Stream: Internet Engineering Task Force (IETF)

RFC: 8684
Obsoletes: 6824
Category: Standards Track
Published: March 2020
ISSN: 2070-1721
Authors:
A.Ford C. Raiciu M. Handley 0. Bonaventure C. Paasch

Pexip U. Politehnica of Bucharest U. College London U. catholique de Louvain Apple, Inc.

RFC 8684
TCP Extensions for Multipath Operation with
Multiple Addresses

Abstract

TCP/IP communication is currently restricted to a single path per connection, yet multiple paths
often exist between peers. The simultaneous use of these multiple paths for a TCP/IP session
would improve resource usage within the network and thus improve user experience through
higher throughput and improved resilience to network failure.

Multipath TCP provides the ability to simultaneously use multiple paths between peers. This
document presents a set of extensions to traditional TCP to support multipath operation. The
protocol offers the same type of service to applications as TCP (i.e., a reliable bytestream), and it
provides the components necessary to establish and use multiple TCP flows across potentially
disjoint paths.

This document specifies v1 of Multipath TCP, obsoleting v0 as specified in RFC 6824, through
clarifications and modifications primarily driven by deployment experience.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc8684.

Ford, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8684
https://www.rfc-editor.org/rfc/rfc6824
https://www.rfc-editor.org/info/rfc8684

RFC 8684 Multipath TCP March 2020

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Ford, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

RFC 8684 Multipath TCP March 2020

Table of Contents

1. Introduction
1.1. Design Assumptions
1.2. Multipath TCP in the Networking Stack
1.3. Terminology
1.4. MPTCP Concept
1.5. Requirements Language
2. Operation Overview
2.1. Initiating an MPTCP Connection
2.2. Associating a New Subflow with an Existing MPTCP Connection
2.3. Informing the Other Host about Another Potential Address
2.4. Data Transfer Using MPTCP
2.5. Requesting a Change in a Path's Priority
2.6. Closing an MPTCP Connection
2.7. Notable Features
3. MPTCP Operations: An Overview
3.1. Connection Initiation
3.2. Starting a New Subflow
3.3. MPTCP Operation and Data Transfer
3.3.1. Data Sequence Mapping
3.3.2. Data Acknowledgments
3.3.3. Closing a Connection
3.3.4. Receiver Considerations
3.3.5. Sender Considerations
3.3.6. Reliability and Retransmissions
3.3.7. Congestion Control Considerations

3.3.8. Subflow Policy

Ford, et al. Standards Track Page 3

RFC 8684 Multipath TCP March 2020

3.4. Address Knowledge Exchange (Path Management)
3.4.1. Address Advertisement
3.4.2. Remove Address
3.5. Fast Close
3.6. Subflow Reset
3.7. Fallback
3.8. Error Handling
3.9. Heuristics
3.9.1. Port Usage
3.9.2. Delayed Subflow Start and Subflow Symmetry
3.9.3. Failure Handling
4. Semantic Issues
5. Security Considerations
6. Interactions with Middleboxes
7. IANA Considerations
7.1. TCP Option Kind Numbers
7.2. MPTCP Option Subtypes
7.3. MPTCP Handshake Algorithms
7.4. MP_TCPRST Reason Codes
8. References
8.1. Normative References
8.2. Informative References
Appendix A. Notes on Use of TCP Options
Appendix B. TCP Fast Open and MPTCP
B.1. TFO Cookie Request with MPTCP
B.2. Data Sequence Mapping under TFO

B.3. Connection Establishment Examples

Ford, et al. Standards Track Page 4

RFC 8684 Multipath TCP March 2020

Appendix C. Control Blocks
C.1. MPTCP Control Block
C.1.1. Authentication and Metadata
C.1.2. Sending Side
C.1.3. Receiving Side
C.2. TCP Control Blocks
C.2.1. Sending Side
C.2.2. Receiving Side
Appendix D. Finite State Machine
Appendix E. Changes from RFC 6824
Acknowledgments

Authors' Addresses

1. Introduction

Multipath TCP (MPTCP) is a set of extensions to regular TCP [RFC0793] to provide a Multipath TCP
service [RFC6182], which enables a transport connection to operate across multiple paths
simultaneously. This document presents the protocol changes required to add multipath
capability to TCP -- specifically, those for signaling and setting up multiple paths ("subflows"),
managing these subflows, reassembly of data, and termination of sessions. This is not the only
information required to create a Multipath TCP implementation, however. This document is
complemented by three others:

* [RFC6182] (MPTCP architecture), which explains the motivations behind Multipath TCP,
contains a discussion of high-level design decisions on which this design is based, and
provides an explanation of a functional separation through which an extensible MPTCP
implementation can be developed.

* [RFC6356] (congestion control), which presents a safe congestion control algorithm for
coupling the behavior of the multiple paths in order to "do no harm" to other network users.

* [RFC6897] (application considerations), which discusses what impact MPTCP will have on
applications, what applications will want to do with MPTCP, and as a consequence of these
factors, what API extensions an MPTCP implementation should present.

Ford, et al. Standards Track Page 5

RFC 8684 Multipath TCP March 2020

This document obsoletes the v0 specification of Multipath TCP [RFC6824]. This document
specifies MPTCP v1, which is not backward compatible with MPTCP v0. This document
additionally defines version negotiation procedures for implementations that support both
versions.

1.1. Design Assumptions

In order to limit the potentially huge design space, the MPTCP Working Group imposed two key
constraints on the Multipath TCP design presented in this document:

o It must be backward compatible with current, regular TCP, to increase its chances of
deployment.

It can be assumed that one or both hosts are multihomed and multiaddressed.

To simplify the design, we assume that the presence of multiple addresses at a host is sufficient to
indicate the existence of multiple paths. These paths need not be entirely disjoint: they may
share one or many routers between them. Even in such a situation, making use of multiple paths
is beneficial, improving resource utilization and resilience to a subset of node failures. The
congestion control algorithm defined in [RFC6356] ensures that the use of multiple paths does
not act detrimentally. Furthermore, there may be some scenarios where different TCP ports on a
single host can provide disjoint paths (such as through certain Equal-Cost Multipath (ECMP)
implementations [RFC2992]), and so the MPTCP design also supports the use of ports in path
identifiers.

There are three aspects to the backward compatibility listed above (discussed in more detail in
[RFC6182]):

External Constraints: The protocol must function through the vast majority of existing
middleboxes such as NATS, firewalls, and proxies, and as such must resemble existing TCP as
far as possible on the wire. Furthermore, the protocol must not assume that the segments it
sends on the wire arrive unmodified at the destination: they may be split or coalesced; TCP
options may be removed or duplicated.

Application Constraints: The protocol must be usable with no change to existing applications
that use the common TCP API (although it is reasonable that not all features would be
available to such legacy applications). Furthermore, the protocol must provide the same
service model as regular TCP to the application.

Fallback: The protocol should be able to fall back to standard TCP with no interference from the
user, to be able to communicate with legacy hosts.

The complementary application considerations document [RFEC6897] discusses the necessary
features of an API to provide backward compatibility, as well as API extensions to convey the
behavior of MPTCP at a level of control and information equivalent to that available with
regular, single-path TCP.

Further discussion of the design constraints and associated design decisions is given in the
MPTCP architecture document [RFC6182] and in [howhard].

Ford, et al. Standards Track Page 6

RFC 8684 Multipath TCP March 2020

1.2. Multipath TCP in the Networking Stack

MPTCP operates at the transport layer and aims to be transparent to both higher and lower
layers. It is a set of additional features on top of standard TCP; Figure 1 illustrates this layering.
MPTCP is designed to be usable by legacy applications with no changes; detailed discussion of its
interactions with applications is given in [RFC6897].

Fo +

| Application |
o + e +
| Application | | MPTCP |
Fom e + T T +
| TCP | | Subflow (TCP) | Subflow (TCP) |
fom e — + Fm +
| IP | | IP | IP |
o + e +

Figure 1: Comparison of Standard TCP and MPTCP Protocol Stacks

1.3. Terminology

This document makes use of a number of terms that are either MPTCP specific or have defined
meaning in the context of MPTCP, as follows:

Path: A sequence of links between a sender and a receiver, defined in this context by a 4-tuple
of source and destination address/port pairs.

Subflow: A flow of TCP segments operating over an individual path, which forms part of a
larger MPTCP connection. A subflow is started and terminated similarly to a regular TCP
connection.

(MPTCP) Connection: A set of one or more subflows, over which an application can
communicate between two hosts. There is a one-to-one mapping between a connection and an
application socket.

Data-level: The payload data is nominally transferred over a connection, which in turn is
transported over subflows. Thus, the term "data-level" is synonymous with "connection-level",
in contrast to "subflow-level"”, which refers to properties of an individual subflow.

Token: A locally unique identifier given to a multipath connection by a host. May also be
referred to as a "Connection ID".

Host: An end host operating an MPTCP implementation, and either initiating or accepting an
MPTCP connection.

In addition to these terms, note that MPTCP's interpretation of, and effect on, regular single-path
TCP semantics are discussed in Section 4.

Ford, et al. Standards Track Page 7

RFC 8684 Multipath TCP March 2020

1.4. MPTCP Concept

This section provides a high-level summary of normal operation of MPTCP; this type of scenario
is illustrated in Figure 2. A detailed description of how MPTCP operates is given in Section 3.

| | | |
Figure 2: Example MPTCP Usage Scenario

* To a non-MPTCP-aware application, MPTCP will behave the same as normal TCP. Extended
APIs could provide additional control to MPTCP-aware applications [RFC6897]. An
application begins by opening a TCP socket in the normal way. MPTCP signaling and
operation are handled by the MPTCP implementation.

* An MPTCP connection begins similarly to a regular TCP connection. This is illustrated in
Figure 2, where an MPTCP connection is established between addresses A1 and B1 on Hosts
A and B, respectively.

o If extra paths are available, additional TCP sessions (termed MPTCP "subflows") are created
on these paths and are combined with the existing session, which continues to appear as a
single connection to the applications at both ends. The creation of the additional TCP session
is illustrated between Address A2 on Host A and Address B1 on Host B.

* MPTCP identifies multiple paths by the presence of multiple addresses at hosts.
Combinations of these multiple addresses equate to the additional paths. In the example,
other potential paths that could be set up are A1<->B2 and A2<->B2. Although this additional
session is shown as being initiated from A2, it could equally have been initiated from B1 or
B2.

* The discovery and setup of additional subflows will be achieved through a path management
method; this document describes a mechanism by which a host can initiate new subflows by
using its own additional addresses or by signaling its available addresses to the other host.

* MPTCP adds connection-level sequence numbers to allow the reassembly of segments
arriving on multiple subflows with differing network delays.

* Subflows are terminated as regular TCP connections, with a four-way FIN handshake. The
MPTCP connection is terminated by a connection-level FIN.

Ford, et al. Standards Track Page 8

RFC 8684 Multipath TCP March 2020

1.5. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

2. Operation Overview

This section presents a single description of common MPTCP operation, with reference to the
protocol operation. This is a high-level overview of the key functions; the full specification
follows in Section 3. Extensibility and negotiated features are not discussed here. Considerable
reference is made to symbolic names of MPTCP options throughout this section -- these are
subtypes of the IANA-assigned MPTCP option (see Section 7), and their formats are defined in the
detailed protocol specification provided in Section 3.

