

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T G.729
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(01/2007)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA,
DIGITAL SYSTEMS AND NETWORKS
Digital terminal equipments – Coding of analogue signals
by methods other than PCM

 Coding of speech at 8 kbit/s using
conjugate-structure algebraic-code-excited
linear prediction (CS-ACELP)

ITU-T Recommendation G.729

ITU-T G-SERIES RECOMMENDATIONS
TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-
TRANSMISSION SYSTEMS

G.200–G.299

INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE
SYSTEMS ON METALLIC LINES

G.300–G.399

GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS
ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC
LINES

G.400–G.449

COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY G.450–G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS G.600–G.699
DIGITAL TERMINAL EQUIPMENTS G.700–G.799

General G.700–G.709
Coding of analogue signals by pulse code modulation G.710–G.719
Coding of analogue signals by methods other than PCM G.720–G.729
Principal characteristics of primary multiplex equipment G.730–G.739
Principal characteristics of second order multiplex equipment G.740–G.749
Principal characteristics of higher order multiplex equipment G.750–G.759
Principal characteristics of transcoder and digital multiplication equipment G.760–G.769
Operations, administration and maintenance features of transmission equipment G.770–G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy G.780–G.789
Other terminal equipment G.790–G.799

DIGITAL NETWORKS G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM G.900–G.999
QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED
ASPECTS

G.1000–G.1999

TRANSMISSION MEDIA CHARACTERISTICS G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS G.7000–G.7999
PACKET OVER TRANSPORT ASPECTS G.8000–G.8999
ACCESS NETWORKS G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. G.729 (01/2007) i

ITU-T Recommendation G.729

Coding of speech at 8 kbit/s using conjugate-structure
algebraic-code-excited linear prediction (CS-ACELP)

Summary

This Recommendation contains the description of an algorithm for the coding of speech signals using conjugate-structure
algebraic-code-excited linear prediction (CS-ACELP).

In its basic mode, the G.729 coder consists of a mono-rate speech coder at 8 kbits/s using fixed-point arithmetic
operations. Annexes A, B and D to J extend its functionalities. Annex A provides a reduced-complexity version at the
basic coding rate of 8 kbit/s. Annex B defines source-controlled rate operation for use with G.729 or Annex A. Annexes
D, E and H provide multi-rate operation and specify rate-switching mechanisms: Annex D provides lower bit-rate
extension at 6.4 kbit/s and Annex E provides higher bit-rate extension at 11.8 kbit/s, whereas Annex H provides bit-rate
extensions at both 6.4 kbit/s and 11.8 kbit/s. Therefore, Annexes D, E and H do not implement the discontinuous
transmission mode of Annex B. For this functionality, further annexes were developed. Annexes F and G use the basic
algorithms in Annex B to provide discontinuous transmission (DTX) functionality for, respectively, Annexes D and E.
Annex I provides DTX functionality for Annex H and describes the integration of G.729 main body with Annexes B, D
and E. Annex J makes reference to the G.729 extension for the 8-32 kbit/s scalable wideband speech and audio coding
algorithm in ITU-T Recommendation G.729.1, which is interoperable with G.729 and its Annexes A and B. As G.729
main body, its Annexes A, B and D to J use fixed-point arithmetic. Alternative implementations based on floating-point
arithmetic operations are provided in Annex C for G.729 and Annex A, and in Annex C+ for Annex I.

This information is summarized in the Table below.

 Annexes

Functionality - A B C D E F G H I C+ J

Low complexity X X
Fixed-point X X X X X X X X X X
Floating-point X X
8 kbit/s X X X X X X X X X X X X
6.4 kbit/s X X X X X
11.8 kbit/s X X X X X
DTX X X X X X
Embedded variable bit rate, wideband X

Appendix I deals with external synchronous reset capability in systems using external silence compression in conjunction
with the speech coding algorithm in the main body of G.729 (fixed-point) or in its Annexes A (low complexity, fixed-
point) and C (floating-point). Since the voice activity detection (VAD) algorithm in Annex B was optimized for
transmission over connection-oriented circuits, Appendices II and III deal with optimization of the VAD in Annex B
when it is used for packet circuits such as VoIP applications.

Reference ANSI C source code and test vectors are provided as an integral part of this Recommendation and its annexes.
Appendices II and III are also associated with C source code and test vectors. No source code is associated with
Appendix I. The C source code and test vectors are available as electronic attachments to this Recommendation.

Source

ITU-T Recommendation G.729 was approved on 13 January 2007 by ITU-T Study Group 16 (2005-2008) under the
ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. G.729 (01/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. G.729 (01/2007) iii

CONTENTS

 Page
1 Scope .. 1

2 General description of the coder... 1
2.1 Encoder... 2
2.2 Decoder... 3
2.3 Delay... 4
2.4 Speech coder description.. 4
2.5 Notational conventions... 4

3 Functional description of the encoder... 7
3.1 Preprocessing.. 7
3.2 Linear prediction analysis and quantization ... 7
3.3 Perceptual weighting .. 14
3.4 Open-loop pitch analysis .. 15
3.5 Computation of the impulse response .. 16
3.6 Computation of the target signal .. 16
3.7 Adaptive-codebook search ... 17
3.8 Fixed codebook – Structure and search.. 19
3.9 Quantization of the gains.. 22
3.10 Memory update... 23

4 Functional description of the decoder... 24
4.1 Parameter decoding procedure ... 24
4.2 Post-processing... 27
4.3 Encoder and decoder initialization ... 29
4.4 Concealment of frame erasures .. 30

5 Bit-exact description of the CS-ACELP coder... 31
5.1 Use of the simulation software ... 31
5.2 Organization of the simulation software .. 32

6 References... 35

Annex A – Reduced complexity 8 kbit/s CS-ACELP speech codec 36
A.1 Introduction .. 36
A.2 General description of the codec .. 36
A.3 Functional description of the encoder .. 37
A.4 Functional description of the decoder .. 41
A.5 Bit-exact description of the reduced complexity CS-ACELP codec.............. 43

Annex B – A silence compression scheme for G.729 optimized for terminals conforming
to ITU-T Recommendation V.70.. 44
B.1 Introduction .. 44
B.2 General description of the VAD/DTX/CNG algorithms................................ 44
B.3 Detailed description of the VAD algorithm ... 45

iv ITU-T Rec. G.729 (01/2007)

 Page
B.4 Detailed description of the DTX/CNG algorithms... 52
B.5 Bit-exact description of the silence compression scheme 58

Annex C – Reference floating-point implementation for G.729 CS-ACELP 8 kbit/s
speech coding.. 60
C.1 Scope .. 60
C.2 Normative references.. 60
C.3 Overview .. 60
C.4 Algorithmic description.. 60
C.5 ANSI C code... 60

Annex C+ – Reference floating-point implementation for integrating G.729 CS-ACELP
speech coding main body with Annexes B, D and E.. 63
C+.1 Scope .. 63
C+.2 Normative references.. 63
C+.3 Overview .. 63
C+.4 New functionality ... 63
C+.5 Algorithm description... 64
C+.6 Description of C source code ... 68

Annex D – +CS-ACELP speech coding algorithm at 6.4 kbit/s.. 71
D.1 Scope .. 71
D.2 Normative references.. 71
D.3 General coder description for the 6.4 kbit/s extension 71
D.4 Bit allocation .. 72
D.5 Functional description of the encoder .. 72
D.6 Functional description of decoder .. 73
D.7 ANSI C code... 73

Annex E – CS-ACELP speech coding algorithm at 11.8 kbit/s... 76
E.1 Introduction .. 76
E.2 General description of the speech codec .. 76
E.3 Functional description of the encoder .. 78
E.4 Functional description of the decoder .. 87
E.5 Bit-exact description of the CS-ACELP coder... 94
E.6 Bibliography ... 96

Annex F – Reference implementation of G.729 Annex B DTX functionality for Annex D... 97
F.1 Scope .. 97
F.2 Normative references.. 97
F.3 Overview .. 97
F.4 New functionality ... 97
F.5 Algorithm description... 97
F.6 Description of C source code ... 98

 ITU-T Rec. G.729 (01/2007) v

 Page
Annex G – Reference implementation of Annex B DTX functionality for Annex E.............. 101

G.1 Scope .. 101
G.2 Normative references.. 101
G.3 Overview .. 101
G.4 New functionality ... 101
G.5 Algorithm description... 102
G.6 Description of C source code ... 106

Annex H – Reference implementation of switching procedure between Annexes D and E ... 110
H.1 Scope .. 110
H.2 Normative references.. 110
H.3 Overview .. 110
H.4 Algorithm description... 110
H.5 Description of C source code ... 111

Annex I – Reference fixed-point implementation for integrating G.729 CS-ACELP
speech coding main body with Annexes B, D and E.. 114
I.1 Scope .. 114
I.2 Normative references.. 114
I.3 Overview .. 114
I.4 New functionality ... 114
I.5 Algorithm description... 115
I.6 Description of C source code ... 119

Annex J – An embedded variable bit-rate extension to G.729: An
interoperable 8-32 kbit/s scalable wideband extension to G.729 123

Appendix I – External synchronous reset performance for G.729 codecs in systems using
external VAD/DTX/CNG... 124
I.1 Introduction .. 124
I.2 Experimental design ... 124
I.3 Performance observations .. 125
I.4 Conclusion.. 125

Appendix II – G.729 Annex B enhancements in voice-over-IP applications – Option 1........ 126
II.1 Scope .. 126
II.2 Abbreviations and acronyms .. 126
II.3 Introduction .. 126
II.4 Identified problems of G.729B in VoIP applications..................................... 126
II.5 Experimental design ... 127
II.6 Electronic attachments.. 131

vi ITU-T Rec. G.729 (01/2007)

 Page
Appendix III – Annex B enhancements in voice-over-IP applications – Option 2 132

III.1 Scope .. 132
III.2 Solutions for the reported issues with Annex B ... 132
III.3 Examples for the solutions of reported issues with Annex B......................... 132
III.4 Electronic attachments.. 136

Electronic attachments: Reference C code implementation and test vectors

 ITU-T Rec. G.729 (01/2007) 1

ITU-T Recommendation G.729

Coding of speech at 8 kbit/s using conjugate-structure
algebraic-code-excited linear prediction (CS-ACELP)

1 Scope
This Recommendation contains the description of an algorithm for the coding of speech signals at
8 kbit/s using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP). This
Recommendation includes an electronic attachment containing reference C code and test vectors for
fixed-point implementation of CS-ACELP at 8 kbit/s.

