactoMineR::MCA) with an LLM-
ready prompt

20 trainer_MCA

Description

Builds an English-only, audience-tailored prompt to name and justify a Multiple Correspondence
Analysis (MCA) dimension from a FactoMineR::MCA object. The function never invents numbers:
it passes verbatim excerpts from summary(mca_obj) and FactoMineR::dimdesc() filtered at a
given significance threshold proba, and instructs how to read and name the axis.

Usage

trainer_MCA(
mca_obj,
dimension = 1L,
proba = 0.05,
introduction = NULL,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

mca_obj A MCA object returned by FactoMineR::MCA().

dimension Integer scalar; the dimension (component) to name (default 1).

proba Numeric in (0,1]; significance threshold used by FactoMineR::dimdesc() to
characterize the dimension (default 0.05).

introduction Optional character string giving the study context. Defaults to a generic descrip-
tion.

audience One of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a compact 3-bullet executive summary (uses trainer_core_summary_only_block()).

llm_model Character; model name for your generator backend (default "llama3").

generate Logical; if TRUE, calls trainer_core_generate_or_return() and returns a
list with prompt, response, and model. If FALSE, returns the prompt string.

Value

If generate = FALSE, a character prompt string. If generate = TRUE, a list with prompt, response,
and model.

Examples

Not run:
Example: tea (FactoMineR)
if (requireNamespace("FactoMineR", quietly = TRUE)) {

data(tea, package = "FactoMineR")
res_mca <- FactoMineR::MCA(tea, quanti.sup = 19, quali.sup = 20:36, graph = FALSE)

intro <- "A survey on tea consumption practices and contexts was summarized by MCA."

trainer_PCA 21

intro <- gsub("\n", " ", intro); intro <- gsub("\\s+", " ", intro)

Applied audience
prompt <- trainer_MCA(res_mca,

dimension = 1,
proba = 0.01,
introduction = intro,
audience = "applied",
generate = FALSE)

cat(prompt)

res <- gemini_generate(prompt, compile_to = "html")
}

End(Not run)

trainer_PCA Trainer: Name a PCA dimension (FactoMineR::PCA) with an LLM-
ready prompt

Description

Builds an English-only, audience-tailored prompt to name and justify a principal component (di-
mension) from a FactoMineR::PCA object. The function never invents numbers: it passes verbatim
excerpts from ‘summary(pca_obj)‘ (Individuals/Variables) and ‘FactoMineR::dimdesc()‘ filtered at
a given significance threshold ‘proba‘, and instructs how to read and name the axis.

Usage

trainer_PCA(
pca_obj,
dimension = 1L,
proba = 0.05,
introduction = NULL,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

pca_obj A PCA object returned by FactoMineR::PCA().

dimension Integer scalar; the dimension (component) to name (default 1).

proba Numeric in (0,1]; significance threshold used by FactoMineR::dimdesc() to
characterize the dimension (default 0.05).

introduction Optional character string giving the study context. Defaults to a generic descrip-
tion.

22 trainer_prop_test

audience One of c("beginner","applied","advanced").
summary_only Logical; if TRUE, return a compact 3-bullet executive summary (uses trainer_core_summary_only_block()).
llm_model Character; model name for your generator backend (default "llama3").
generate Logical; if TRUE, calls trainer_core_generate_or_return() and returns a

list with prompt, response, and model. If FALSE, returns the prompt string.

Value

If generate = FALSE, a character prompt string. If generate = TRUE, a list with prompt, response,
and model.

Examples

Not run:
Example: decathlon (FactoMineR)
if (requireNamespace("FactoMineR", quietly = TRUE)) {
data(decathlon, package = "FactoMineR")

res_pca <- FactoMineR::PCA(decathlon,
quanti.sup = 11:12,
quali.sup = 13,
graph = FALSE)

intro <- "A study was conducted on decathlon athletes.
Performances on each event were measured and summarized by PCA."
intro <- gsub("\n", " ", intro); intro <- gsub("\\s+", " ", intro)

prompt <- trainer_PCA(res_pca,
dimension = 1,
proba = 0.05,
introduction = intro,
audience = "applied",
generate = FALSE)

cat(prompt)

res <- gemini_generate(prompt, compile_to = "html")
}

End(Not run)

trainer_prop_test Interpret a proportion test (prop.test) with an audience-aware LLM
prompt

Description

Builds a clear, audience-tailored prompt to interpret stats::prop.test() results (one-sample vs target p,
two-sample equality, k-group equality, or k-group vs given p). Aligned with other TraineR trainers:
no invented numbers; audience-specific guidance.

trainer_t_test 23

Usage

trainer_prop_test(
pt_obj,
introduction = NULL,
alpha = 0.05,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

pt_obj An htest object returned by stats::prop.test().

introduction Optional character string giving the study context.

alpha Numeric significance level (default 0.05).

audience One of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a 3-bullet executive summary regardless of audience
depth (uses trainer_core_summary_only_block()).

llm_model Character; model name for the generator (default "llama3").

generate Logical; if TRUE, call the generator and return prompt + response.