A Multipath TCP connection provides a bidirectional bytestream between two hosts
communicating like normal TCP and thus does not require any change to the applications.
However, Multipath TCP enables the hosts to use different paths with different IP addresses to
exchange packets belonging to the MPTCP connection. A Multipath TCP connection appears like a
normal TCP connection to an application. However, to the network layer, each MPTCP subflow
looks like a regular TCP flow whose segments carry a new TCP option type. Multipath TCP
manages the creation, removal, and utilization of these subflows to send data. The number of
subflows that are managed within a Multipath TCP connection is not fixed, and it can fluctuate
during the lifetime of the Multipath TCP connection.

All MPTCP operations are signaled with a TCP option -- a single numerical type for MPTCP, with
"subtypes" for each MPTCP message. What follows is a summary of the purpose and rationale of
these messages.

2.1. Initiating an MPTCP Connection

This is the same signaling as for initiating a normal TCP connection, but the SYN, SYN/ACK, and
initial ACK (and data) packets also carry the MP_CAPABLE option. This option has a variable
length and serves multiple purposes. Firstly, it verifies whether the remote host supports
Multipath TCP; secondly, this option allows the hosts to exchange some information to
authenticate the establishment of additional subflows. Further details are given in Section 3.1.

Host A Host B
MP_CAPABLE ->
[flags]

<- MP_CAPABLE

[B's key, flags]
ACK + MP_CAPABLE (+ data) ->
[A's key, B's key, flags, (data-level details)]

Ford, et al. Standards Track Page 9

RFC 8684

Multipath TCP March 2020

Retransmission of the ACK + MP_CAPABLE can occur if it is not known if it has been received.
The following diagrams show all possible exchanges for the initial subflow setup to ensure this

reliability.

Host A (with data to send

MP_CAPABLE
[flags]

ACK + MP_CAPABLE + data
[A's key, B's key, flags,

Host A (with data to send

MP_CAPABLE
[flags]

ACK + MP_CAPABLE
[A's key, B's key, flags]

ACK + MP_CAPABLE + data
[A's key, B's key, flags,

MP_CAPABLE
[flags]

ACK + MP_CAPABLE
[A's key, B's key, flags]

Host B

immediately)

MP_CAPABLE
[B's key, flags]

data-level details]

later)

MP_CAPABLE

[B's key, flags]

data-level details]

Host B (sending first)

MP_CAPABLE
[B's key, flags]

ACK + DSS + data
[data-level details]

2.2. Associating a New Subflow with an Existing MPTCP Connection

The exchange of keys in the MP_CAPABLE handshake provides material that can be used to
authenticate the endpoints when new subflows will be set up. Additional subflows begin in the
same way as initiating a normal TCP connection, but the SYN, SYN/ACK, and ACK packets also

carry the MP_JOIN option.

Host A initiates a new subflow between one of its addresses and one of Host B's addresses. The
token -- generated from the key -- is used to identify which MPTCP connection it is joining, and

Ford, et al.

the Hash-based Message Authentication Code (HMAC) is used for authentication. The HMAC uses
the keys exchanged in the MP_CAPABLE handshake and the random numbers (nonces)
exchanged in these MP_JOIN options. MP_JOIN also contains flags and an Address ID that can be
used to refer to the source address without the sender needing to know if it has been changed by
a NAT. Further details are given in Section 3.2.

Standards Track Page 10

RFC 8684 Multipath TCP March 2020

MP_JOIN =2
[B's token, A's nonce,
A's Address ID, flags]
Q= MP_JOIN
[B's HMAC, B's nonce,
B's Address ID, flags]

ACK + MP_JOIN =
[A's HMAC]

K= ACK

2.3. Informing the Other Host about Another Potential Address

The set of IP addresses associated to a multihomed host may change during the lifetime of an
MPTCP connection. MPTCP supports the addition and removal of addresses on a host both
implicitly and explicitly. If Host A has established a subflow starting at address/port pair IP#-A1l
and wants to open a second subflow starting at address/port pair IP#-A2, it simply initiates the
establishment of the subflow as explained above. The remote host will then be implicitly
informed about the new address.

In some circumstances, a host may want to advertise to the remote host the availability of an
address without establishing a new subflow -- for example, when a NAT prevents setup in one
direction. In the example below, Host A informs Host B about its alternative IP address/port pair
(IP#-A2). Host B may later send an MP_JOIN to this new address. The ADD_ADDR option contains
an HMAC to authenticate the address as having been sent from the originator of the connection.
The receiver of this option echoes it back to the client to indicate successful receipt. Further
details are given in Section 3.4.1.

ADD_ADDR ->
[Echo-flag=0,

IP#-A2,

IP#-A2's Address ID,

HMAC of IP#-A2]

<- ADD_ADDR
[Echo-flag=1,
IP#-A2,
IP#-A2's Address 1D,
HMAC of IP#-A2]

There is a corresponding signal for address removal, making use of the Address ID that is
signaled in the ADD_ADDR handshake. Further details are given in Section 3.4.2.

Ford, et al. Standards Track Page 11

RFC 8684 Multipath TCP March 2020

REMOVE_ADDR ->
[IP#-A2's Address ID]

2.4. Data Transfer Using MPTCP

To ensure reliable, in-order delivery of data over subflows that may appear and disappear at any
time, MPTCP uses a 64-bit Data Sequence Number (DSN) to number all data sent over the MPTCP
connection. Each subflow has its own 32-bit sequence number space, utilizing the regular TCP
sequence number header, and an MPTCP option maps the subflow sequence space to the data
sequence space. In this way, data can be retransmitted on different subflows (mapped to the
same DSN) in the event of failure.

The Data Sequence Signal (DSS) carries the Data Sequence Mapping. The Data Sequence Mapping
consists of the subflow sequence number, data sequence number, and length for which this
mapping is valid. This option can also carry a connection-level acknowledgment (the "Data ACK")
for the received DSN.

With MPTCP, all subflows share the same receive buffer and advertise the same receive window.
There are two levels of acknowledgment in MPTCP. Regular TCP acknowledgments are used on
each subflow to acknowledge the reception of the segments sent over the subflow independently
of their DSN. In addition, there are connection-level acknowledgments for the data sequence
space. These acknowledgments track the advancement of the bytestream and slide the receive
window.

Further details are given in Section 3.3.

DSS ->
[Data Sequence Mapping]
[Data ACK]

[Checksum]

2.5. Requesting a Change in a Path's Priority

Hosts can indicate at initial subflow setup whether they wish the subflow to be used as a regular
or backup path -- a backup path only being used if there are no regular paths available. During a
connection, Host A can request a change in the priority of a subflow through the MP_PRIO signal
to Host B. Further details are given in Section 3.3.8.

MP_PRIO =

Ford, et al. Standards Track Page 12

RFC 8684 Multipath TCP March 2020

2.6. Closing an MPTCP Connection

When a host wants to close an existing subflow but not the whole connection, it can initiate a
regular TCP FIN/ACK exchange.

When Host A wants to inform Host B that it has no more data to send, it signals this "Data FIN" as
part of the DSS (see above). It has the same semantics and behavior as a regular TCP FIN, but at
the connection level. Once all the data on the MPTCP connection has been successfully received,
this message is acknowledged at the connection level with a Data ACK. Further details are given
in Section 3.3.3.

Host A Host B
DSS ->
[Data FIN]
<- DSS
[Data ACK]

There is an additional method of connection closure, referred to as "Fast Close", which is
analogous to closing a single-path TCP connection with a RST signal. The MP_FASTCLOSE signal is
used to indicate to the peer that the connection will be abruptly closed and no data will be
accepted anymore. This can be used on an ACK (which ensures reliability of the signal) or a RST
(which does not). Both examples are shown in the following diagrams. Further details are given
in Section 3.5.

ACK + MP_FASTCLOSE ->
[B's key]

[RST on all other subflows] ->

<- [RST on all subflows]
Host A Host B
RST + MP_FASTCLOSE ->
[B's key] [on all subflows]

<- [RST on all subflows]

2.7. Notable Features

It is worth highlighting that MPTCP's signaling has been designed with several key requirements
in mind:

* To cope with NATs on the path, addresses are referred to by Address IDs, in case the IP
packet's source address gets changed by a NAT. Setting up a new TCP flow is not possible if

Ford, et al. Standards Track Page 13

RFC 8684 Multipath TCP March 2020

the receiver of the SYN is behind a NAT; to allow subflows to be created when either end is
behind a NAT, MPTCP uses the ADD_ADDR message.

* MPTCP falls back to ordinary TCP if MPTCP operation is not possible -- for example, if one
host is not MPTCP capable or if a middlebox alters the payload. This is discussed in Section
3.7.

* To address the threats identified in [RFC6181], the following steps are taken: keys are sent in
the clear in the MP_CAPABLE messages; MP_JOIN messages are secured with HMAC-SHA256
([RFC2104] using the algorithm in [RFC6234]) using those keys; and standard TCP validity
checks are made on the other messages (ensuring that sequence numbers are in-window
[RFC5961]). Residual threats to MPTCP v0O were identified in [RFC7430], and those affecting
the protocol (i.e., modifications to ADD_ADDR) have been incorporated in this document.
Further discussion of security can be found in Section 5.

3. MPTCP Operations: An Overview

This section describes the operation of MPTCP. The subsections below discuss each key part of the
protocol operation.

All MPTCP operations are signaled using optional TCP header fields. A single TCP option number
("Kind") has been assigned by IANA for MPTCP (see Section 7), and then individual messages will
be determined by a "subtype", the values of which are also stored in an IANA registry (and are
also listed in Section 7). As with all TCP options, the Length field is specified in bytes and includes
the 2 bytes of Kind and Length.

Throughout this document, when reference is made to an MPTCP option by symbolic name, such
as "MP_CAPABLE", this refers to a TCP option with the single MPTCP option type, and with the
subtype value of the symbolic name as defined in Section 7. This subtype is a 4-bit field -- the first
4 bits of the option payload, as shown in Figure 3. The MPTCP messages are defined in the
following sections.

1 2 8
01234567890123456789012345678901
Fom Fom R o +
| Kind | Length | Subtype|
fom Fom e do—— +

|
| Subtype-specific data
| (variable length)

Figure 3: MPTCP Option Format

Those MPTCP options associated with subflow initiation are used on packets with the SYN flag
set. Additionally, there is one MPTCP option for signaling metadata to ensure that segmented data
can be recombined for delivery to the application.

Ford, et al. Standards Track Page 14

RFC 8684 Multipath TCP March 2020

The remaining options, however, are signals that do not need to be on a specific packet, such as
those for signaling additional addresses. While an implementation may desire to send MPTCP
options as soon as possible, it may not be possible to combine all desired options (both those for
MPTCP and for regular TCP, such as SACK (selective acknowledgment) [RFC2018]) on a single
packet. Therefore, an implementation may choose to send duplicate ACKs containing the
additional signaling information. This changes the semantics of a duplicate ACK; these are
usually only sent as a signal of a lost segment [RFC5681] in regular TCP. Therefore, an MPTCP
implementation receiving a duplicate ACK that contains an MPTCP option MUST NOT treat it as a
signal of congestion. Additionally, an MPTCP implementation SHOULD NOT send more than two
duplicate ACKs in a row for the purposes of sending MPTCP options alone, in order to ensure that
no middleboxes misinterpret this as a sign of congestion.