This coder is designed to operate with a digital signal obtained by first performing telephone
bandwidth filtering [ITU-T G.712] of the analogue input signal, then sampling it at 8000 Hz,
followed by conversion to 16-bit linear PCM for the input to the encoder. The output of the decoder
should be converted back to an analogue signal by similar means. Other input/output characteristics,
such as those specified by [ITU-T G.711] for 64 kbit/s PCM data, should be converted to 16-bit
linear PCM before encoding, or from 16-bit linear PCM to the appropriate format after decoding.
The bit stream from the encoder to the decoder is defined within this Recommendation.

This Recommendation is organized as follows: Clause 2 gives a general outline of the CS-ACELP
algorithm. In clauses 3 and 4, the CS-ACELP encoder and decoder principles are discussed,
respectively. Clause 5 describes the software that defines this coder in 16 bit fixed-point arithmetic.

2 General description of the coder
The CS-ACELP coder is based on the code-excited linear prediction (CELP) coding model. The
coder operates on speech frames of 10 ms corresponding to 80 samples at a sampling rate of
8000 samples per second. For every 10 ms frame, the speech signal is analysed to extract the
parameters of the CELP model (linear prediction filter coefficients, adaptive and fixed-codebook
indices and gains). These parameters are encoded and transmitted. The bit allocation of the coder
parameters is shown in Table 1. At the decoder, these parameters are used to retrieve the excitation
and synthesis filter parameters. The speech is reconstructed by filtering this excitation through the
short-term synthesis filter, as is shown in Figure 1. The short-term synthesis filter is based on a 10th
order linear prediction (LP) filter. The long-term, or pitch synthesis filter is implemented using the
so-called adaptive-codebook approach. After computing the reconstructed speech, it is further
enhanced by a postfilter.

Table 1 – Bit allocation of the 8 kbit/s CS-ACELP algorithm (10 ms frame)

Parameter Codeword Subframe 1 Subframe 2 Total per frame

Line spectrum pairs L0, L1, L2, L3 18
Adaptive-codebook delay P1, P2 8 5 13
Pitch-delay parity P0 1 1
Fixed-codebook index C1, C2 13 13 26
Fixed-codebook sign S1, S2 4 4 8
Codebook gains (stage 1) GA1, GA2 3 3 6
Codebook gains (stage 2) GB1, GB2 4 4 8
Total 80

2 ITU-T Rec. G.729 (01/2007)

Figure 1 – Block diagram of conceptual CELP synthesis model

2.1 Encoder
The encoding principle is shown in Figure 2. The input signal is high-pass filtered and scaled in the
preprocessing block. The preprocessed signal serves as the input signal for all subsequent analysis.
LP analysis is done once per 10 ms frame to compute the LP filter coefficients. These coefficients
are converted to line spectrum pairs (LSPs) and quantized using predictive two-stage vector
quantization (VQ) with 18 bits. The excitation signal is chosen by using an analysis-by-synthesis
search procedure in which the error between the original and reconstructed speech is minimized
according to a perceptually weighted distortion measure. This is done by filtering the error signal
with a perceptual weighting filter, whose coefficients are derived from the unquantized LP filter.
The amount of perceptual weighting is made adaptive to improve the performance for input signals
with a flat frequency-response.

The excitation parameters (fixed and adaptive-codebook parameters) are determined per subframe
of 5 ms (40 samples) each. The quantized and unquantized LP filter coefficients are used for the
second subframe, while in the first subframe interpolated LP filter coefficients are used (both
quantized and unquantized). An open-loop pitch delay is estimated once per 10 ms frame based on
the perceptually weighted speech signal. Then the following operations are repeated for each
subframe. The target signal x(n) is computed by filtering the LP residual through the weighted
synthesis filter W(z)/Â(z). The initial states of these filters are updated by filtering the error between
LP residual and excitation. This is equivalent to the common approach of subtracting the zero-input
response of the weighted synthesis filter from the weighted speech signal. The impulse
response h(n) of the weighted synthesis filter is computed. Closed-loop pitch analysis is then done
(to find the adaptive-codebook delay and gain), using the target x(n) and impulse response h(n), by
searching around the value of the open-loop pitch delay. A fractional pitch delay with 1/3 resolution
is used. The pitch delay is encoded with 8 bits in the first subframe and differentially encoded with
5 bits in the second subframe. The target signal x(n) is updated by subtracting the (filtered)
adaptive-codebook contribution, and this new target, x'(n), is used in the fixed-codebook search to
find the optimum excitation. An algebraic codebook with 17 bits is used for the fixed-codebook
excitation. The gains of the adaptive and fixed-codebook contributions are vector quantized with
7 bits (with MA prediction applied to the fixed-codebook gain). Finally, the filter memories are
updated using the determined excitation signal.

 ITU-T Rec. G.729 (01/2007) 3

Figure 2 – Principle of the CS-ACELP encoder

2.2 Decoder
The decoder principle is shown in Figure 3. First, the parameter's indices are extracted from the
received bit stream. These indices are decoded to obtain the coder parameters corresponding to a
10 ms speech frame. These parameters are the LSP coefficients, the two fractional pitch delays, the
two fixed-codebook vectors, and the two sets of adaptive and fixed-codebook gains. The LSP
coefficients are interpolated and converted to LP filter coefficients for each subframe. Then, for
each 5 ms subframe the following steps are done:
– the excitation is constructed by adding the adaptive and fixed-codebook vectors scaled by

their respective gains;
– the speech is reconstructed by filtering the excitation through the LP synthesis filter; and
– the reconstructed speech signal is passed through a post-processing stage, which includes

an adaptive postfilter based on the long-term and short-term synthesis filters, followed by a
high-pass filter and scaling operation.

4 ITU-T Rec. G.729 (01/2007)

Figure 3 – Principle of the CS-ACELP decoder

2.3 Delay
This coder encodes speech and other audio signals with 10 ms frames. In addition, there is a
look-ahead of 5 ms, resulting in a total algorithmic delay of 15 ms. All additional delays in a
practical implementation of this coder are due to:
– processing time needed for encoding and decoding operations;
– transmission time on the communication link; and
– multiplexing delay when combining audio data with other data.

2.4 Speech coder description
The description of the speech coding algorithm of this Recommendation is made in terms of
bit-exact fixed-point mathematical operations. The ANSI C code indicated in clause 5, which
constitutes an integral part of this Recommendation, reflects this bit-exact fixed-point descriptive
approach. The mathematical descriptions of the encoder (clause 3), and decoder (clause 4), can be
implemented in several other fashions, possibly leading to a codec implementation not complying
with this Recommendation. Therefore, the algorithm description of the ANSI C code of clause 5
shall take precedence over the mathematical descriptions of clauses 3 and 4 whenever discrepancies
are found. A non-exhaustive set of test signals, which can be used with the ANSI C code, are
available from the ITU.

2.5 Notational conventions

Throughout this Recommendation, it is tried to maintain the following notational conventions:
– Codebooks are denoted by calligraphic characters (e.g.,).
– Time signals are denoted by their symbol and a sample index between parenthesis

[e.g., s(n)]. The symbol n is used as sample index.
– Superscript indices between parenthesis (e.g., g(m)) are used to indicate time-dependency of

variables. The variable m refers, depending on the context, to either a frame or subframe
index, and the variable n to a sample index.

– Recursion indices are identified by a superscript between square brackets (e.g., E[k]).
– Subscript indices identify a particular element in a coefficient array.
– The symbol ^ identifies a quantized version of a parameter (e.g., gĉ).
– Parameter ranges are given between square brackets, and include the boundaries

(e.g., [0.6, 0.9]).
– The function log denotes a logarithm with base 10.

 ITU-T Rec. G.729 (01/2007) 5

– The function int denotes truncation to its integer value.
– The decimal floating-point numbers used are rounded versions of the values used in the

16 bit fixed-point ANSI C implementation.

Table 2 lists the most relevant symbols used throughout this Recommendation. A glossary of the
most relevant signals is given in Table 3. Table 4 summarizes relevant variables and their
dimensions. Constant parameters are listed in Table 5. The acronyms used in this Recommendation
are summarized in Table 6.