Value

If generate = FALSE, a prompt string. If TRUE, a list with prompt, response, and model.

Examples

One-sample
pt1 <- prop.test(x = 56, n = 100, p = 0.5)
cat(trainer_prop_test(pt1, audience = "beginner"))

Two-sample
pt2 <- prop.test(x = c(42, 35), n = c(100, 90))
cat(trainer_prop_test(pt2, audience = "applied", summary_only = TRUE))

trainer_t_test Interpret a Student’s t-test (stats::t.test) with an LLM-ready prompt

Description

Builds a clear, audience-tailored prompt to interpret a base R stats::t.test() result. Identi-
fies the test flavor (One-sample, Two-sample, Paired, Welch) and instructs the LLM to use ONLY
printed values (p, t, df, CI, estimates) and avoid any new calculations.

24 trainer_var_test

Usage

trainer_t_test(
tt_obj,
introduction = NULL,
alpha = 0.05,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

tt_obj An htest object returned by stats::t.test().

introduction Optional character string giving the study context in plain English.

alpha Numeric significance level used for interpretation (default 0.05).

audience One of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a 3-bullet executive summary.

llm_model Character; model name passed to your generator (default "llama3").

generate Logical; if TRUE, call trainer_core_generate_or_return() and return prompt
+ response.

Value

If generate = FALSE, the prompt string. Else a list with prompt, response, model.

Examples

set.seed(1)
tt1 <- t.test(rnorm(20, 0.1), mu = 0) # one-sample
cat(trainer_t_test(tt1, audience = "beginner"))

x <- rnorm(18, 0); y <- rnorm(20, 0.3)
tt2 <- t.test(x, y, var.equal = FALSE) # two-sample Welch
cat(trainer_t_test(tt2, audience = "applied", summary_only = TRUE))

trainer_var_test Interpret an F test comparing two variances (var.test) with an
audience-aware LLM prompt

Description

Builds a clear, audience-tailored prompt to interpret a base R stats::var.test() result.

trainer_var_test 25

Usage

trainer_var_test(
vt_obj,
introduction = NULL,
alpha = 0.05,
audience = c("beginner", "applied", "advanced"),
summary_only = FALSE,
llm_model = "llama3",
generate = FALSE

)

Arguments

vt_obj An htest object returned by stats::var.test().

introduction Optional character string giving the study context.

alpha Numeric significance level (default 0.05).

audience One of c("beginner","applied","advanced").

summary_only Logical; if TRUE, return a 3-bullet executive summary regardless of audience
depth (uses trainer_core_summary_only_block()).

llm_model Character; model name for the generator (default "llama3").

generate Logical; if TRUE, call the generator and return prompt + response.

Value

If generate = FALSE, a prompt string. If TRUE, a list with prompt, response, and model.

Examples

set.seed(1)
x <- rnorm(25, sd = 1.0); y <- rnorm(30, sd = 1.3)
vt <- var.test(x, y)
cat(trainer_var_test(vt, audience = "applied"))
cat(trainer_var_test(vt, audience = "advanced", summary_only = TRUE))

Index

∗ datasets
deforestation, 2
ham, 4
poussin, 6

deforestation, 2

gemini_generate, 3

ham, 4

poussin, 6

trainer_AovSum, 6
trainer_chisq_test, 8
trainer_cor_test, 17
trainer_core_actually_shown, 9
trainer_core_audience_profile, 10
trainer_core_build_prompt, 11
trainer_core_conf_label, 12
trainer_core_detect_main_factors, 12
trainer_core_extract_block_after, 13
trainer_core_filter_ttest_by_factors,

13
trainer_core_generate_or_return, 14
trainer_core_llm_generate, 15
trainer_core_prompt_header, 15
trainer_core_summary_only_block, 16
trainer_core_ttest_scope_msg, 16
trainer_LinearModel, 18
trainer_MCA, 19
trainer_PCA, 21
trainer_prop_test, 22
trainer_t_test, 23
trainer_var_test, 24

26

	deforestation
	gemini_generate
	ham
	poussin
	trainer_AovSum
	trainer_chisq_test
	trainer_core_actually_shown
	trainer_core_audience_profile
	trainer_core_build_prompt
	trainer_core_conf_label
	trainer_core_detect_main_factors
	trainer_core_extract_block_after
	trainer_core_filter_ttest_by_factors
	trainer_core_generate_or_return
	trainer_core_llm_generate
	trainer_core_prompt_header
	trainer_core_summary_only_block
	trainer_core_ttest_scope_msg
	trainer_cor_test
	trainer_LinearModel
	trainer_MCA
	trainer_PCA
	trainer_prop_test
	trainer_t_test
	trainer_var_test
	Index