Furthermore, standard TCP validity checks (such as ensuring that the sequence number and
acknowledgment number are within the window) MUST be undertaken before processing any
MPTCP signals, as described in [RFC5961], and initial subflow sequence numbers SHOULD be
generated according to the recommendations in [RFC6528].

3.1. Connection Initiation

Connection initiation begins with a SYN, SYN/ACK, ACK exchange on a single path. Each packet
contains the Multipath Capable (MP_CAPABLE) MPTCP option (Figure 4). This option declares its
sender capable of performing Multipath TCP and wishes to do so on this particular connection.

1 2 3
01234567890123456789012345678901
e it e it o o fom +
| Kind | Length | Subtype|Version|A|B|C|D|E|F|G|H|
o o Fmm———— Fmm———— T +

| Option Sender's Key (64 bits)
| (if option Length > 4)

| Option Receiver's Key (64 bits) |
| (if option Length > 12) |

| Data-Level Length (16 bits) | Checksum (16 bits, optional) |
o o +

Figure 4: Multipath Capable (MP_CAPABLE) Option

The MP_CAPABLE exchange in this specification (v1) is different than that specified in v0. If a
host supports multiple versions of MPTCP, the sender of the MP_CAPABLE option SHOULD signal
the highest version number it supports. In return, in its MP_CAPABLE option, the receiver will
signal the version number it wishes to use, which MUST be equal to or lower than the version
number indicated in the initial MP_CAPABLE. There is a caveat, though, with respect to this
version negotiation with old listeners that only support v0. A listener that supports v0 expects
that the MP_CAPABLE option in the SYN segment will include the initiator's key. If, however, the
initiator already upgraded to v1, it won't include the key in the SYN segment. Thus, the listener

Ford, et al. Standards Track Page 15

RFC 8684 Multipath TCP March 2020

will ignore the MP_CAPABLE of this SYN segment and reply with a SYN/ACK that does not include
an MP_CAPABLE. The initiator MAY choose to immediately fall back to TCP or MAY choose to
attempt a connection using MPTCP vO (if the initiator supports v0), in order to discover whether
the listener supports the earlier version of MPTCP. In general, an MPTCP vO connection will likely
be preferred over a TCP connection; however, in a particular deployment scenario, it may be
known that the listener is unlikely to support MPTCP v0 and so the initiator may prefer not to
attempt a v0 connection. An initiator MAY cache information for a peer about what version of
MPTCP it supports, if any, and use this information for future connection attempts.

The MP_CAPABLE option is of variable length, with different fields included, depending on which
packet the option is used on. The full MP_CAPABLE option is shown in Figure 4.

The MP_CAPABLE option is carried on the SYN, SYN/ACK, and ACK packets that start the first
subflow of an MPTCP connection, as well as the first packet that carries data, if the initiator
wishes to send first. The data carried by each option is as follows, where A = initiator and B =
listener.

* SYN (A->B): only the first 4 octets (Length = 4).
* SYN/ACK (B->A): B's key for this connection (Length = 12).
* ACK (no data) (A->B): A's key followed by B's key (Length = 20).

* ACK (with first data) (A->B): A's key followed by B's key followed by Data-Level Length, and
optional Checksum (Length = 22 or 24).

The contents of the option are determined by the SYN and ACK flags of the packet, along with the
option's Length field. In Figure 4, "Sender" and "Receiver" refer to the sender or receiver of the
TCP packet (which can be either host).

The initial SYN, containing just the MP_CAPABLE header, is used to define the version of MPTCP
being requested and also to exchange flags to negotiate connection features, as described later.

This option is used to declare the 64-bit keys that the end hosts have generated for this MPTCP
connection. These keys are used to authenticate the addition of future subflows to this
connection. This is the only time the key will be sent in the clear on the wire (unless "Fast Close"
(Section 3.5) is used); all future subflows will identify the connection using a 32-bit "token". This
token is a cryptographic hash of this key. The algorithm for this process is dependent on the
authentication algorithm selected; the method of selection is defined later in this section.

Upon reception of the initial SYN segment, a stateful server generates a random key and replies
with a SYN/ACK. The key's method of generation is implementation specific. The key MUST be
hard to guess, and it MUST be unique for the sending host across all its current MPTCP
connections. Recommendations for generating random numbers for use in keys are given in
[RFC4086]. Connections will be indexed at each host by the token (a one-way hash of the key).
Therefore, an implementation will require a mapping from each token to the corresponding
connection, and in turn to the keys for the connection.

Ford, et al. Standards Track Page 16

RFC 8684 Multipath TCP March 2020

There is a risk that two different keys will hash to the same token. The risk of hash collisions is
usually small, unless the host is handling many tens of thousands of connections. Therefore, an
implementation SHOULD check its list of connection tokens to ensure that there is no collision
before sending its key, and if there is, then it should generate a new key. This would, however, be
costly for a server with thousands of connections. The subflow handshake mechanism (Section
3.2) will ensure that new subflows only join the correct connection, however, through the
cryptographic handshake, as well as checking the connection tokens in both directions, and
ensuring that sequence numbers are in-window. So, in the worst case, if there was a token
collision, the new subflow would not succeed, but the MPTCP connection would continue to
provide a regular TCP service.

Since key generation is implementation specific, there is no requirement that they simply be
random numbers. An implementation is free to exchange cryptographic material out of band
and generate these keys from this material, in order to provide additional mechanisms by which
to verify the identity of the communicating entities. For example, an implementation could
choose to link its MPTCP keys to those used in higher-layer TLS or SSH connections.

If the server behaves in a stateless manner, it has to generate its own key in a verifiable fashion.
This verifiable way of generating the key can be done by using a hash of the 4-tuple, sequence
number, and a local secret (similar to what is done for the TCP sequence number [RFC4987]). It
will thus be able to verify whether it is indeed the originator of the key echoed back in the
subsequent MP_CAPABLE option. As for a stateful server, the tokens SHOULD be checked for
uniqueness; however, if uniqueness is not met and there is no way to generate an alternative
verifiable key, then the connection MUST fall back to using regular TCP by not sending an
MP_CAPABLE in the SYN/ACK.

The ACK carries both A's key and B's key. This is the first time that A's key is seen on the wire,
although it is expected that A will have generated a key locally before the initial SYN. The echoing
of B's key allows B to operate statelessly, as described above. Therefore, A's key must be delivered
reliably to B, and in order to do this, the transmission of this packet must be made reliable.

If B has data to send first, then the reliable delivery of the ACK + MP_CAPABLE is ensured by the
receipt of this data with an MPTCP Data Sequence Signal (DSS) option (Section 3.3) containing a
DATA_ACK for the MP_CAPABLE (which is the first octet of the data sequence space). If, however,
A wishes to send data first, it has two options to ensure the reliable delivery of the ACK +
MP_CAPABLE. If it immediately has data to send, then the first ACK (with data) would also
contain an MP_CAPABLE option with additional data parameters (the Data-Level Length and
optional Checksum as shown in Figure 4). If A does not immediately have data to send, it MUST
include the MP_CAPABLE on the first ACK, but without the additional data parameters. When A
does have data to send, it must repeat the sending of the MP_CAPABLE option from the first ACK,
with additional data parameters. This MP_CAPABLE option is used in place of the DSS and simply
specifies (1) the Data-Level Length of the payload and (2) the checksum (if the use of checksums
is negotiated). This is the minimal data required to establish an MPTCP connection -- it allows
validation of the payload, and given that it is the first data, the Initial Data Sequence Number
(IDSN) is also known (as it is generated from the key, as described below). Conveying the keys on

Ford, et al. Standards Track Page 17

RFC 8684 Multipath TCP March 2020

the first data packet allows the TCP reliability mechanisms to ensure that the packet is
successfully delivered. The receiver will acknowledge this data at the connection level with a
Data ACK, as if a DSS option has been received.

There could be situations where both A and B attempt to transmit initial data at the same time.
For example, if A did not initially have data to send but then needed to transmit data before it
had received anything from B, it would use an MP_CAPABLE option with data parameters (since
it would not know if the MP_CAPABLE on the ACK was received). In such a situation, B may also
have transmitted data with a DSS option, but it had not yet been received at A. Therefore, B has
received data with an MP_CAPABLE mapping after it has sent data with a DSS option. To ensure
that these situations can be handled, it follows that the data parameters in an MP_CAPABLE are
semantically equivalent to those in a DSS option and can be used interchangeably. Similar
situations could occur when the MP_CAPABLE with data is lost and retransmitted. Furthermore,
in the case of TCP segmentation offloading, the MP_CAPABLE with data parameters may be
duplicated across multiple packets, and implementations must also be able to cope with
duplicate MP_CAPABLE mappings as well as duplicate DSS mappings.

Additionally, the MP_CAPABLE exchange allows the safe passage of MPTCP options on SYN
packets to be determined. If any of these options are dropped, MPTCP will gracefully fall back to
regular single-path TCP, as documented in Section 3.7. If at any point in the handshake either
party thinks the MPTCP negotiation is compromised -- for example, by a middlebox corrupting
the TCP options or by unexpected ACK numbers being present -- the host MUST stop using MPTCP
and no longer include MPTCP options in future TCP packets. The other host will then also fall
back to regular TCP using the fallback mechanism. Note that new subflows MUST NOT be
established (using the process documented in Section 3.2) until a DSS option has been
successfully received across the path (as documented in Section 3.3).

Like all MPTCP options, the MP_CAPABLE option starts with the Kind and Length to specify the
TCP option's kind and length. This information is followed by the MP_CAPABLE option. The first 4
bits of the first octet in the MP_CAPABLE option (Figure 4) define the MPTCP Option Subtype (see
Section 7; for MP_CAPABLE, this value is 0x0), and the remaining 4 bits of this octet specify the
MPTCP version in use (for this specification, this value is 1).

The second octet is reserved for flags, allocated as follows:

A: The leftmost bit, labeled "A", SHOULD be set to 1 to indicate "Checksum required",
unless the system administrator has decided that checksums are not required (for
example, if the environment is controlled and no middleboxes exist that might
adjust the payload).

B: The second bit, labeled "B", is an extensibility flag. It MUST be set to 0 for current
implementations. This flag will be used for an extensibility mechanism in a future
specification, and the impact of this flag will be defined at a later date. It is
expected, but not mandated, that this flag would be used as part of an alternative
security mechanism that does not require a full version upgrade of the protocol
but does require redefining some elements of the handshake. If receiving a
message with the "B" flag set to 1 and this is not understood, then the

Ford, et al. Standards Track Page 18

RFC 8684 Multipath TCP March 2020

MP_CAPABLE in this SYN MUST be silently ignored, which triggers a fallback to
regular TCP; the sender is expected to retry with a format compatible with this
legacy specification. Note that the length of the MP_CAPABLE option, and the
meanings of bits "D" through "H", may be altered by setting B=1.

(05 The third bit, labeled "C", is set to 1 to indicate that the sender of this option will
not accept additional MPTCP subflows to the source address and port, and
therefore the receiver MUST NOT try to open any additional subflows toward this
address and port. This improves efficiency in situations where the sender knows a
restriction is in place -- for example, if the sender is behind a strict NAT or
operating behind a legacy Layer 4 load balancer.