Table 2 – Glossary of most relevant symbols

Name Reference Description

1/Â(z) Equation (2) LP synthesis filter
Hh1(z) Equation (1) Input high-pass filter
Hp(z) Equation (78) Long-term postfilter
Hf(z) Equation (84) Short-term postfilter
Ht(z) Equation (86) Tilt-compensation filter
Hh2(z) Equation (91) Output high-pass filter
P(z) Equation (46) Pre-filter for fixed codebook
W(z) Equation (27) Weighting filter

Table 3 – Glossary of most relevant signals

Name Reference Description

c(n) 3.8 Fixed-codebook contribution
d(n) 3.8.1 Correlation between target signal and h(n)
ew(n) 3.10 Error signal
h(n) 3.5 Impulse response of weighting and synthesis filters
r(n) 3.6 Residual signal
s(n) 3.1 Preprocessed speech signal
ŝ(n) 4.1.6 Reconstructed speech signal
s'(n) 3.2.1 Windowed speech signal
sf(n) 4.2 Postfiltered output
sf ' (n) 4.2 Gain-scaled postfiltered output
sw(n) 3.6 Weighted speech signal
x(n) 3.6 Target signal
x'(n) 3.8.1 Second target signal
u(n) 3.10 Excitation to LP synthesis filter
v(n) 3.7.1 Adaptive-codebook contribution
y(n) 3.7.3 Convolution v(n) * h(n)
z(n) 3.9 Convolution c(n) * h(n)

6 ITU-T Rec. G.729 (01/2007)

Table 4 – Glossary of most relevant variables

Name Size Description

gp 1 Adaptive-codebook gain
gc 1 Fixed-codebook gain
gl 1 Gain term for long-term postfilter
gf 1 Gain term for short-term postfilter
gt 1 Gain term for tilt postfilter
G 1 Gain for gain normalization
Top 1 Open-loop pitch delay
ai 11 LP coefficients (a0 = 1.0)
ki 10 Reflection coefficients
k'1 1 Reflection coefficient for tilt postfilter
Oi 2 LAR coefficients
ωi 10 LSF normalized frequencies
p̂i, j 40 MA predictor for LSF quantization
qi 10 LSP coefficients
r(k) 11 Auto-correlation coefficients
r'(k) 11 Modified auto-correlation coefficients
wi 10 LSP weighting coefficients

il̂ 10 LSP quantizer output

Table 5 – Glossary of most relevant constants

Name Value Description

fs 8000 Sampling frequency
f0 60 Bandwidth expansion
γ1 0.94/0.98 Weight factor perceptual weighting filter

γ2 0.60/[0.4 – 0.7] Weight factor perceptual weighting filter

γn 0.55 Weight factor postfilter

γd 0.70 Weight factor postfilter

γp 0.50 Weight factor pitch postfilter

γt 0.90/0.2 Weight factor tilt postfilter

C Table 7 Fixed (algebraic) codebook

L0 3.2.4 Moving-average predictor codebook

L1 3.2.4 First stage LSP codebook

L2 3.2.4 Second stage LSP codebook (low part)

L3 3.2.4 Second stage LSP codebook (high part)

GA 3.9 Gain codebook (first stage)

GB 3.9 Gain codebook (second stage)

wlag Equation (6) Correlation lag window
wlp Equation (3) LP analysis window

 ITU-T Rec. G.729 (01/2007) 7

Table 6 – Glossary of acronyms

Acronym Description
CELP Code-Excited Linear Prediction
CS-ACELP Conjugate-Structure Algebraic CELP
MA Moving Average
MSB Most Significant Bit
MSE Mean-Squared Error
LAR Log Area Ratio
LP Linear Prediction
LSP Line Spectral Pair
LSF Line Spectral Frequency
VQ Vector quantization

3 Functional description of the encoder
This clause describes the different functions of the encoder represented in the blocks of Figure 2. A
detailed signal flow is shown in Figure 4.

3.1 Preprocessing
As stated in clause 2, the input to the speech encoder is assumed to be a 16-bit PCM signal. Two
preprocessing functions are applied before the encoding process:
1) signal scaling; and
2) high-pass filtering.

The scaling consists of dividing the input by a factor 2 to reduce the possibility of overflows in the
fixed-point implementation. The high-pass filter serves as a precaution against undesired
low-frequency components. A second order pole/zero filter with a cut-off frequency of 140 Hz is
used. Both the scaling and high-pass filtering are combined by dividing the coefficients at the
numerator of this filter by 2. The resulting filter is given by:

 () 21

21

1 9114024.09059465.11
46363718.092724705.046363718.0

−−

−−

+−
+−=

zz
zzzHh (1)

The input signal filtered through Hh1(z) is referred to as s(n), and will be used in all subsequent
coder operations.

3.2 Linear prediction analysis and quantization
The short-term analysis and synthesis filters are based on 10th order linear prediction (LP) filters.

The LP synthesis filter is defined as:

∑
=

−+
= 10

1
ˆ1

1
)(ˆ

1

i

i
i zazA

 (2)

where âi, i = 1,...,10, are the (quantized) linear prediction (LP) coefficients. Short-term prediction,
or linear prediction analysis is performed once per speech frame using the autocorrelation method
with a 30 ms asymmetric window. Every 80 samples (10 ms), the autocorrelation coefficients of
windowed speech are computed and converted to the LP coefficients using the Levinson-Durbin
algorithm. Then the LP coefficients are transformed to the LSP domain for quantization and
interpolation purposes. The interpolated quantized and unquantized filters are converted back to the
LP filter coefficients (to construct the synthesis and weighting filters for each subframe).

8 ITU-T Rec. G.729 (01/2007)

Figure 4 – Signal flow at the CS-ACELP encoder

 ITU-T Rec. G.729 (01/2007) 9

3.2.1 Windowing and autocorrelation computation
The LP analysis window consists of two parts: the first part is half a Hamming window and the
second part is a quarter of a cosine function cycle. The window is given by:

 () ()

 239...,002
159

2002cos

0,...,199
399
2cos 46.054.0

⎪
⎪
⎩

⎪⎪
⎨

⎧

=⎟
⎠
⎞

⎜
⎝
⎛ −π

=⎟
⎠
⎞

⎜
⎝
⎛ π−

=
nn

nn

nwlp (3)

There is a 5 ms look-ahead in the LP analysis which means that 40 samples are needed from the
future speech frame. This translates into an extra algorithmic delay of 5 ms at the encoder stage.
The LP analysis window applies to 120 samples from past speech frames, 80 samples from the
present speech frame, and 40 samples from the future frame. The windowing procedure is
illustrated in Figure 5.

Figure 5 – Windowing procedure in LP analysis

The different shading patterns identify corresponding excitation and LP analysis windows.

The windowed speech:

 () () () 0,...,239 ==′ nnsnwns lp (4)

is used to compute the autocorrelation coefficients:

 () () () 0,...,10
239

=−= ∑
=

kkn'sn'skr
kn

 (5)

To avoid arithmetic problems for low-level input signals the value of r(0) has a lower boundary of
r(0) = 1.0. A 60 Hz bandwidth expansion is applied by multiplying the autocorrelation coefficients
with:

 () 1,...,10 2
2
1

2
0 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−= k
f

kfexpkw
s

lag
 (6)

where f0 = 60 Hz is the bandwidth expansion and fs = 8000 Hz is the sampling frequency.
Furthermore, r(0) is multiplied by a white-noise correction factor 1.0001, which is equivalent to
adding a noise floor at –40 dB. The modified autocorrelation coefficients are given by:

() ()
() () () 1,...,10

0 000110
==′

=′
kkrkwkr

r.r

lag

 (7)

10 ITU-T Rec. G.729 (01/2007)

3.2.2 Levinson-Durbin algorithm
The modified autocorrelation coefficients r'(k) are used to obtain the LP filter coefficients,
ai, i = 1,...,10, by solving the set of equations:

 () () 1,...,10
10

1
=′−=−′∑

=
kkrkira

i
i

 (8)

The set of equations in (8) is solved using the Levinson-Durbin algorithm. This algorithm uses the
following recursion:

[] ()

[]

[] () []

[]

[] [] []

[] () []

end
1

end

1 to1for

1

10 to1for
0

12

11

1
1

0

1

1
0

0

−

−
−

−

−
−

=

−

−

−=

+=

−=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−′−=

=

=
′=

∑

i
i

i

i
jii

i
j

i
j

i
i

i

i
i

j

i
ji

i

EkE

akaa

ij
ka

E/jirak

a

i
rE

The final solution is given as []10
jj aa = , j = 0,...,10, with a0 = 1.0.

3.2.3 LP to LSP conversion
The LP filter coefficients ai, i = 0,...,10 are converted to line spectral pair (LSP) coefficients for
quantization and interpolation purposes. For a 10th order LP filter, the LSP coefficients are defined
as the roots of the sum and difference polynomials:

 () () ()111
1

−−+=′ zAzzAzF (9)

and:

 () () ()111
2

−−−=′ zAzzAzF (10)

respectively. The polynomial F1′(z) is symmetric, and F2′(z) is antisymmetric. It can be proven that
all roots of these polynomials are on the unit circle and they alternate each other. F1′(z) has a root
z = –1 (ω = π) and F2′(z) has a root z = 1 (w = 0). These two roots are eliminated by defining the new
polynomials:

 () () ()1
11 1/ −+′= zzFzF (11)

and:

 () () ()1
22 1/ −−′= zzFzF (12)

Each polynomial has five conjugate roots on the unit circle (e±jωi), and they can be written as:

 () ()∏
=

−− +−=
9,...,3,1

21
1 21

i
i zzqzF (13)

 ITU-T Rec. G.729 (01/2007) 11

and:

 () ()∏
=

−− +−=
10,...,4,2

21
2 21

i
i zzqzF (14)

where qi = cos(ωi). The coefficients ωi are the line spectral frequencies (LSF) and they satisfy the
ordering property 0 < ωi < ω2 < ... < ω10 < π. The coefficients qi are referred to as the LSP
coefficients in the cosine domain.

Since both polynomials F1(z) and F2(z) are symmetric only the first five coefficients of each
polynomial need to be computed. The coefficients of these polynomials are found by the recursive
relations:

() ()
() () 401

401

21012

11011

,...,iifaaif
,...,iifaaif

ii

ii

=+−=+
=−+=+

−+

−+ (15)

where f1(0) = f2(0) = 1.0. The LSP coefficients are found by evaluating the polynomials F1(z) and
F2(z) at 60 points equally spaced between 0 and π and checking for sign changes. A sign change
signifies the existence of a root and the sign change interval is then divided four times to allow
better tracking of the root. The Chebyshev polynomials are used to evaluate F1(z) and F2(z). In this
method the roots are found directly in the cosine domain. The polynomials F1(z) or F2(z), evaluated
at z = ejω, can be written as:

 () ()xCeF j ωω 52 −= (16)

with:

 () () () () () () () () () () () 2/54321 12345 fxTfxTfxTfxTfxTxC +++++= (17)

where Tm(x) = cos(mω) is the mth order Chebyshev polynomial, and f(i), i = 1,...,5, are the
coefficients of either F1(z) or F2(z), computed using equation (15). The polynomial C(x) is
evaluated at a certain value of x = cos(ω) using the recursive relation:

()

() () 25
end

52
1 4

21

21

/fbxbxC

–kfb xbb
todownkfor

kkk

+−=

+−=
=

++

with initial values b5 = 1 and b6 = 0.