D through H: The remaining bits, labeled "D" through "H", are used for crypto algorithm
negotiation. In this specification, only the rightmost bit, labeled "H", is assigned.
Bit "H" indicates the use of HMAC-SHA256 (as defined in Section 3.2). An
implementation that only supports this method MUST set bit "H" to 1 and bits "D"
through "G" to 0.

A crypto algorithm MUST be specified. If flag bits "D" through "H" are all 0, the MP_CAPABLE
option MUST be treated as invalid and ignored (that is, it must be treated as a regular TCP
handshake).

The selection of the authentication algorithm also impacts the algorithm used to generate the
token and the IDSN. In this specification, with only the SHA-256 algorithm (bit "H") specified and
selected, the token MUST be a truncated (most significant 32 bits) SHA-256 hash [RFC6234] of the
key. A different, 64-bit truncation (the least significant 64 bits) of the SHA-256 hash of the key
MUST be used as the IDSN. Note that the key MUST be hashed in network byte order. Also note
that the "least significant” bits MUST be the rightmost bits of the SHA-256 digest, as per [RFC6234].
Future specifications of the use of the crypto bits may choose to specify different algorithms for
token and IDSN generation.

Both the crypto and checksum bits negotiate capabilities in similar ways. For the "Checksum
required"” bit (labeled "A"), if either host requires the use of checksums, checksums MUST be used.
In other words, the only way for checksums not to be used is if both hosts in their SYNs set A=0.
This decision is confirmed by the setting of the "A" bit in the third packet (the ACK) of the
handshake. For example, if the initiator sets A=0 in the SYN but the responder sets A=1 in the
SYN/ACK, checksums MUST be used in both directions, and the initiator will set A=1 in the ACK.
The decision regarding whether to use checksums will be stored by an implementation in a per-
connection binary state variable. If A=1 is received by a host that does not want to use
checksums, it MUST fall back to regular TCP by ignoring the MP_CAPABLE option as if it was
invalid.

For crypto negotiation, the responder has the choice. The initiator creates a proposal setting a bit
for each algorithm it supports to 1 (in this version of the specification, there is only one proposal,
so bit "H" will always be set to 1). The responder responds with only 1 bit set -- this is the chosen
algorithm. The rationale for this behavior is that the responder will typically be a server with
potentially many thousands of connections, so it may wish to choose an algorithm with minimal

Ford, et al. Standards Track Page 19

RFC 8684 Multipath TCP March 2020

computational complexity, depending on the load. If a responder does not support (or does not
want to support) any of the initiator's proposals, it MUST respond without an MP_CAPABLE
option, thus forcing a fallback to regular TCP.

The MP_CAPABLE option is only used in the first subflow of a connection, in order to identify the
connection; all subsequent subflows will use the MP_JOIN option (see Section 3.2) to join the
existing connection.

If a SYN contains an MP_CAPABLE option but the SYN/ACK does not, it is assumed that the sender
of the SYN/ACK is not multipath capable; thus, the MPTCP session MUST operate as a regular,
single-path TCP session. If a SYN does not contain an MP_CAPABLE option, the SYN/ACK MUST
NOT contain one in response. If the third packet (the ACK) does not contain the MP_CAPABLE
option, then the session MUST fall back to operating as a regular, single-path TCP session. This is
done to maintain compatibility with middleboxes on the path that drop some or all TCP options.
Note that an implementation MAY choose to attempt sending MPTCP options more than one time
before making this decision to operate as regular TCP (see Section 3.9).

If the SYN packets are unacknowledged, it is up to local policy to decide how to respond. It is
expected that a sender will eventually fall back to single-path TCP (i.e., without the MP_CAPABLE
option) in order to work around middleboxes that may drop packets with unknown options;
however, the number of multipath-capable attempts that are made first will be up to local policy.
It is possible that MPTCP and non-MPTCP SYNs could get reordered in the network. Therefore,
the final state is inferred from the presence or absence of the MP_CAPABLE option in the third
packet of the TCP handshake. If this option is not present, the connection SHOULD fall back to
regular TCP, as documented in Section 3.7.

The IDSN on an MPTCP connection is generated from the key. The algorithm for IDSN generation
is also determined from the negotiated authentication algorithm. In this specification, with only
the SHA-256 algorithm specified and selected, the IDSN of a host MUST be the least significant

64 bits of the SHA-256 hash of its key, i.e., IDSN-A = Hash(Key-A) and IDSN-B = Hash(Key-B). This
deterministic generation of the IDSN allows a receiver to ensure that there are no gaps in
sequence space at the start of the connection. The SYN with MP_CAPABLE occupies the first octet
of data sequence space, although this does not need to be acknowledged at the connection level
until the first data is sent (see Section 3.3).

3.2. Starting a New Subflow

Once an MPTCP connection has begun with the MP_CAPABLE exchange, further subflows can be
added to the connection. Hosts have knowledge of their own address(es) and can become aware
of the other host's addresses through signaling exchanges as described in Section 3.4. Using this
knowledge, a host can initiate a new subflow over a currently unused pair of addresses. It is
permissible for either host in a connection to initiate the creation of a new subflow, but it is
expected that this will normally be the original connection initiator (see Section 3.9 for
heuristics).

Ford, et al. Standards Track Page 20

RFC 8684 Multipath TCP March 2020

A new subflow is started as a normal TCP SYN/ACK exchange. The Join Connection (MP_JOIN)
MPTCP option is used to identify the connection to be joined by the new subflow. It uses keying
material that was exchanged in the initial MP_CAPABLE handshake (Section 3.1), and that
handshake also negotiates the crypto algorithm in use for the MP_]JOIN handshake.

This section specifies the behavior of MP_JOIN using the HMAC-SHA256 algorithm. An MP_]JOIN
option is present in the SYN, SYN/ACK, and ACK of the three-way handshake, although in each
case with a different format.

In the first MP_JOIN on the SYN packet, illustrated in Figure 5, the initiator sends a token, random
number, and Address ID.

1 2 3
01234567890123456789012345678901
fom Fom do—— o= Fotm +
| Kind | Length = 12 |Subtype| (rsv) |B| Address ID |
fom e Fom e do—— t————= totm +
| Receiver's Token (32 bits) |
o +
| Sender's Random Number (32 bits) |
ittt +

Figure 5: Join Connection (MP_JOIN) Option (for Initial SYN)

The token is used to identify the MPTCP connection and is a cryptographic hash of the receiver's
key, as exchanged in the initial MP_CAPABLE handshake (Section 3.1). In this specification, the
tokens presented in this option are generated by the SHA-256 algorithm [RFC6234], truncated to
the most significant 32 bits. The token included in the MP_JOIN option is the token that the
receiver of the packet uses to identify this connection; i.e., Host A will send Token-B (which is
generated from Key-B). Note that the hash generation algorithm can be overridden by the choice
of cryptographic handshake algorithm, as defined in Section 3.1.

The MP_JOIN SYN sends not only the token (which is static for a connection) but also random
numbers (nonces) that are used to prevent replay attacks on the authentication method.
Recommendations for the generation of random numbers for this purpose are given in
[RFC4086].

The MP_]JOIN option includes an "Address ID". This is an identifier generated by the sender of the
option, used to identify the source address of this packet, even if the IP header has been changed
in transit by a middlebox. The numeric value of this field is generated by the sender and must
map uniquely to a source IP address for the sending host. The Address ID allows address removal
(Section 3.4.2) without needing to know what the source address at the receiver is, thus allowing
address removal through NATs. The Address ID also allows correlation between new subflow
setup attempts and address signaling (Section 3.4.1), to prevent setting up duplicate subflows on
the same path, if an MP_JOIN and ADD_ADDR are sent at the same time.

Ford, et al. Standards Track Page 21

RFC 8684 Multipath TCP March 2020

The Address IDs of the subflow used in the initial SYN exchange of the first subflow in the
connection are implicit and have the value zero. A host MUST store the mappings between
Address IDs and addresses both for itself and the remote host. An implementation will also need
to know which local and remote Address IDs are associated with which established subflows, for
when addresses are removed from a local or remote host.

The MP_]JOIN option on packets with the SYN flag set also includes 4 bits of flags, 3 of which are
currently reserved and MUST be set to 0 by the sender. The final bit, labeled "B", indicates
whether the sender of this option (1) wishes this subflow to be used as a backup path (B=1) in the
event of failure of other paths or (2) wants the subflow to be used as part of the connection
immediately. By setting B=1, the sender of the option is requesting that the other host only send
data on this subflow if there are no available subflows where B=0. Subflow policy is discussed in
more detail in Section 3.3.8.

When receiving a SYN with an MP_JOIN option that contains a valid token for an existing MPTCP
connection, the recipient SHOULD respond with a SYN/ACK also containing an MP_JOIN option
containing a random number and a truncated (leftmost 64 bits) HMAC. This version of the option
is shown in Figure 6. If the token is unknown or the host wants to refuse subflow establishment
(for example, due to a limit on the number of subflows it will permit), the receiver will send back
a reset (RST) signal, analogous to an unknown port in TCP, containing an MP_TCPRST option
(Section 3.6) with an "MPTCP specific error” reason code. Although calculating an HMAC requires
cryptographic operations, it is believed that the 32-bit token in the MP_JOIN SYN gives sufficient
protection against blind state exhaustion attacks; therefore, there is no need to provide
mechanisms to allow a responder to operate statelessly at the MP_JOIN stage.

1 2 3
01234567890123456789012345678901
fom e fom e — fo————— o= Fotm e — +
| Kind | Length = 16 |Subtype]|(rsv) |B| Address ID |
o o Fm————— R e +

| Sender's Truncated HMAC (64 bits)

Figure 6: Join Connection (MP_JOIN) Option (for Responding SYN/ACK)

An HMAC is sent by both hosts -- by the initiator (Host A) in the third packet (the ACK) and by the
responder (Host B) in the second packet (the SYN/ACK). Doing the HMAC exchange at this stage
allows both hosts to have first exchanged random data (in the first two SYN packets) that is used
as the "message". This specification defines that HMAC as defined in [RFC2104] is used, along
with the SHA-256 hash algorithm [RFC6234], and that the output is truncated to the leftmost 160
bits (20 octets). Due to option space limitations, the HMAC included in the SYN/ACK is truncated
to the leftmost 64 bits, but this is acceptable, since random numbers are used; thus, an attacker

Ford, et al. Standards Track Page 22

RFC 8684 Multipath TCP March 2020

only has one chance to correctly guess the HMAC that matches the random number previously
sent by the peer (if the HMAC is incorrect, the TCP connection is closed, so a new MP_JOIN
negotiation with a new random number is required).

The initiator's authentication information is sent in its first ACK (the third packet of the
handshake), as shown in Figure 7. This data needs to be sent reliably, since it is the only time this
HMALC is sent; therefore, receipt of this packet MUST trigger a regular TCP ACK in response, and
the packet MUST be retransmitted if this ACK is not received. In other words, sending the ACK/
MP_JOIN packet places the subflow in the PRE_ESTABLISHED state, and it moves to the
ESTABLISHED state only on receipt of an ACK from the receiver. It is not permissible to send data
while in the PRE_ESTABLISHED state. The reserved bits in this option MUST be set to 0 by the
sender.

1 2 3
01234567890123456789012345678901
o o e o +
| Kind | Length = 24 |Subtype| (reserved) |
o o t—————— o +

| |
| Sender's Truncated HMAC (160 bits) |
| |
| |

Figure 7: Join Connection (MP_JOIN) Option (for Initiator's First ACK)

The key for the HMAC algorithm, in the case of the message transmitted by Host A, will be Key-A
followed by Key-B; and in the case of Host B, Key-B followed by Key-A. These are the keys that
were exchanged in the original MP_CAPABLE handshake. The "message" for the HMAC algorithm
in each case is the concatenations of random numbers for each host (denoted by R): for Host A, R-
A followed by R-B; and for Host B, R-B followed by R-A.

These various MPTCP options fit together to enable authenticated subflow setup as illustrated in
Figure 8.

Ford, et al. Standards Track Page 23

RFC 8684 Multipath TCP March 2020

| SYN/ACK + MP_CAPABLE (Key-B) |

ACK + MP_CAPABLE(Key-A, Key-B)

| | <o |

| | ACK |
HMAC-A = HMAC(Key=(Key-A + Key-B), Msg=(R-A + R-B))
HMAC-B = HMAC(Key=(Key-B + Key-A), Msg=(R-B + R-A))

Figure 8: Example Use of MPTCP Authentication

If the token received at Host B is unknown or local policy prohibits the acceptance of the new
subflow, the recipient MUST respond with a TCP RST for the subflow. If appropriate, an
MP_TCPRST option with an "Administratively prohibited" reason code (Section 3.6) should be
included.

If the token is accepted at Host B but the HMAC returned to Host A does not match the one
expected, Host A MUST close the subflow with a TCP RST. In this and all subsequent cases of
sending a RST as described in this section, the sender SHOULD send an MP_TCPRST option
(Section 3.6) on this RST packet with the reason code for an "MPTCP-specific error".

If Host B does not receive the expected HMAC or the MP_JOIN option is missing from the ACK; it
MUST close the subflow with a TCP RST.

If the HMACs are verified as correct, then both hosts have verified each other as being the same
peers as those that existed at the start of the connection, and they have agreed of which
connection this subflow will become a part.

If the SYN/ACK as received at Host A does not have an MP_JOIN option, Host A MUST close the
subflow with a TCP RST.

This covers all cases of the loss of an MP_JOIN. In more detail, if an MP_]JOIN is stripped from the
SYN on the path from A to B and Host B does not have a listener on the relevant port, it will
respond with a RST in the normal way. If in response to a SYN with an MP_JOIN option a SYN/ACK

Ford, et al. Standards Track Page 24

RFC 8684 Multipath TCP March 2020

is received without the MP_JOIN option (because it was either stripped on the return path, or
stripped on the outgoing path leading to Host B responding as if it was a new regular TCP
session), then the subflow is unusable and Host A MUST close it with a RST.

Note that additional subflows can be created between any pair of ports (but see Section 3.9 for
heuristics); no explicit application-level accept calls or bind calls are required to open additional
subflows. To associate a new subflow with an existing connection, the token supplied in the
subflow's SYN exchange is used for demultiplexing. This then binds the 5-tuple of the TCP
subflow to the local token of the connection. One consequence is that it is possible to allow any
port pairs to be used for a connection.

Demultiplexing subflow SYNs MUST be done using the token; this is unlike traditional TCP, where
the destination port is used for demultiplexing SYN packets. Once a subflow is set up,
demultiplexing packets is done using the 5-tuple, as in traditional TCP. The 5-tuples will be
mapped to the local connection identifier (token). Note that Host A will know its local token for
the subflow even though it is not sent on the wire -- only the responder's token is sent.

3.3. MPTCP Operation and Data Transfer

This section discusses the operation of MPTCP for data transfer. At a high level, an MPTCP

implementation will take one input data stream from an application and split it into one or more
subflows, with sufficient control information to allow it to be reassembled and delivered reliably
and in order to the recipient application. The following subsections define this behavior in detail.

The Data Sequence Mapping and the Data ACK are signaled in the DSS option (Figure 9). Either or
both can be signaled in one DSS, depending on the flags set. The Data Sequence Mapping defines
how the sequence space on the subflow maps to the connection level, and the Data ACK
acknowledges receipt of data at the connection level. These functions are described in more
detail in the following two subsections.

1 2 3

012345678901234567890123456789¢01
o o t—————— o +
| Kind | Length | Subtype| (reserved) |F|m|M|alA]|
fom fom e tom———— o +
| Data ACK (4 or 8 octets, depending on flags) |
e i e ettt TP e e +
| Data Sequence Number (4 or 8 octets, depending on flags) |
e +
| Subflow Sequence Number (4 octets) |
o o +
| Data-Level Length (2 octets) | Checksum (2 octets) |
o o +

Figure 9: Data Sequence Signal (DSS) Option
The flags, when set, define the contents of this option, as follows:

* A = Data ACK present

Ford, et al. Standards Track Page 25

RFC 8684 Multipath TCP March 2020

* a = Data ACK is 8 octets (if not set, Data ACK is 4 octets)

* M = Data Sequence Number (DSN), Subflow Sequence Number (SSN), Data-Level Length, and
Checksum (if negotiated) present

* m = Data Sequence Number is 8 octets (if not set, DSN is 4 octets)

The flags "a" and "m" only have meaning if the corresponding "A" or "M" flags are set; otherwise,
they will be ignored. The maximum length of this option, with all flags set, is 28 octets.

The "F" flag indicates "Data FIN". If present, this means that this mapping covers the final data
from the sender. This is the connection-level equivalent of the FIN flag in single-path TCP. A
connection is not closed unless there has been a Data FIN exchange, an MP_FASTCLOSE (Section
3.5) message, or an implementation-specific connection-level send timeout. The purpose of the
Data FIN and the interactions between this flag, the subflow-level FIN flag, and the Data
Sequence Mapping are described in Section 3.3.3. The remaining reserved hits MUST be set to 0
by an implementation of this specification.

Note that the checksum is only present in this option if the use of MPTCP checksumming has
been negotiated at the MP_CAPABLE handshake (see Section 3.1). The presence of the checksum
can be inferred from the length of the option. If a checksum is present but its use had not been
negotiated in the MP_CAPABLE handshake, the receiver MUST close the subflow with a RST, as it
is not behaving as negotiated. If a checksum is not present when its use has been negotiated, the
receiver MUST close the subflow with a RST, as it is considered broken. In both cases, this RST
SHOULD be accompanied by an MP_TCPRST option (Section 3.6) with the reason code for an
"MPTCP-specific error".

3.3.1. Data Sequence Mapping

The data stream as a whole can be reassembled through the use of the Data Sequence Mapping
components of the DSS option (Figure 9), which define the mapping from the subflow sequence
number to the data sequence number. This is used by the receiver to ensure in-order delivery to
the application layer. Meanwhile, the subflow-level sequence numbers (i.e., the regular sequence
numbers in the TCP header) are only relevant to the subflow. It is expected (but not mandated)
that SACK [RFC2018] will be used at the subflow level to improve efficiency.

The Data Sequence Mapping specifies a mapping from the subflow sequence space to the data
sequence space. This is expressed in terms of starting sequence numbers for the subflow and the
data level, and a length of bytes for which this mapping is valid. This explicit mapping for a
range of data, rather than per-packet signaling, was chosen to assist with compatibility with
situations where TCP/IP segmentation or coalescing is undertaken separately from the stack that
is generating the data flow (e.g., through the use of TCP segmentation offloading on network
interface cards, or by middleboxes such as Performance Enhancing Proxies (PEPs) [RFC3135]). It
also allows a single mapping to cover many packets; this may be useful in bulk-transfer
situations.

A mapping is fixed, in that the subflow sequence number is bound to the data sequence number
after the mapping has been processed. A sender MUST NOT change this mapping after it has been
declared; however, the same data sequence number can be mapped to by different subflows for

Ford, et al. Standards Track Page 26

RFC 8684 Multipath TCP March 2020

retransmission purposes (see Section 3.3.6). This would also permit the same data to be sent
simultaneously on multiple subflows for resilience or efficiency purposes, especially in the case
of lossy links. Although the detailed specification of such operation is outside the scope of this
document, an implementation SHOULD treat the first data that is received at a subflow for the
data sequence space as the data that should be delivered to the application, and any subsequent
data for that sequence space SHOULD be ignored.

The data sequence number is specified as an absolute value, whereas the subflow sequence
numbering is relative (the SYN at the start of the subflow has a relative subflow sequence
number of 0). This is done to allow middleboxes to change the Initial Sequence Number (ISN) of a
subflow, such as firewalls that undertake ISN randomization.

The Data Sequence Mapping also contains a checksum of the data that this mapping covers, if the
use of checksums has been negotiated at the MP_CAPABLE exchange. Checksums are used to
detect if the payload has been adjusted in any way by a non-MPTCP-aware middlebox. If this
checksum fails, it will trigger a failure of the subflow, or a fallback to regular TCP, as documented
in Section 3.7, since MPTCP can no longer reliably know the subflow sequence space at the
receiver to build Data Sequence Mappings. Without checksumming enabled, corrupt data may be
delivered to the application if a middlebox alters segment boundaries, alters content, or does not
deliver all segments covered by a Data Sequence Mapping. It is therefore RECOMMENDED that
checksumming be used, unless it is known that the network path contains no such devices.

The checksum algorithm used is the standard TCP checksum [RFC0793], operating over the data
covered by this mapping, along with a pseudo-header as shown in Figure 10.

1 2 3
01234567890123456789012345678901

o +
| Subflow Sequence Number (4 octets) |
o o +
| Data-Level Length (2 octets) | Zeros (2 octets) |
e B e T TR +

Figure 10: Pseudo-Header for DSS Checksum

Note that the data sequence number used in the pseudo-header is always the 64-bit value,
irrespective of what length is used in the DSS option itself. The standard TCP checksum algorithm
has been chosen, since it will be calculated anyway for the TCP subflow, and if calculated first
over the data before adding the pseudo-headers, it only needs to be calculated once.
Furthermore, since the TCP checksum is additive, the checksum for a DSN_MAP can be
constructed by simply adding together the checksums for the data of each constituent TCP
segment and adding the checksum for the DSS pseudo-header.

Ford, et al. Standards Track Page 27

RFC 8684 Multipath TCP March 2020

Note that checksumming relies on the TCP subflow containing contiguous data; therefore, a TCP
subflow MUST NOT use the Urgent Pointer to interrupt an existing mapping. Further note,
however, that if Urgent data is received on a subflow, it SHOULD be mapped to the data sequence
space and delivered to the application, analogous to Urgent data in regular TCP.

To avoid possible deadlock scenarios, subflow-level processing should be undertaken separately
from processing at the connection level. Therefore, even if a mapping does not exist from the
subflow space to the data-level space, the data SHOULD still be ACKed at the subflow (if it is in-
window). This data cannot, however, be acknowledged at the data level (Section 3.3.2) because its
data sequence numbers are unknown. Implementations MAY hold onto such unmapped data for
a short while, in the expectation that a mapping will arrive shortly. Such unmapped data cannot
be counted as being within the connection-level receive window because this is relative to the
data sequence numbers, so if the receiver runs out of memory to hold this data, it will have to be
discarded. If a mapping for that subflow-level sequence space does not arrive within a receive
window of data, that subflow SHOULD be treated as broken, closed with a RST, and any
unmapped data silently discarded.