3.2.4 Quantization of the LSP coefficients

The LSP coefficients qi are quantized using the LSF representation ωi in the normalized frequency
domain [0, π]; that is:

 () 1,...,10 arccos ==ω iqii (18)

A switched 4th order MA prediction is used to predict the LSF coefficients of the current frame.
The difference between the computed and predicted coefficients is quantized using a two-stage
vector quantizer. The first stage is a 10-dimensional VQ using codebook L1 with 128 entries
(7 bits). The second stage is a 10-bit VQ which has been implemented as a split VQ using
two 5-dimensional codebooks, L2 and L3 containing 32 entries (5 bits) each.

12 ITU-T Rec. G.729 (01/2007)

To explain the quantization process, it is convenient to first describe the decoding process. Each
coefficient is obtained from the sum of two codebooks:

() ()
() ()⎩

⎨
⎧

=+
=+

=
− 6,...,10 3311

1,...,5 2211

5 iLL
iLL

l̂
ii

ii
i LL

LL
 (19)

where L1, L2 and L3 are the codebook indices. To avoid sharp resonances in the quantized LP
synthesis filter, the coefficients il̂ are arranged such that adjacent coefficients have a minimum
distance of J. The rearrangement routine is shown below:

()
()

()

end
end

2

2

 if

102for

1

11

1

/Jl̂l̂l̂

/Jl̂l̂l̂

Jl̂l̂

,..., i

i–ii

i–ii–

ii–

++=

−+=

−>

=

This rearrangement process is done twice. First with a value of J = 0.0012, then with a value of
J = 0.0006. After this rearrangement process, the quantized LSF coefficients)(ˆ m

iω for the current

frame m, are obtained from the weighted sum of previous quantizer outputs k)(m
il

−ˆ , and the current

quantizer output (m)
il̂ .

 () () 1,...,10ˆˆˆˆ1ˆ
4

1
,

4

1
, =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=ω ∑∑

=

−

=
i lPlP

k

km
iki

m
i

k
ki

m
i (20)

where kip ,ˆ are the coefficients of the switched MA predictor. Which MA predictor to use is defined

by a separate bit L0. At start up the initial values of)(ˆ k
il are given by 11/ˆ π= ili for all k < 0.

After computing iω̂ , the corresponding filter is checked for stability. This is done as follows:

1) order the coefficient iω̂ in increasing value;

2) if 1ω̂ < 0.005 then 1ω̂ = 0.005;

3) if ii ω−ω + ˆˆ 1 < 0.0391 then 0391.0ˆˆ 1 +ω=ω + ii , i = 1,…,9;

4) if 135.3ˆ then 135.3ˆ 1010 =ω>ω .

The procedure for encoding the LSF parameters can be outlined as follows. For each of the two MA
predictors the best approximation to the current LSF coefficients has to be found. The best
approximation is defined as the one that minimizes the weighted mean-squared error:

 ()∑
=

ω−ω=
10

1

2ˆ
i

iiilsf wE (21)

 ITU-T Rec. G.729 (01/2007) 13

The weights wi are made adaptive as a function of the unquantized LSF coefficients,

()

()

() otherwise
0192.0

1192.010

0.1

otherwise
01

1110

0.1
92for,

otherwise
0104.0

1104.010

0.1

9
2

9
10

11
2

11

2
2

2
1

>−π+ω−

⎪⎩

⎪
⎨
⎧

+−π+ω−
=

>−ω−ω

⎪⎩

⎪
⎨
⎧

+−ω−ω
=≤≤

>−π−ω

⎪⎩

⎪
⎨
⎧

+−π−ω
=

−+

−+

if
w

if
iw

if
w

ii

ii
i (22)

In addition, the weights w5 and w6 are each multiplied by 1.2.

The vector to be quantized for the current frame m is obtained from

 () () 1,...,10 1
4

1

4

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−ω= ∑∑

==

− iP̂/l̂P̂l
k

k,i
k

km
ik,i

m
ii (23)

The first codebook L1 is searched and the entry L1 that minimizes the (unweighted) mean-squared
error is selected. This is followed by a search of the second codebook L2, which defines the lower
part of the second stage. For each possible candidate, the partial vector iω̂ , i = 1,...,5 is
reconstructed using equation (20), and rearranged to guarantee a minimum distance of 0.0012. The
weighted MSE of equation (21) is computed, and the vector L2 which results in the lowest error is
selected. Using the selected first stage vector L1 and the lower part of the second stage L2, the
higher part of the second stage is searched from codebook L3. Again the rearrangement procedure
is used to guarantee a minimum distance of 0.0012. The vector L3 that minimizes the weighted
MSE is selected. The resulting vector il̂ , i = 1,...,10 is rearranged to guarantee a minimum distance
of 0.0006. This process is done for each of the two MA predictors defined by L0, and the MA
predictor L0 that produces the lowest weighted MSE is selected. As was explained at the beginning
of this clause, the resulting vector il̂ is rearranged twice and a stability check is applied to produce
the quantized LSF coefficients iω̂ .

3.2.5 Interpolation of the LSP coefficients
The quantized (and unquantized) LP coefficients are used for the second subframe. For the first
subframe, the quantized (and unquantized) LP coefficients are obtained by linear interpolation of
the corresponding parameters in the adjacent subframes. The interpolation is done on the LSP
coefficients in the cosine domain. Let ()current

iq be the LSP coefficients computed for the current

10 ms frame, and ()previous
iq the LSP coefficients computed in the previous 10 ms frame. The

(unquantized) interpolated LSP coefficients in each of the two subframes are given by:

() ()

() 1,...,102
1,...,1050501

)2(

)1(

==
=+=

iqq:Subframe
iq.q.q:Subframe

current
ii

current
i

previous
ii (24)

14 ITU-T Rec. G.729 (01/2007)

The same interpolation procedure is used for the interpolation of the quantized LSP coefficients by
substituting qi by iq̂ in equation (24).

3.2.6 LSP to LP conversion
Once the LSP coefficients are quantized and interpolated, they are converted back to the LP
coefficients ai. This conversion is done as follows: The coefficients of F1(z) and F2(z) are found by
expanding equations (13) and (14) knowing the quantized and interpolated LSP coefficients. The
coefficients f1(i), i = 1,...,5 are computed from qi using the recursive relation:

()

end
end

)2()1(2)(

1 down to 1–for
)2(2)1(2)(

5 to1for

1]–[i
1

1]–[i
112

1]–[i
1

[i]
1

11121

−+−−=

=
−+−−=

=

−

−

jfjfqjfjf

ij
ififqif

i

i

i

with initial values f1(0) = 1 and f1(–1) = 0. The coefficients f2(i) are computed similarly by replacing
q2i–1 by q2i.

Once the coefficients f1(i) and f2(i) are found, F1(z) and F2(z) are multiplied by 1 + z–1 and 1 – z–1,
respectively, to obtain)(1 zF ′ and)(2 zF ′ ; that is:

() () ()
() () () 5,...,11

5,...,11

222

111

=−−=′
=−+=′

iififif
iififif

 (25)

Finally the LP coefficients are computed from f ′1(i) and f ′2(i) by:

() ()
() ()⎩

⎨
⎧

=−′−−′
=′+′

=
6,...,1011501150
1,...,5 5050

21

21

iif.if.
iif.if.

ai (26)

This is directly derived from the relation () 2/)()()(21 zFzFzA ′+′= , and because)(1 zF ′ and)(2 zF ′
are symmetric and antisymmetric polynomials, respectively.

3.3 Perceptual weighting
The perceptual weighting filter is based on the unquantized LP filter coefficients ai, and is given by:

 () ()
()

∑

∑

=

−

=

−

γ+

γ+
=

γ
γ= 10

1
2

10

1
1

2

1

1

1

/
/

i

i
i

i

i

i
i

i

za

za

zA
zAzW (27)

The values of γ1 and γ2 determine the frequency response of the filter W(z). By proper adjustment of
these variables it is possible to make the weighting more effective. This is done by making γ1 and γ2
a function of the spectral shape of the input signal. This adaptation is done once per 10 ms frame,
but an interpolation procedure for each first subframe is used to smooth this adaptation process. The
spectral shape is obtained from a 2nd order linear prediction filter, obtained as a by-product from
the Levinson-Durbin recursion (see clause 3.2.2). The reflection coefficients ki are converted to log
area ratio (LAR) coefficients oi by:

 ()
() 21,

01
01 =

−
+= i

k.
k.logo

i

i
i (28)

 ITU-T Rec. G.729 (01/2007) 15

The LAR coefficients corresponding to the current 10 ms frame are used for the second subframe.
The LAR coefficients for the first subframe are obtained through linear interpolation with the LAR
parameters from the previous frame. The interpolated LAR coefficients in each of the two
subframes are given by:

() () ()
() () 21,2

21,50501
2

1

==
=+=

ioo:Subframe
io.o.o:Subframe

current
ii

current
i

previous
ii (29)

The spectral envelope is characterized as being either flat (flat = 1) or tilted (flat = 0). For each
subframe this characterization is obtained by applying a threshold function to the LAR coefficients.
To avoid rapid changes, a hysteresis is used by taking into account the value of flat in the previous
subframe m – 1,

 ()

() () ()

() ()() ()

()

 otherwise

0 and 430or 521 if 1

1 and 650 and 741 if 0

1

1
21

1
21

⎪
⎪
⎩

⎪⎪
⎨

⎧

=<−>

=>−<

=
−

−

−

m

mmm

mmm

m

flat

flat.o.o

flat.o.o

flat (30)

If the interpolated spectrum for a subframe is classified as flat (flat(m) = 1), the weight factors are set
to γ1 = 0.94 and γ2 = 0.6. If the spectrum is classified as tilted (flat(m) = 0), the value of γ1 is set
to 0.98, and the value of γ2 is adapted to the strength of the resonances in the LP synthesis filter, but
is bounded between 0.4 and 0.7. If a strong resonance is present, the value of γ2 is set closer to the
upper bound. This adaptation is achieved by a criterion based on the minimum distance between
two successive LSP coefficients for the current subframe. The minimum distance is given by:

 [] 1,...,9 1 =ω−ω= + imind iimin (31)

The value of γ2 is computed using the linear relationship:

 70 0.4 by bounded 0106 22 ..d. min ≤γ≤+−=γ (32)

The weighted speech signal in a subframe is given by:

 () () () ()∑∑
==

=−γ−−γ+=
10

1
2

10

1
1 390

i

i
i

i

i
i ,...,ninswainsansnsw (33)

The weighted speech signal sw(n) is used to find an estimation of the pitch delay in the speech
frame.