Data sequence numbers are always 64-bit quantities and MUST be maintained as such in
implementations. If a connection is progressing at a slow rate, so protection against wrapped
sequence numbers is not required, then an implementation MAY include just the lower 32 bits of
the data sequence number in the Data Sequence Mapping and/or Data ACK as an optimization,
and an implementation can make this choice independently for each packet. An implementation
MUST be able to receive and process both 64-bit and 32-bit sequence number values, but it is not
required that an implementation be able to send both.

An implementation MUST send the full 64-bit data sequence number if it is transmitting at a
sufficiently high rate that the 32-bit value could wrap within the Maximum Segment Lifetime
(MSL) [RFC7323]. The lengths of the DSNs used in these values (which may be different) are
declared with flags in the DSS option. Implementations MUST accept a 32-bit DSN and implicitly
promote it to a 64-bit quantity by incrementing the upper 32 bits of the sequence number each
time the lower 32 bits wrap. A sanity check MUST be implemented to ensure that a wrap occurs
at an expected time (e.g., the sequence number jumps from a very high number to a very low
number) and is not triggered by out-of-order packets.

As with the standard TCP sequence number, the data sequence number should not start at zero,
but at a random value to make blind session hijacking harder. This specification requires setting
the IDSN of each host to the least significant 64 bits of the SHA-256 hash of the host's key, as
described in Section 3.1. This is also required in order for the receiver to know what the expected
IDSN is and thus determine if any initial connection-level packets are missing; this is particularly
relevant if two subflows start transmitting simultaneously.

The mapping provided by a Data Sequence Mapping MUST apply to some or all of the subflow
sequence space in the TCP segment that carries the option. It does not need to be included in
every MPTCP packet, as long as the subflow sequence space in that packet is covered by a
mapping known at the receiver. This can be used to reduce overhead in cases where the
mapping is known in advance. One such case is when there is a single subflow between the
hosts, and another is when segments of data are scheduled in larger-than-packet-sized chunks.

Ford, et al. Standards Track Page 28

RFC 8684 Multipath TCP March 2020

An "infinite" mapping can be used to fall back to regular TCP by mapping the subflow-level data
to the connection-level data for the remainder of the connection (see Section 3.7). This is
achieved by setting the Data-Level Length field of the DSS option to the reserved value of 0. The
checksum, in such a case, will also be set to 0.

3.3.2. Data Acknowledgments

To provide full end-to-end resilience, MPTCP provides a connection-level acknowledgment, to act
as a cumulative ACK for the connection as a whole. This is done via the "Data ACK" field of the
DSS option (Figure 9). The Data ACK is analogous to the behavior of the standard TCP cumulative
ACK -- indicating how much data has been successfully received (with no holes). This can be
compared to the subflow-level ACK, which acts in a fashion analogous to TCP SACK, given that
there may still be holes in the data stream at the connection level. The Data ACK specifies the
next data sequence number it expects to receive.

The Data ACK, as for the DSN, can be sent as the full 64-bit value or as the lower 32 bits. If data is
received with a 64-bit DSN, it MUST be acknowledged with a 64-bit Data ACK. If the DSN received
is 32 bits, an implementation can choose whether to send a 32-bit or 64-bit Data ACK, and an
implementation MUST accept either in this situation.

The Data ACK proves that the data, and all required MPTCP signaling, have been received and
accepted by the remote end. One key use of the Data ACK signal is that it is used to indicate the
left edge of the advertised receive window. As explained in Section 3.3.4, the receive window is
shared by all subflows and is relative to the Data ACK. Because of this, an implementation MUST
NOT use the RCVWND field of a TCP segment at the connection level if it does not also carry a DSS
option with a Data ACK field. Furthermore, separating the connection-level acknowledgments
from the subflow level allows processing to be done separately, and a receiver has the freedom to
drop segments after acknowledgment at the subflow level -- for example, due to memory
constraints when many segments arrive out of order.

An MPTCP sender MUST NOT free data from the send buffer until it has been acknowledged by
both a Data ACK received on any subflow and at the subflow level by all subflows on which the
data was sent. The former condition ensures liveness of the connection, and the latter condition
ensures liveness and self-consistence of a subflow when data needs to be retransmitted. Note,
however, that if some data needs to be retransmitted multiple times over a subflow, there is a
risk of blocking the send window. In this case, the MPTCP sender can decide to terminate the
subflow that is behaving badly by sending a RST, using an appropriate MP_TCPRST (Section 3.6)
error code.

The Data ACK MAY be included in all segments; however, optimizations SHOULD be considered in
more advanced implementations, where the Data ACK is present in segments only when the Data
ACK value advances, and this behavior MUST be treated as valid. This behavior ensures that the
send buffer is freed, while reducing overhead when the data transfer is unidirectional.

Ford, et al. Standards Track Page 29

RFC 8684 Multipath TCP March 2020

3.3.3. Closing a Connection

In regular TCP, a FIN announces to the receiver that the sender has no more data to send. In
order to allow subflows to operate independently and to keep the appearance of TCP over the
wire, a FIN in MPTCP only affects the subflow on which it is sent. This allows nodes to exercise
considerable freedom over which paths are in use at any one time. The semantics of a FIN
remain as for regular TCP; i.e., it is not until both sides have ACKed each other's FINs that the
subflow is fully closed.

When an application calls close() on a socket, this indicates that it has no more data to send; for
regular TCP, this would result in a FIN on the connection. For MPTCP, an equivalent mechanism is
needed; this is referred to as the DATA_FIN.

A DATA_FIN is an indication that the sender has no more data to send, and as such it can be used
to verify that all data has been successfully received. A DATA_FIN, as with the FIN on a regular
TCP connection, is a unidirectional signal.

The DATA_FIN is signaled by setting the "F" flag in the DSS option (Figure 9) to 1. A DATA_FIN
occupies 1 octet (the final octet) of the connection-level sequence space. Note that the DATA_FIN
is included in the Data-Level Length but not at the subflow level: for example, a segment with a
DSN value of 80 and a Data-Level Length of 11, with DATA_FIN set, would map 10 octets from the
subflow into data sequence space 80-89, and the DATA_FIN would be DSN 90; therefore, this
segment, including DATA_FIN, would be acknowledged with a DATA_ACK of 91.

Note that when the DATA_FIN is not attached to a TCP segment containing data, the DSS MUST
have a subflow sequence number of 0, a Data-Level Length of 1, and the data sequence number
that corresponds with the DATA_FIN itself. The checksum in this case will only cover the pseudo-
header.

A DATA_FIN has the same semantics and behavior as a regular TCP FIN, but at the connection
level. Notably, it is only DATA_ACKed once all data has been successfully received at the
connection level. Note, therefore, that a DATA_FIN is decoupled from a subflow FIN. It is only
permissible to combine these signals on one subflow if there is no data outstanding on other
subflows. Otherwise, it may be necessary to retransmit data on different subflows. Essentially, a
host MUST NOT close all functioning subflows unless it is safe to do so, i.e., until all outstanding
data has been DATA_ACKed or until the segment with the DATA_FIN flag set is the only
outstanding segment.

Once a DATA_FIN has been acknowledged, all remaining subflows MUST be closed with standard
FIN exchanges. Both hosts SHOULD send FINs on all subflows, as a courtesy, to allow middleboxes
to clean up state even if an individual subflow has failed. Reducing the timeouts (MSL) on
subflows at end hosts after receiving a DATA_FIN is also encouraged. In particular, any subflows
where there is still outstanding data queued (which has been retransmitted on other subflows in
order to get the DATA_FIN acknowledged) MAY be closed with a RST with an MP_TCPRST (Section
3.6) error code for "too much outstanding data".

Ford, et al. Standards Track Page 30

RFC 8684 Multipath TCP March 2020

A connection is considered closed once both hosts' DATA_FINs have been acknowledged by
DATA_ACKs.

As specified above, a standard TCP FIN on an individual subflow only shuts down the subflow on
which it was sent. If all subflows have been closed with a FIN exchange but no DATA_FIN has
been received and acknowledged, the MPTCP connection is treated as closed only after a timeout.
This implies that an implementation will have TIME_WAIT states at both the subflow level and
the connection level (see Appendix D). This permits "break-before-make" scenarios where
connectivity is lost on all subflows before a new one can be re-established.

3.3.4. Receiver Considerations

Regular TCP advertises a receive window in each packet, telling the sender how much data the
receiver is willing to accept past the cumulative ACK. The receive window is used to implement
flow control, throttling down fast senders when receivers cannot keep up.

MPTCP also uses a unique receive window, shared between the subflows. The idea is to allow any
subflow to send data as long as the receiver is willing to accept it. The alternative -- maintaining
per-subflow receive windows -- could end up stalling some subflows while others would not use
up their window.

The receive window is relative to the DATA_ACK. As in TCP, a receiver MUST NOT shrink the right
edge of the receive window (i.e., DATA_ACK + receive window). The receiver will use the data
sequence number to tell if a packet should be accepted at the connection level.

When deciding to accept packets at the subflow level, regular TCP checks the sequence number
in the packet against the allowed receive window. With MPTCP, such a check is done using only
the connection-level window. A sanity check SHOULD be performed at the subflow level to ensure
that the subflow and mapped sequence numbers meet the following test: SSN - SUBFLOW_ACK <=
DSN - DATA_ACK, where SSN is the subflow sequence number of the received packet and
SUBFLOW_ACK is the RCV.NXT (next expected sequence number) of the subflow (with the
equivalent connection-level definitions for DSN and DATA_ACK).

In regular TCP, once a segment is deemed in-window, it is put in either the in-order receive queue
or the out-of-order queue. In Multipath TCP, the same thing happens, but at the connection level:
a segment is placed in the connection-level in-order or out-of-order queue if it is in-window at
both the connection level and the subflow level. The stack still has to remember, for each
subflow, which segments were received successfully so that it can ACK them at the subflow level
appropriately. Typically, this will be implemented by keeping per-subflow out-of-order queues
(containing only message headers -- not the payloads) and remembering the value of the
cumulative ACK.

It is important for implementers to understand how large a receive buffer is appropriate. The
lower bound for full network utilization is the maximum bandwidth-delay product of any one of
the paths. However, this might be insufficient when a packet is lost on a slower subflow and
needs to be retransmitted (see Section 3.3.6). A tight upper bound would be the maximum round-
trip time (RTT) of any path multiplied by the total bandwidth available across all paths. This
permits all subflows to continue at full speed while a packet is fast-retransmitted on the

Ford, et al. Standards Track Page 31

RFC 8684 Multipath TCP March 2020

maximum RTT path. Even this might be insufficient to maintain full performance in the event of
a retransmit timeout on the maximum RTT path. Determining the relationship between
retransmission strategies and receive buffer sizing is left for future study.

3.3.5. Sender Considerations

The sender remembers receive window advertisements from the receiver. It should only update
its local receive window values when the largest sequence number allowed (i.e., DATA_ACK +
receive window) increases on the receipt of a DATA_ACK. This is important for allowing the use
of paths with different RTTs and thus different feedback loops.