3.4 Open-loop pitch analysis
To reduce the complexity of the search for the best adaptive-codebook delay, the search range is
limited around a candidate delay Top, obtained from an open-loop pitch analysis. This open-loop
pitch analysis is done once per frame (10 ms). The open-loop pitch estimation uses the weighted
speech signal sw(n) of equation (33), and is done as follows: In the first step, three maxima of the
correlation:

 () () ()∑
=

−=
79

0n
knswnswkR (34)

are found in the following three ranges:

39,...,20:3
79,...,40:2

143,...,80:1

 i
 i
 i

=
=
=

16 ITU-T Rec. G.729 (01/2007)

The retained maxima R(ti), i = 1,...,3, are normalized through:

 () ()
()

3,...,1
2

=
−

=′
∑

i
tnsw

tRtR
in

i
i (35)

The winner among the three normalized correlations is selected by favouring the delays with the
values in the lower range. This is done by weighting the normalized correlations corresponding to
the longer delays. The best open-loop delay Top is determined as follows:

() ()
() ()

() ()

() ()
() ()

end

 850 if
end

 850 if

3

3

3

2

2

2

1

1

tT

tRTR

TR.tR

tT

tRTR

TR.tR

tRTR

tT

op

op

op

op

op

op

op

op

=

′=′

′≥′

=

′=′

′≥′

′=′
=

This procedure of dividing the delay range into three sections and favouring the smaller values is
used to avoid choosing pitch multiples.

3.5 Computation of the impulse response
The impulse response h(n) of the weighted synthesis filter W(z)/Â(z) is needed for the search of
adaptive and fixed codebooks. The impulse response h(n) is computed for each subframe by
filtering a signal consisting of the coefficients of the filter A(z/γ1) extended by zeros through the two
filters 1/Â(z) and 1/A(z/γ2).

3.6 Computation of the target signal
The target signal x(n) for the adaptive-codebook search is usually computed by subtracting the
zero-input response of the weighted synthesis filter W(z)/Â(z) = A(z/γ1)/[Â(z)A(z/γ2)] from the
weighted speech signal sw(n) of equation (33). This is done on a subframe basis.

An equivalent procedure for computing the target signal, which is used in this Recommendation, is
the filtering of the LP residual signal r(n) through the combination of synthesis filter 1/Â(z) and the
weighting filter A(z/γ1)/A(z/γ2). After determining the excitation for the subframe, the initial states
of these filters are updated by filtering the difference between the residual and excitation signals.
The memory update of these filters is explained in clause 3.10.

The residual signal r(n), which is needed for finding the target vector is also used in the
adaptive-codebook search to extend the past excitation buffer. This simplifies the adaptive-
codebook search procedure for delays less than the subframe size of 40 as will be explained in the
next clause. The LP residual is given by:

 () () () 0,...,39
10

1
=−+= ∑

=
ninsânsnr

i
i (36)

 ITU-T Rec. G.729 (01/2007) 17

3.7 Adaptive-codebook search
The adaptive-codebook parameters (or pitch parameters) are the delay and gain. In the
adaptive-codebook approach for implementing the pitch filter, the excitation is repeated for delays
less than the subframe length. In the search stage, the excitation is extended by the LP residual to
simplify the closed-loop search. The adaptive-codebook search is done every (5 ms) subframe. In
the first subframe, a fractional pitch delay T1 is used with a resolution of 1/3 in the range of

⎥⎦
⎤

⎢⎣
⎡

3
284,

3
119 and integers only in the range [85, 143]. For the second subframe, a delay T2 with a

resolution of 1/3 is always used in the range ()
3
251 −Tint , ()

3
24int 1 +T , where int(T1) is the integer

part of the fractional pitch delay T1 of the first subframe. This range is adapted for the cases where
T1 straddles the boundaries of the delay range.

For each subframe, the optimal delay is determined using closed-loop analysis that minimizes the
weighted mean-squared error. In the first subframe the delay T1 is found by searching a small range
(six samples) of delay values around the open-loop delay Top (see clause 3.4). The search
boundaries tmin and tmax are defined by:

end
6t

143
 then143 if
6

20 then 20

3

−=
=

>
+=

=<

−=

maxmin

max

max

minmax

minmin

opmin

t
t

t
tt

ttif

Tt

For the second subframe, closed-loop pitch analysis is done around the pitch selected in the first

subframe to find the optimal delay T2. The search boundaries are between
3
2−mint and

3
2+maxt

where tmin and tmax are derived from T1 as follows:

()

end
9t

143
then 143 if

9
20 then 20 if

51

−=
=

>
+=

=<
−=

maxmin

max

max

minmax

minmin

min

t
t

t
tt

tt
Tintt

The closed-loop pitch search minimizes the mean-squared weighted error between the original and
reconstructed speech. This is achieved by maximizing the term:

 ()
() ()

() ()∑

∑

=

==
39

0

39

0

n
kk

n
k

nyny

nynx
kR (37)

18 ITU-T Rec. G.729 (01/2007)

where x(n) is the target signal and yk(n) is the past filtered excitation at delay k [past excitation
convolved with h(n)]. Note that the search range is limited around a preselected value, which is the
open-loop pitch Top for the first subframe, and T1 for the second subframe.

The convolution yk(n) is computed for the delay tmin. For the other integer delays in the search range
k = tmin + 1,...,tmax, it is updated using the recursive relation:

 () () () () 39,...,011 =−+−= − n nhkunyny kk (38)

where u(n), n = –143,...,39, is the excitation buffer, and yk–1 (–1) = 0. Note that in the search stage,
the samples u(n), n = 0,...,39 are not known, and they are needed for pitch delays less than 40. To
simplify the search, the LP residual is copied to u(n) to make the relation in equation (38) valid for
all delays.

For the determination of T2, and T1, if the optimum integer closed-loop delay is less than 85, the
fractions around the optimum integer delay have to be tested. The fractional pitch search is done by
interpolating the normalized correlation in equation (37) and searching for its maximum. The
interpolation is done using a FIR filter b12 based on a Hamming windowed sinc function with the
sinc truncated at ±11 and padded with zeros at ±12 (b12(12) = 0). The filter has its cut-off frequency
(–3 dB) at 3600 Hz in the oversampled domain. The interpolated values of R(k) for the fractions

3
2− ,

3
1− , 0,

3
1 and

3
2 are obtained using the interpolation formula:

 () () () () ()∑∑
==

=+−++++−=
3

0
12

3

0
12 2 1, 0, 3313

ii
t titbikRitbikRkR (39)

where t = 0, 1, 2 corresponds to the fractions 0,
3
1 and

3
2 , respectively. Note that it is necessary to

compute the correlation terms in equation (37) using a range tmin – 4, tmax + 4, to allow for the
proper interpolation.

3.7.1 Generation of the adaptive-codebook vector
Once the pitch delay has been determined, the adaptive-codebook vector v(n) is computed by
interpolating the past excitation signal u(n) at the given integer delay k and fraction t:

 () () () () ()∑∑
==

==+−++−+++−=
9

0
30

9

0
30 21,0, 0,...,39 3313

ii
tnitbiknuitbiknunv (40)

The interpolation filter b30 is based on a Hamming windowed sinc functions truncated at ±29 and
padded with zeros at ±30 [b30(30) = 0]. The filter has a cut-off frequency (–3 dB) at 3600 Hz in the
oversampled domain.

3.7.2 Codeword computation for adaptive-codebook delays

The pitch delay T1 is encoded with 8 bits in the first subframe and the relative delay in the second
subframe is encoded with 5 bits. A fractional delay T is represented by its integer part int(T), and a
fractional part frac/3, frac = –1, 0, 1. The pitch index P1 is now encoded as:

()() [] []

()() []⎩
⎨
⎧

==+−
−==−+−

=
 0 14386 if 19785

1 0, ,1 8519 if 1193
1

11

11

frac,,...,TTint
frac,,...,TfracTint

P (41)

The value of the pitch delay T2 is encoded relative to the value of T1. Using the same interpretation
as before, the fractional delay T2 represented by its integer part int(T2), and a fractional part
frac/3, frac = –1, 0, 1, is encoded as:

 ()() 232 2 ++−= fractTintP min (42)

 ITU-T Rec. G.729 (01/2007) 19

where tmin is derived from T1 as in clause 3.7.

To make the coder more robust against random bit errors, a parity bit P0 is computed on the delay
index P1 of the first subframe. The parity bit is generated through an XOR operation on the six
most significant bits of P1. At the decoder this parity bit is recomputed and if the recomputed value
does not agree with the transmitted value, an error concealment procedure is applied.