MPTCP uses a single receive window across all subflows, and if the receive window was
guaranteed to be unchanged end to end, a host could always read the most recent receive
window value. However, some classes of middleboxes may alter the TCP-level receive window.
Typically, these will shrink the offered window, although for short periods of time it may be
possible for the window to be larger (however, note that this would not continue for long
periods, since ultimately the middlebox must keep up with delivering data to the receiver).
Therefore, if receive window sizes differ on multiple subflows, when sending data MPTCP
SHOULD take the largest of the most recent window sizes as the one to use in calculations. This
rule is implicit in the requirement not to reduce the right edge of the window.

The sender MUST also remember the receive windows advertised by each subflow. The allowed
window for subflowiis (ack_ i, ack i + rcv_wnd_i), where ack_i is the subflow-level cumulative
ACK of subflow i. This ensures that data will not be sent to a middlebox unless there is enough
buffering for the data.

Putting the two rules together, we get the following: a sender is allowed to send data segments
with data-level sequence numbers between (DATA_ACK, DATA_ACK + receive_window). Each of
these segments will be mapped onto subflows, as long as subflow sequence numbers are in the
allowed windows for those subflows. Note that subflow sequence numbers do not generally
affect flow control if the same receive window is advertised across all subflows. They will
perform flow control for those subflows with a smaller advertised receive window.

The send buffer MUST, at a minimum, be as big as the receive buffer, to enable the sender to
reach maximum throughput.

3.3.6. Reliability and Retransmissions

The Data Sequence Mapping allows senders to resend data with the same data sequence number
on a different subflow. When doing this, a host MUST still retransmit the original data on the
original subflow, in order to preserve the subflow's integrity (middleboxes could replay old data
and/or could reject holes in subflows), and a receiver will ignore these retransmissions. While
this is clearly suboptimal, for compatibility reasons this is sensible behavior. Optimizations could
be negotiated in future versions of this protocol. Note also that this property would also permit a
sender to always send the same data, with the same data sequence number, on multiple
subflows, if desired for reliability reasons.

Ford, et al. Standards Track Page 32

RFC 8684 Multipath TCP March 2020

This protocol specification does not mandate any mechanisms for handling retransmissions, and
much will be dependent upon local policy (as discussed in Section 3.3.8). One can imagine
aggressive connection-level retransmission policies where every packet lost at the subflow level
is retransmitted on a different subflow (hence wasting bandwidth but possibly reducing
application-to-application delays) or conservative retransmission policies where connection-level
retransmissions are only used after a few subflow-level retransmission timeouts occur.

It is envisaged that a standard connection-level retransmission mechanism would be
implemented around a connection-level data queue: all segments that haven't been DATA_ACKed
are stored. A timer is set when the head of the connection level is ACKed at the subflow level but
is not DATA_ACKed at the data level. This timer will guard against retransmission failures by
middleboxes that proactively ACK data.

The sender MUST keep data in its send buffer as long as the data has not been acknowledged both
(1) at the connection level and (2) on all subflows on which it has been sent. In this way, the
sender can always retransmit the data if needed, on the same subflow or on a different one. A
special case is when a subflow fails: the sender will typically resend the data on other working
subflows after a timeout and will keep trying to retransmit the data on the failed subflow too.
The sender will declare the subflow failed after a predefined upper bound on retransmissions is
reached (which MAY be lower than the usual TCP limits of the MSL) or on the receipt of an ICMP
error, and only then delete the outstanding data segments.

If multiple retransmissions that indicate that a subflow is performing badly are triggered, this
MAY lead to a host resetting the subflow with a RST. However, additional research is required to
understand the heuristics of how and when to reset underperforming subflows. For example, a
highly asymmetric path may be misdiagnosed as underperforming. A RST for this purpose
SHOULD be accompanied by an "Unacceptable performance"” MP_TCPRST option (Section 3.6).

3.3.7. Congestion Control Considerations

Different subflows in an MPTCP connection have different congestion windows. To achieve
fairness at bottlenecks and resource pooling, it is necessary to couple the congestion windows in
use on each subflow, in order to push most traffic to uncongested links. One algorithm for
achieving this is presented in [RFC6356]; the algorithm does not achieve perfect resource pooling
but is "safe" in that it is readily deployable in the current Internet. By this we mean that it does
not take up more capacity on any one path than if it was a single path flow using only that route,
so this ensures fair coexistence with single-path TCP at shared bottlenecks.

It is foreseeable that different congestion controllers will be implemented for MPTCP, each
aiming to achieve different properties in the resource pooling / fairness / stability design space,
as well as those for achieving different properties in quality of service, reliability, and resilience.

Regardless of the algorithm used, the design of MPTCP aims to provide the congestion control
implementations with sufficient information to make the right decisions; this information
includes, for each subflow, which packets were lost and when.

Ford, et al. Standards Track Page 33

RFC 8684 Multipath TCP March 2020

3.3.8. Subflow Policy

Within a local MPTCP implementation, a host may use any local policy it wishes to decide how to
share the traffic to be sent over the available paths.

In the typical use case, where the goal is to maximize throughput, all available paths will be used
simultaneously for data transfer, using coupled congestion control as described in [RFC6356]. It
is expected, however, that other use cases will appear.

For instance, one possibility is an "all-or-nothing" approach, i.e., have a second path ready for use
in the event of failure of the first path, but alternatives could include entirely saturating one path
before using an additional path (the "overflow" case). Such choices would be most likely based on
the monetary cost of links but may also be based on properties such as the delay or jitter of links,
where stability (of delay or bandwidth) is more important than throughput. Application
requirements such as these are discussed in detail in [RFC6897].

The ability to make effective choices at the sender requires full knowledge of the path "cost",
which is unlikely to be the case. It would be desirable for a receiver to be able to signal their own
preferences for paths, since they will often be the multihomed party and may have to pay for
metered incoming bandwidth.

To enable this behavior, the MP_]JOIN option (see Section 3.2) contains the "B" bit, which allows a
host to indicate to its peer that this path should be treated as a backup path to use only in the
event of failure of other working subflows (i.e., a subflow where the receiver has indicated that
B=1 SHOULD NOT be used to send data unless there are no usable subflows where B=0).

In the event that the available set of paths changes, a host may wish to signal a change in priority
of subflows to the peer (e.g., a subflow that was previously set as a backup should now take
priority over all remaining subflows). Therefore, the MP_PRIO option, shown in Figure 11, can be
used to change the "B" flag of the subflow on which it is sent.

1 2 3
012345678901234567890123456789¢01
o o e +-——— +—+
| Kind | Length | Subtype| (rsv) |B|
o o t—————— +———— +—+

Figure 11: Change Subflow Priority (MP_PRIO) Option

Another use of the MP_PRIO option is to set the "B" flag on a subflow to cleanly "retire" its use
before closing it and removing it with REMOVE_ADDR (Section 3.4.2) -- for example, to support
make-before-break session continuity, where new subflows are added before the previously used
subflows are closed.

It should be noted that the backup flag is a request from a data receiver to a data sender only,
and the data sender SHOULD adhere to these requests. A host cannot assume that the data sender
will do so, however, since local policies -- or technical difficulties -- may override MP_PRIO

Ford, et al. Standards Track Page 34

RFC 8684 Multipath TCP March 2020

requests. Note also that this signal applies to a single direction, and so the sender of this option
could choose to continue using the subflow to send data even if it has signaled B=1 to the other
host.

3.4. Address Knowledge Exchange (Path Management)

We use the term "path management" to refer to the exchange of information about additional
paths between hosts, which in this design is managed by multiple addresses at hosts. For more
details regarding the architectural thinking behind this design, see the MPTCP architecture
document [RFC6182].

This design makes use of two methods of sharing such information, and both can be used on a
connection. The first is the direct setup of new subflows (described in Section 3.2), where the
initiator has an additional address. The second method (described in the following subsections)
signals addresses explicitly to the other host to allow it to initiate new subflows. The two
mechanisms are complementary: the first is implicit and simple, while the second (explicit) is
more complex but is more robust. Together, these mechanisms allow addresses to change in
flight (and thus support operation through NATs, since the source address need not be known);
they also allow the signaling of previously unknown addresses and of addresses belonging to
other address families (e.g., both IPv4 and IPv6).

Here is an example of typical operation of the protocol:

* An MPTCP connection is initially set up between address/port Al of Host A and address/port
B1 of Host B. If Host A is multihomed and multiaddressed, it can start an additional subflow
from its address A2 to B1, by sending a SYN with an MP_JOIN option from A2 to B1, using B's
previously declared token for this connection. Alternatively, if B is multihomed, it can try to
set up a new subflow from B2 to A1, using A's previously declared token. In either case, the
SYN will be sent to the port already in use for the original subflow on the receiving host.

* Simultaneously (or after a timeout), an ADD_ADDR option (Section 3.4.1) is sent on an
existing subflow, informing the receiver of the sender's alternative address(es). The recipient
can use this information to open a new subflow to the sender's additional address(es). In our
example, A will send the ADD_ADDR option informing B of address/port A2. The mix of using
the SYN-based option and the ADD_ADDR option, including timeouts, is implementation
specific and can be tailored to agree with local policy.

o If subflow A2-B1 is successfully set up, Host B can use the Address ID in the MP_JOIN option
to correlate this source address with the ADD_ADDR option that will also arrive on an
existing subflow; now B knows not to open A2-B1, ignoring the ADD_ADDR. Otherwise, if B
has not received the A2-B1 MP_JOIN SYN but received the ADD_ADDAR, it can try to initiate a
new subflow from one or more of its addresses to address A2. This permits new sessions to
be opened if one host is behind a NAT.

Other ways of using the two signaling mechanisms are possible; for instance, signaling addresses
in other address families can only be done explicitly using the Add Address (ADD_ADDR) option.

Ford, et al. Standards Track Page 35

RFC 8684 Multipath TCP March 2020

3.4.1. Address Advertisement

The ADD_ADDR MPTCP option announces additional addresses (and, optionally, ports) on which
a host can be reached (Figure 12). This option can be used at any time during a connection,
depending on when the sender wishes to enable multiple paths and/or when paths become
available. As with all MPTCP signals, the receiver MUST undertake standard TCP validity checks,
e.g., per [RFC5961], before acting upon it.

1 2 3

012345678901234567890123456789¢01
e e fmm————— o ————— e +
| Kind | Length | Subtype| (rsv) |E| Address ID |
e fom e fo——— fo——— fom e +
| Address (IPv4: 4 octets / IPv6: 16 octets) |
o o +
| Port (2 octets, optional) | |
o +

| Truncated HMAC (8 octets, if E=0) I
| e +
| |

o +

Figure 12: Add Address (ADD_ADDR) Option

Every address has an Address ID that can be used for uniquely identifying the address within a
connection for address removal. The Address ID is also used to identify MP_JOIN options (see
Section 3.2) relating to the same address, even when address translators are in use. The Address
ID MUST uniquely identify the address for the sender of the option (within the scope of the
connection); the mechanism for allocating such IDs is implementation specific.