3.7.3 Computation of the adaptive-codebook gain
Once the adaptive-codebook delay is determined, the adaptive-codebook gain gp is computed as:

() ()

() ()
210by bounded 39

0

39

0 .g
nyny

nynx
g p

n

n
p ≤≤=

∑

∑

=

= (43)

where x(n) is the target signal and y(n) is the filtered adaptive-codebook vector [zero-state response
of W(z)/Â(z) to v(n)]. This vector is obtained by convolving v(n) with h(n):

 () () () 0,...,39
0

=−=∑
=

n inhivny
n

i
 (44)

3.8 Fixed codebook – Structure and search
The fixed codebook is based on an algebraic codebook structure using an interleaved single-pulse
permutation (ISPP) design. In this codebook, each codebook vector contains four non-zero pulses.
Each pulse can have either the amplitudes +1 or –1, and can assume the positions given in Table 7.

Table 7 – Structure of fixed codebook C

Pulse Sign Positions

i0 s0: ±1 m0: 0, 5, 10, 15, 20, 25, 30, 35
i1 s1: ±1 m1: 1, 6, 11, 16, 21, 26, 31, 36
i2 s2: ±1 m2: 2, 7, 12, 17, 22, 27, 32, 37
i3 s3: ±1 m3: 3, 8, 13, 18, 23, 28, 33, 38

 4, 9, 14, 19, 24, 29, 34, 39

The codebook vector c(n) is constructed by taking a zero vector of dimension 40, and putting the
four unit pulses at the found locations, multiplied with their corresponding sign:

 () () () () () 0,...,3933221100 =−δ+−δ+−δ+−δ= n mnsmnsmnsmnsnc (45)

where δ(0) is a unit pulse. A special feature incorporated in the codebook is that the selected
codebook vector is filtered through an adaptive pre-filter P(z) that enhances harmonic components
to improve the quality of the reconstructed speech. Here the filter:

 () ()TzzP −β−= 1/1 (46)

is used, where T is the integer component of the pitch delay of the current subframe, and β is a pitch
gain. The value of β is made adaptive by using the quantized adaptive-codebook gain from the
previous subframe, that is:

 () 8.00.2by boundedˆ 1 ≤β≤=β − g m
p (47)

20 ITU-T Rec. G.729 (01/2007)

For delays less than 40, the codebook c(n) of equation (45) is modified according to:

 () ()
() ()

,...,39
1–0,...,

⎩
⎨
⎧

=−β+
=

=
TnTncnc

Tnnc
nc (48)

This modification is incorporated in the fixed-codebook search by modifying the impulse response
h(n) according to:

 () ()
() ()

,...,39
1,...,0

⎩
⎨
⎧

=−β+
−=

=
TnTnhnh

Tnnh
nh (49)

3.8.1 Fixed-codebook search procedure
The fixed codebook is searched by minimizing the mean-squared error between the weighted input
speech sw(n) of equation (33) and the weighted reconstructed speech. The target signal used in the
closed-loop pitch search is updated by subtracting the adaptive-codebook contribution. That is:

 () () () 0,...,39=−=′ n nygnxnx p (50)

where y(n) is the filtered adaptive-codebook vector of equation (44) and gp the adaptive-codebook
gain of equation (43).

The matrix H is defined as the lower triangular Toepliz convolution matrix with diagonal h(0) and
lower diagonal h(1),...,h(39). The matrix Ф = HtH contains the correlations of h(n), and the
elements of this symmetric matrix are given by:

 () () () 39,...,39,...,0
39

ij ijnhinhj,i
jn

==−−=φ ∑
=

 (51)

The correlation signal d(n) is obtained from the target signal x'(n) and the impulse response h(n) by:

 () () () 0,...,39
39

=−′=∑
=

n nihixnd
ni

 (52)

If ck is the kth fixed-codebook vector, then the codebook is searched by maximizing the term:

() ()

k
t
k

n
k

k

k

cc

ncnd

E
C

Φ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
∑
=

239

0
2

 (53)

where t denotes transpose.

The signal d(n) and the matrix Ф are computed before the codebook search. Note that only the
elements actually needed are computed and an efficient storage procedure has been designed to
speed up the search procedure.

The algebraic structure of the codebook C allows for a fast search procedure since the codebook
vector ck contains only four non-zero pulses. The correlation in the numerator of equation (53) for a
given vector ck is given by:

 ()∑
=

=
3

0i
ii mdsC (54)

 ITU-T Rec. G.729 (01/2007) 21

where mi is the position of the ith pulse and si is its amplitude. The energy in the denominator of
equation (53) is given by:

 () ()∑ ∑∑
= +==

φ+φ
2

0

3

1

3

0
2

i ij
jiji

i
ii m,mssm,mE (55)

To simplify the search procedure, the pulse amplitudes are predetermined by quantizing the signal
d(n). This is done by setting the amplitude of a pulse at a certain position equal to the sign of d(n) at
the position. Before the codebook search, the following steps are done. First, the signal d(n) is
decomposed into two parts: its absolute value |d(n)| and its sign sign [d(n)]. Second, the matrix Ф is
modified by including the sign information; that is:

 () ()[] ()[] () 1,...,39 0,...,39 +==φ=φ′ ijij,ijdsignidsignj,i (56)

The main-diagonal elements of Ф are scaled to remove the factor 2 in equation (55)

 () () 0,...,39 50 =φ′=φ′ ii,i.i,i (57)

The correlation in equation (54) is now given by:

 () () () ()3210 mdmdmdmdC +++= (58)

and the energy in equation (55) is given by:

()
() ()
() () ()
() () () ()32313033

212022

1011

00

2

m,mm,mm,mm,m
m,mm,mm,m

m,mm,m
m,m/E

φ′+φ′+φ′+φ′+
φ′+φ′+φ′+

φ′+φ′+
φ′=

 (59)

A focused search approach is used to further simplify the search procedure. In this approach, a
precomputed threshold is tested before entering the last loop, and the loop is entered only if this
threshold is exceeded. The maximum number of times the loop can be entered is fixed so that a low
percentage of the codebook is searched. The threshold is computed based on the correlation C. The
maximum absolute correlation and the average correlation due to the contribution of the first three
pulses, max3 and av3, are found before the codebook search. The threshold is given by:

 ()33333 avmaxKavthr −+= (60)

The fourth loop is entered only if the absolute correlation (due to three pulses) exceeds thr3, where
0 ≤ K3 < 1. The value of K3 controls the percentage of codebook search, and it is set here to 0.4.
Note that this results in a variable search time. To further control the search, the number of times
the last loop is entered (for the two subframes) cannot exceed a certain maximum, which is set here
to 180 (the average worst case per subframe is 90 times).

3.8.2 Codeword computation of the fixed codebook

The pulse positions of the pulses i0, i1 and i2, are encoded with 3 bits each, while the position of i3 is
encoded with 4 bits. Each pulse amplitude is encoded with 1 bit. This gives a total of 17 bits for the
4 pulses. By defining s = 1 if the sign is positive and s = 0 if the sign is negative, the sign codeword
is obtained from:

 3210 842 ssssS +++= (61)

and the fixed-codebook codeword is obtained from:

 () () () ()()jxmmmmC ++++= 5/25125/645/85/ 3210 (62)

where jx = 0 if m3 = 3, 8,...,38, and jx = 1 if m3 = 4, 9,...,39.

22 ITU-T Rec. G.729 (01/2007)

3.9 Quantization of the gains
The adaptive-codebook gain (pitch gain) and the fixed-codebook gain are vector quantized using
7 bits. The gain codebook search is done by minimizing the mean-squared weighted error between
original and reconstructed speech which is given by:

 zyzxyxzzyyxx t
cp

t
c

t
p

t
c

t
p

t ggggggE 22222 +−−++= (63)

where x is the target vector (see clause 3.6), y is the filtered adaptive-codebook vector of
equation (44), and z is the fixed-codebook vector convolved with h(n),

 () () () 0,...,39
0

=−=∑
=

n inhicnz
n

i
 (64)

3.9.1 Gain prediction
The fixed-codebook gain gc can be expressed as:

 cc gg ′γ= (65)

where gc′ is a predicted gain based on previous fixed-codebook energies, and γ is a correction factor.

The mean energy of the fixed-codebook contribution is given by:

 () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

39

0

2

40
1log10

n
ncE (66)

After scaling the vector c(n) with the fixed-codebook gain gc, the energy of the scaled fixed
codebook is given by 20 log gc + E. Let E(m) be the mean-removed energy (in dB) of the (scaled)
fixed-codebook contribution at the subframe m, given by:

 () EEg E c
m −+= log20 (67)

where dB30=E is the mean energy of the fixed-codebook excitation. The gain gc can be
expressed as a function of E(m), E and E– by:

()() 20/10 EEE

c
m

g −+= (68)

The predicted gain gc′ is found by predicting the log-energy of the current fixed-codebook
contribution from the log-energy of previous fixed-codebook contributions. The 4th order MA
prediction is done as follows. The predicted energy is given by:

 () ()∑
=

−=
4

1

ˆ~

i

im
i

m UbE (69)

where [b1 b2 b3 b4] = [0.68 0.58 0.34 0.19] are the MA prediction coefficients, and Û(m) is the
quantized version of the prediction error U(m) at subframe m, defined by:

 () () ()mmm EEU ~−= (70)

The predicted gain gc′ is found by replacing E(m) by its predicted value in equation (68).