All Address IDs learned via either MP_JOIN or ADD_ADDR SHOULD be stored by the receiver in a
data structure that gathers all the Address-ID-to-address mappings for a connection (identified by
a token pair). In this way, there is a stored mapping between the Address ID, observed source
address, and token pair for future processing of control information for a connection. Note that
an implementation MAY discard incoming address advertisements at will -- for example, to avoid
updating mapping state or because advertised addresses are of no use to it (for example, IPv6
addresses when it has IPv4 only). Therefore, a host MUST treat address advertisements as soft
state, and it MAY choose to refresh advertisements periodically. Note also that an implementation
MAY choose to cache these address advertisements even if they are not currently relevant but
may be relevant in the future, such as IPv4 addresses when IPv6 connectivity is available but
IPv4 is awaiting DHCP.

This option is shown in Figure 12. The illustration is sized for IPv4 addresses. For IPv6, the length
of the address will be 16 octets (instead of 4).

The 2 octets that specify the TCP port number to use are optional, and their presence can be
inferred from the length of the option. Although it is expected that the majority of use cases will
use the same port pairs as those used for the initial subflow (e.g., port 80 remains port 80 on all

Ford, et al. Standards Track Page 36

RFC 8684 Multipath TCP March 2020

subflows, as does the ephemeral port at the client), there may be cases (such as port-based load
balancing) where the explicit specification of a different port is required. If no port is specified,
MPTCP SHOULD attempt to connect to the specified address on the same port as the port that is
already in use by the subflow on which the ADD_ADDR signal was sent; this is discussed in more
detail in Section 3.9.

The Truncated HMAC parameter present in this option is the rightmost 64 bits of an HMAC,
negotiated and calculated in the same way as for MP_JOIN as described in Section 3.2. For this
specification of MPTCP, as there is only one hash algorithm option specified, this will be HMAC as
defined in [RFC2104], using the SHA-256 hash algorithm [RFC6234]. In the same way as for
MP_]OIN, the key for the HMAC algorithm, in the case of the message transmitted by Host A, will
be Key-A followed by Key-B, and in the case of Host B, Key-B followed by Key-A. These are the
keys that were exchanged in the original MP_CAPABLE handshake. The message for the HMAC is
the Address ID, IP address, and port that precede the HMAC in the ADD_ADDR option. If the port
is not present in the ADD_ADDR option, the HMAC message will nevertheless include 2 octets of
value zero. The rationale for the HMAC is to prevent unauthorized entities from injecting
ADD_ADDR signals in an attempt to hijack a connection. Note that, additionally, the presence of
this HMAC prevents the address from being changed in flight unless the key is known by an
intermediary. If a host receives an ADD_ADDR option for which it cannot validate the HMAC, it
SHOULD silently ignore the option.

A set of four flags is present after the subtype and before the Address ID. Only the rightmost bit --
labeled "E" - is assigned in this specification. The other bits are currently unassigned; they MUST
be set to 0 by a sender and MUST be ignored by the receiver.

The "E" flag exists to provide reliability for this option. Because this option will often be sent on
pure ACKs, there is no guarantee of reliability. Therefore, a receiver receiving a fresh ADD_ADDR
option (Where E=0) will send the same option back to the sender, but not including the HMAC
and with E=1, to indicate receipt. According to local policy, the lack of this type of "echo" can
indicate to the initial ADD_ADDR sender that the ADD_ADDR needs to be retransmitted.

Due to the proliferation of NATSs, it is reasonably likely that one host may attempt to advertise
private addresses [RFC1918]. It is not desirable to prohibit this behavior, since there may be cases
where both hosts have additional interfaces on the same private network, and a host MAY
advertise such addresses. The MP_JOIN handshake to create a new subflow (Section 3.2) provides
mechanisms to minimize security risks. The MP_JOIN message contains a 32-bit token that
uniquely identifies the connection to the receiving host. If the token is unknown, the host will
respond with a RST. In the unlikely event that the token is valid at the receiving host, subflow
setup will continue, but the HMAC exchange must occur for authentication. The HMAC exchange
will fail and will provide sufficient protection against two unconnected hosts accidentally setting
up a new subflow upon the signal of a private address. Further security considerations around
the issue of ADD_ADDR messages that accidentally misdirect, or maliciously direct, new MP_JOIN
attempts are discussed in Section 5.

Ford, et al. Standards Track Page 37

RFC 8684 Multipath TCP March 2020

A host that receives an ADD_ADDR but finds that a connection set up to that IP address and port
number is unsuccessful SHOULD NOT perform further connection attempts to this address/port
combination for this connection. A sender that wants to trigger a new incoming connection
attempt on a previously advertised address/port combination can therefore refresh ADD_ADDR
information by sending the option again.

A host can therefore send an ADD_ADDR message with an already-assigned Address ID, but the
address MUST be the same as the address previously assigned to this Address ID. A new
ADD_ADDR may have the same port number or a different port number. If the port number is
different, the receiving host SHOULD try to set up a new subflow to this new address/port
combination.

A host wishing to replace an existing Address ID MUST first remove the existing one (Section
3.4.2).

During normal MPTCP operation, it is unlikely that there will be sufficient TCP option space for
ADD_ADDR to be included along with those for data sequence numbering (Section 3.3.1).
Therefore, it is expected that an MPTCP implementation will send the ADD_ADDR option on
separate ACKs. As discussed earlier, however, an MPTCP implementation MUST NOT treat
duplicate ACKs with any MPTCP option, with the exception of the DSS option, as indications of
congestion [RFC5681], and an MPTCP implementation SHOULD NOT send more than two
duplicate ACKs in a row for signaling purposes.

3.4.2. Remove Address

If, during the lifetime of an MPTCP connection, a previously announced address becomes invalid
(e.g., if the interface disappears or an IPv6 address is no longer preferred), the affected host
SHOULD announce this situation so that the peer can remove subflows related to this address.
Even if an address is not in use by an MPTCP connection, if it has been previously announced, an
implementation SHOULD announce its removal. A host MAY also choose to announce that a valid
IP address should not be used any longer -- for example, for make-before-break session
continuity.

This is achieved through the Remove Address (REMOVE_ADDR) option (Figure 13), which will
remove a previously added address (or list of addresses) from a connection and terminate any
subflows currently using that address.

1 2 3
012345678901234567890123456789%01
Fomm e Fom e tom————— tomm———— Fom e — +
| Kind |Length = 3 + n |Subtype| (resvd) | Address ID |
Fom Fom o to—————— Fom +

(followed by n-1 Address IDs, if required)

Figure 13: Remove Address (REMOVE_ADDR) Option

Ford, et al. Standards Track Page 38

RFC 8684 Multipath TCP March 2020

For security purposes, if a host receives a REMOVE_ADDR option, it must ensure that the affected
path or paths are no longer in use before it instigates closure. The receipt of REMOVE_ADDR
SHOULD first trigger the sending of a TCP keepalive [RFC1122] on the path, and if a response is
received, the path SHOULD NOT be removed. If the path is found to still be alive, the receiving
host SHOULD no longer use the specified address for future connections, but it is the
responsibility of the host that sent the REMOVE_ADDR to shut down the subflow. Before the
address is removed, the requesting host MAY also use MP_PRIO (Section 3.3.8) to request that a
path no longer be used. Typical TCP validity tests on the subflow (e.g., ensuring that sequence
and ACK numbers are correct) MUST also be undertaken. An implementation can use indications
of these test failures as part of intrusion detection or error logging.

The sending and receipt (if no keepalive response was received) of this message SHOULD trigger
the sending of RSTs by both hosts on the affected subflow(s) (if possible), as a courtesy, to allow
the cleanup of middlebox state before cleaning up any local state.

Address removal is undertaken according to the Address ID, so as to permit the use of NATs and
other middleboxes that rewrite source addresses. If an Address ID is not known, the receiver will
silently ignore the request.

A subflow that is still functioning MUST be closed with a FIN exchange as in regular TCP, rather
than using this option. For more information, see Section 3.3.3.

3.5. Fast Close

Regular TCP has the means of sending a RST signal to abruptly close a connection. With MPTCP, a
regular RST only has the scope of the subflow; it will only close the applicable subflow and will
not affect the remaining subflows. MPTCP's connection will stay alive at the data level, in order to
permit break-before-make handover between subflows. It is therefore necessary to provide an
MPTCP-level "reset" to allow the abrupt closure of the whole MPTCP connection; this is done via
the MP_FASTCLOSE option.

MP_FASTCLOSE is used to indicate to the peer that the connection will be abruptly closed and no
data will be accepted anymore. The reasons for triggering an MP_FASTCLOSE are
implementation specific. Regular TCP does not allow the sending of a RST while the connection is
in a synchronized state [RFC0793]. Nevertheless, implementations allow the sending of a RST in
this state if, for example, the operating system is running out of resources. In these cases, MPTCP
should send the MP_FASTCLOSE. This option is illustrated in Figure 14.

Ford, et al. Standards Track Page 39

RFC 8684 Multipath TCP March 2020

1 2 8
012345678901234567890123456789¢01
o o Fm————— e +
| Kind | Length | Subtype| (reserved) |
et et do—— Fo +
| Option Receiver's Key |
| (64 bits) |
| |
A +

Figure 14: Fast Close (MP_FASTCLOSE) Option
If Host A wants to force the closure of an MPTCP connection, it can do so via two options:

» Option A (ACK): Host A sends an ACK containing the MP_FASTCLOSE option on one subflow,
containing the key of Host B as declared in the initial connection handshake. On all the other
subflows, Host A sends a regular TCP RST to close these subflows and tears them down. Host
A now enters FASTCLOSE_WAIT state.

* Option R (RST): Host A sends a RST containing the MP_FASTCLOSE option on all subflows,
containing the key of Host B as declared in the initial connection handshake. Host A can tear
down the subflows and the connection immediately.

If Host A decides to force the closure by using Option A and sending an ACK with the
MP_FASTCLOSE option, the connection shall proceed as follows:

* Upon receipt of an ACK with MP_FASTCLOSE by Host B, containing the valid key, Host B
answers on the same subflow with a TCP RST and tears down all subflows also through
sending TCP RST signals. Host B can now close the whole MPTCP connection (it transitions
directly to CLOSED state).

* As soon as Host A has received the TCP RST on the remaining subflow, it can close this
subflow and tear down the whole connection (transition from FASTCLOSE_WAIT state to
CLOSED state). If Host A receives an MP_FASTCLOSE instead of a TCP RST, both hosts
attempted fast closure simultaneously. Host A should reply with a TCP RST and tear down the
connection.

o If Host A does not receive a TCP RST in reply to its MP_FASTCLOSE after one retransmission
timeout (RTO) (the RTO of the subflow where the MP_FASTCLOSE has been sent), it SHOULD
retransmit the MP_FASTCLOSE. To keep this connection from being retained for a long time,
the number of retransmissions SHOULD be limited; this limit is implementation specific. A
RECOMMENDED number is 3. If no TCP RST is received in response, Host A SHOULD send a
TCP RST with the MP_FASTCLOSE option itself when it releases state in order to clear any
remaining state at middleboxes.

If, however, Host A decides to force the closure by using Option R and sending a RST with the
MP_FASTCLOSE option, Host B will act as follows: upon receipt of a RST with MP_FASTCLOSE,
containing the valid key, Host B tears down all subflows by sending a TCP RST. Host B can now
close the whole MPTCP connection (it transitions directly to CLOSED state).

Ford, et al. Standards Track Page 40

RFC 8684 Mul