()() 2010 /EEE~

c
m

g −+=′ (71)

The correction factor γ is related to the gain-prediction error by:

 () () () ()γ=−= EEU mmm log20~ (72)

 ITU-T Rec. G.729 (01/2007) 23

3.9.2 Codebook search for gain quantization
The adaptive-codebook gain, gp, and the factor γ are vector quantized using a two-stage conjugate
structured codebook. The first stage consists of a 3 bit two-dimensional codebook GA, and the
second stage consists of a 4 bit two-dimensional codebook GB. The first element in each codebook
represents the quantized adaptive-codebook gain pĝ , and the second element represents the
quantized fixed-codebook gain correction factor γ̂ . Given codebook indices GA and GB for GA
and GB, respectively, the quantized adaptive-codebook gain is given by:

)()(11 GBGAĝ p GBGA += (73)

and the quantized fixed-codebook gain by:

 ())()(22c GBGAgˆgĝ cc GBGA +′=γ′= (74)

This conjugate structure simplifies the codebook search by applying a preselection process. The
optimum pitch gain gp, and fixed-codebook gain gc, are derived from equation (63), and are used for
the preselection. The codebook GA contains eight entries in which the second element
(corresponding to gc) has, in general, larger values than the first element (corresponding to gp). This
bias allows a preselection using the value of gc. In this preselection process, a cluster of four vectors
whose second elements are close to gc are selected. Similarly, the codebook GB contains 16 entries
in which each has a bias towards the first element (corresponding to gp). A cluster of eight vectors
whose first elements are close to gp are selected. Hence for each codebook the best 50% candidate
vectors are selected. This is followed by an exhaustive search over the remaining
4 × 8 = 32 possibilities, such that the combination of the two indices minimizes the weighted
mean-squared error of equation (63).

3.9.3 Codeword computation for gain quantizer
The codewords GA and GB for the gain quantizer are obtained from the indices corresponding to
the best choice. To reduce the impact of single bit errors the codebook indices are mapped.

3.10 Memory update
An update of the states of the synthesis and weighting filters is needed to compute the target signal
in the next subframe. After the two gains are quantized, the excitation signal, u(n), in the present
subframe is obtained using:

 () () () 0,...,39ˆˆ =+= n ncgnvgnu cp (75)

where gp^ and gc^ are the quantized adaptive and fixed-codebook gains, respectively, v(n) is the
adaptive-codebook vector (interpolated past excitation), and c(n) is the fixed-codebook vector
including harmonic enhancement. The states of the filters can be updated by filtering the signal
r(n) – u(n) (difference between residual and excitation) through the filters 1/Â(z) and A(z/γ1)/A(z/γ2)
for the 40 sample subframe and saving the states of the filters. This would require three filter
operations. A simpler approach, which requires only one filter operation, is as follows. The locally
reconstructed speech ŝ(n) is computed by filtering the excitation signal through 1/Â(z). The output
of the filter due to the input r(n) – u(n) is equivalent to e(n) = s(n) – ŝ(n). So the states of the
synthesis filter 1/Â(z) are given by e(n), n = 30,...,39. Updating the states of the filter A(z/γ1)/A(z/γ2)
can be done by filtering the error signal e(n) through this filter to find the perceptually weighted
error ew(n). However, the signal ew(n) can be equivalently found by:

 () () () ()nzgnygnxnew cp ˆˆ −−= (76)

Since the signals x(n), y(n) and z(n) are available, the states of the weighting filter are updated by
computing ew(n) as in equation (76) for n = 30,...,39. This saves two filter operations.

24 ITU-T Rec. G.729 (01/2007)

4 Functional description of the decoder
The principle of the decoder was shown in clause 2 (Figure 3). First, the parameters are decoded
(LP coefficients, adaptive-codebook vector, fixed-codebook vector and gains). The transmitted
parameters are listed in Table 8. These decoded parameters are used to compute the reconstructed
speech signal as will be described in clause 4.1. This reconstructed signal is enhanced by a post-
processing operation consisting of a postfilter, a high-pass filter and an upscaling (see clause 4.2).
Clause 4.4 describes the error concealment procedure used when either a parity error has occurred,
or when the frame erasure flag has been set. A detailed signal flow diagram of the decoder is shown
in Figure 6.

Table 8 – Description of transmitted parameters indices

Symbol Description Bits

L0 Switched MA predictor of LSP quantizer 1
L1 First stage vector of quantizer 7
L2 Second stage lower vector of LSP quantizer 5
L3 Second stage higher vector of LSP quantizer 5
P1 Pitch delay first subframe 8
P0 Parity bit for pitch delay 1
C1 Fixed codebook first subframe 13
S1 Signs of fixed-codebook pulses 1st subframe 4
GA1 Gain codebook (stage 1) 1st subframe 3
GB1 Gain codebook (stage 2) 1st subframe 4
P2 Pitch delay second subframe 5
C2 Fixed codebook 2nd subframe 13
S2 Signs of fixed-codebook pulses 2nd subframe 4
GA2 Gain codebook (stage 1) 2nd subframe 3
GB2 Gain codebook (stage 2) 2nd subframe 4
NOTE – The bit stream ordering is reflected by the order in the table. For each parameter,
the most significant bit (MSB) is transmitted first.

4.1 Parameter decoding procedure

The decoding process is done in the following order.

4.1.1 Decoding of LP filter parameters

The received indices L0, L1, L2 and L3 of the LSP quantizer are used to reconstruct the quantized
LSP coefficients using the procedure described in clause 3.2.4. The interpolation procedure
described in clause 3.2.5 is used to obtain two sets of interpolated LSP coefficients (corresponding
to two subframes). For each subframe, the interpolated LSP coefficients are converted to LP filter
coefficients ai, which are used for synthesizing the reconstructed speech in the subframe.

The following steps are repeated for each subframe:
1) decoding of the adaptive-codebook vector;
2) decoding of the fixed-codebook vector;
3) decoding of the adaptive and fixed-codebook gains; and
4) computation of the reconstructed speech.

 ITU-T Rec. G.729 (01/2007) 25

Figure 6 – Signal flow at the CS-ACELP decoder

4.1.2 Computation of the parity bit
Before the excitation is reconstructed, the parity bit is recomputed from the adaptive-codebook
delay index P1 (see clause 3.7.2). If this bit is not identical to the transmitted parity bit P0, it is
likely that bit errors occurred during transmission.

If a parity error occurs on P1, the delay value T1 is set to the integer part of the delay value T2 of the
previous frame. The value T2 is derived with the procedure outlined in clause 4.1.3, using this new
value of T1.

26 ITU-T Rec. G.729 (01/2007)

4.1.3 Decoding of the adaptive-codebook vector
If no parity error has occurred, the received adaptive-codebook index P1 is used to find the integer
and fractional parts of the pitch delay T1. The integer part int(T1) and fractional part frac of T1 are
obtained from P1 as follows:

() ()
()

()

end
frac

PTint

TintPfrac
/PTint

P

0
1121

else
5831

19321
1971 if

1

1

1

=
−=

+−=
++=

<

The integer and fractional part of T2 are obtained from P2 and tmin, where tmin is derived from T1 as
follows:

()

end
t
t

t
tt

tt
Tintt

maxmin

max

max

minmax

minmin

min

9t
143

 then143 if
9

20 then 20 if
51

−=
=

>
+=

=<
−=

Now T2 is decoded using:

() ()

()()1322322
13222

−+−−=
+−+=

/PPfrac
t/PTint min

The adaptive-codebook vector v(n) is found by interpolating the past excitation u(n) (at the pitch
delay) using equation (40).

4.1.4 Decoding of the fixed-codebook vector
The received fixed-codebook index C is used to extract the positions of the excitation pulses. The
pulse signs are obtained from S. This is done by reversing the process described in clause 3.8.2.
Once the pulse positions and signs are decoded, the fixed-codebook vector c(n) is constructed using
equation (45). If the integer part of the pitch delay T is less than the subframe size 40, c(n) is
modified according to equation (48).

4.1.5 Decoding of the adaptive and fixed-codebook gains

The received gain-codebook index gives the adaptive-codebook gain pĝ and the fixed-codebook
gain correction factor γ̂ . This procedure is described in detail in clause 3.9. The estimated fixed-
codebook gain cg′ is found using equation (71). The fixed-codebook vector is obtained from the
product of the quantized gain correction factor with this predicted gain equation (74). The
adaptive-codebook gain is reconstructed using equation (73).

 ITU-T Rec. G.729 (01/2007) 27

4.1.6 Computing the reconstructed speech
The excitation u(n) [see equation (75)] is input to the LP synthesis filter. The reconstructed speech
for the subframe is given by:

 () () () 0,...,39ˆˆˆ
10

1
=−−= ∑

=
n insanuns

i
i (77)

where âi are the interpolated LP filter coefficients for the current subframe. The reconstructed
speech ŝ(n) is then processed by the post-processor described in the next clause.

4.2 Post-processing

Post-processing consists of three functions: adaptive postfiltering, high-pass filtering and signal
upscaling. The adaptive postfilter is the cascade of three filters: a long-term postfilter Hp(z), a
short-term postfilter Hf (z) and a tilt compensation filter Ht(z), followed by an adaptive gain control
procedure. The postfilter coefficients are updated every 5 ms subframe. The postfiltering process is
organized as follows. First, the reconstructed speech ()nŝ is inverse filtered through Â(z /γn) to
produce the residual signal ()nr̂ . This signal is used to compute the delay T and gain gt of the
long-term postfilter Hp(z). The signal ()nr̂ is then filtered through the long-term postfilter Hp(z) and
the synthesis filter 1/[gf Â(z /γd)]. Finally, the output signal of the synthesis filter 1/[gf Â(z /γd)] is
passed through the tilt compensation filter Ht(z) to generate the postfiltered reconstructed speech
signal sf(n). Adaptive gain control is then applied to sf(n) to match the energy of ŝ(n). The resulting
signal sf ' (n) is high-pass filtered and scaled to produce the output signal of the decoder.

4.2.1 Long-term postfilter
The long-term postfilter is given by:

 () ()T
lp

lp
p zg

g
zH −γ+

γ+
= 1

1
1 (78)

where T is the pitch delay, and gl is the gain coefficient. Note that gl is bounded by 1, and it is set to
zero if the long-term prediction gain is less than 3 dB. The factor γp controls the amount of
long-term postfiltering and has the value of γp = 0.5. The long-term delay and gain are computed
from the residual signal ()nr̂ obtained by filtering the speech ŝ(n) through Â(z/γn), which is the
numerator of the short-term postfilter (see clause 4.2.2).

 () () ()∑
=

−γ+=
10

1
ˆˆˆˆ

i
i

i
n insansnr (79)

The long-term delay is computed using a two-pass procedure. The first pass selects the best integer
T0 in the range [int(T1) – 1, int(T1) +1], where int(T1) is the integer part of the (transmitted) pitch
delay T1 in the first subframe. The best integer delay is the one that maximizes the correlation.

 () () ()∑
=

−=
39

0n
knr̂nr̂kR (80)

The second pass chooses the best fractional delay T with resolution 1/8 around T0. This is done by
finding the delay with the highest pseudo-normalized correlation.

28 ITU-T Rec. G.729 (01/2007)

 ()
() ()

() ()nr̂nr̂

nr̂nr̂
kR

n
kk

n
k

∑

∑

=

==′
39

0

39

0 (81)

where ()nr̂k is the residual signal at delay k. Once the optimal delay T is found, the corresponding
correlation R'(T) is normalized with the square-root of the energy of ()nr̂ . The squared value of this
normalized correlation is used to determine if the long-term postfilter should be disabled. This is
done by setting gl = 0 if:

 ()
() ()

5039

0

2
.

nr̂nr̂

TR

n

<
′

∑
=

 (82)

Otherwise the value of gl is computed from:

() ()

() ()
1.00by bounded 39

0

39

0 ≤≤=

∑

∑

=

= gl
nr̂nr̂

nr̂nr̂
g

n
kk

n
k

l (83)

The non-integer delayed signal)(nr̂k is first computed using an interpolation filter of length 33.
After the selection of T,)(nr̂k is recomputed with a longer interpolation filter of length 129. The
new signal replaces the previous one only if the longer filter increases the value of R'(T).

4.2.2 Short-term postfilter
The short-term postfilter is given by:

 () ()
() ∑

∑

=

−

=

−

γ+

γ+
=

γ
γ= 10

1

10

1

1

1
11

i

i
i

i
d

i

i
i

i
n

fd

n

f
f

zâ

zâ

g/zÂ
/zÂ

g
zH (84)

where Â(z) is the received quantized LP inverse filter (LP analysis is not done at the decoder) and
the factors γn and γd control the amount of short-term postfiltering, and are set to γn = 0.55, and
γd = 0.7. The gain term gf is calculated on the truncated impulse response hf (n) of the filter
Â(z /γn)/Â(z /γd) and is given by:

 ()∑
=

=
19

0n
ff nhg (85)

4.2.3 Tilt compensation
The filter Ht(z) compensates for the tilt in the short-term postfilter Hf (z) and is given by:

 () ()1
111 −′γ+= zk

g
zH t

t
t (86)

 ITU-T Rec. G.729 (01/2007) 29

where 1kt ′γ is a tilt factor 1k′ being the first reflection coefficient calculated from hf (n) with:

 ()
()

() () ()∑
−

=
+=−=′

i

j
ffh

h

h ijhjhir
r
rk

19

0
1 0

1 (87)

The gain term gt = 1 – | 1kt ′γ | compensates for the decreasing effect of gf in Hf(z). Furthermore, it has
been shown that the product filter Hf (z)Ht(z) has generally no gain. Two values for γt are used
depending on the sign of 1k′ . If 1k′ is negative, γt = 0.9, and if 1k′ is positive, γt = 0.2.

4.2.4 Adaptive gain control
Adaptive gain control is used to compensate for gain differences between the reconstructed speech
signal ŝ(n) and the postfiltered signal sf(n). The gain scaling factor G for the present subframe is
computed by:

()

()∑

∑

=

== 39

0

39

0

n

n

nsf

nŝ
G (88)

The gain-scaled postfiltered signal sf'(n) is given by:

 () () () 0,...,39==′ n nsfgnfs n (89)

where g(n) is updated on a sample-by-sample basis and given by:

 () () 0,...,39n 150850 1 =+= − G.g.g nn (90)

The initial value of g(–1) = 1.0 is used. Then for each new subframe, g(–1) is set equal to g(39) of the
previous subframe.

4.2.5 High-pass filtering and upscaling
A high-pass filter with a cut-off frequency of 100 Hz is applied to the reconstructed postfiltered
speech sf'(n). The filter is given by:

 () 21

21

2 93589199.09330735.11
93980581.08795834.193980581.0

−−

−−

+−
+−=

zz
zzzHh (91)

The filtered signal is multiplied by a factor 2 to restore the input signal level.

4.3 Encoder and decoder initialization

All static encoder and decoder variables should be initialized to zero, except the variables listed in
Table 9.

Table 9 – Description of parameters with non-zero initialization

Variable Reference Initial value

β 3.8 0.8
g(–1) 4.2.4 1.0

lî 3.2.4 iπ/11
qi 3.2.4 arccos(iπ/11)

Û(k) 3.9.1 –14

30 ITU-T Rec. G.729 (01/2007)

4.4 Concealment of frame erasures
An error concealment procedure has been incorporated in the decoder to reduce the degradation in
the reconstructed speech because of frame erasures in the bits tream. This error concealment
process is functional when the frame of coder parameters (corresponding to a 10 ms frame) has
been identified as being erased. The mechanism for detecting frame erasures is not defined in this
Recommendation, and will depend on the application.

The concealment strategy has to reconstruct the current frame, based on previously received
information. The method replaces the missing excitation signal with one of similar characteristics,
while gradually decaying its energy. This is done by using a voicing classifier based on the
long-term prediction gain, which is computed as part of the long-term postfilter analysis. The
long-term postfilter (see clause 4.2.1) finds the long-term predictor for which the prediction gain is
more than 3 dB. This is done by setting a threshold of 0.5 on the squared normalized correlation of
equation (82). For the error concealment process, a 10 ms frame is declared periodic if at least one
5 ms subframe has a long-term prediction gain of more than 3 dB. Otherwise the frame is declared
non-periodic. An erased frame inherits its class from the preceding (reconstructed) speech frame.
Note that the voicing classification is continuously updated based on this reconstructed speech
signal.

The specific steps taken for an erased frame are:
1) repetition of the synthesis filter parameters;
2) attenuation of adaptive and fixed-codebook gains;
3) attenuation of the memory of the gain predictor; and
4) generation of the replacement excitation.

4.4.1 Repetition of synthesis filter parameters

The synthesis filter in an erased frame uses the LP parameters of the last good frame. The memory
of the MA LSF predictor contains the values of the received codewords l̂i. Since the codeword is
not available for the current frame m, it is computed from the repeated LSF parameters ω̂

i and the
predictor memory using:

 () () 1,...,10ˆ1/ˆˆˆˆ
4

1
,

4

1
, =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
−ω= ∑∑

==

− i PlPl
k

ki
k

km
iki

m
ii (92)

where the MA predictor coefficients p̂i, k are those of the last received good frame.

4.4.2 Attenuation of adaptive and fixed-codebook gains

The fixed-codebook gain is based on an attenuated version of the previous fixed-codebook gain and
is given by:

 () ()198.0 −= m
c

m
c gg (93)

where m is the subframe index. The adaptive-codebook gain is based on an attenuated version of the
previous adaptive-codebook gain and is given by:

 () () () 0.9by bounded 90 1 <= − m
p

m
p

m
p gg.g (94)

 ITU-T Rec. G.729 (01/2007) 31

4.4.3 Attenuation of the memory of the gain predictor
As was described in clause 3.9 the gain predictor uses the energy of previously selected fixed-
codebook vectors c(n). To avoid transitional effects at the decoder, once good frames are received,
the memory of the gain predictor is updated with an attenuated version of the codebook energy. The
value of Û(m) for the current subframe m is set to the averaged quantized gain prediction-error,
attenuated by 4 dB:

 () () () –14 by bounded 04250
4

1
≥−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

− m

i

imm Û.Û.Û (95)

4.4.4 Generation of the replacement excitation
The excitation used depends on the periodicity classification. If the last reconstructed frame was
classified as periodic, the current frame is considered to be periodic as well. In that case, only the
adaptive codebook is used, and the fixed-codebook contribution is set to zero. The pitch delay is
based on the integer part of the pitch delay in the previous frame, and is repeated for each
successive frame. To avoid excessive periodicity the delay is increased by one for each next
subframe but bounded by 143. The adaptive-codebook gain is based on an attenuated value
according to equation (94).

If the last reconstructed frame was classified as non-periodic, the current frame is considered to be
non-periodic as well, and the adaptive-codebook contribution is set to zero. The fixed-codebook
contribution is generated by randomly selecting a codebook index and sign index. The random
generator is based on the function:

 1384931821 += seedseed (96)

with the initial seed value of 21845. The fixed-codebook index is derived from the 13 least
significant bits of the next random number. The fixed-codebook sign is derived from the 4 least
significant bits of the next random number. The fixed-codebook gain is attenuated according to
equation (93).

5 Bit-exact description of the CS-ACELP coder
ANSI C code simulating the CS-ACELP coder in 16 bit fixed-point is available from ITU-T. As of
the approval of this version of this Recommendation, the current version of this ANSI C code is
Version 3.3 of December 1995. More recent versions may become available through corrigenda or
amendments to this Recommendation. Please ensure to use the latest available version from the
ITU-T website. The following clauses summarize the use of this simulation code, and how the
software is organized.

5.1 Use of the simulation software
The C code consists of two main programs, coder.c, which simulates the encoder, and decoder.c,
which simulates the decoder. The encoder is run as follows:

 coder inputfile bitstreamfile
The input file and output file are sampled data files containing 16-bit PCM signals. The decoder is
run as follows:

 decoder bitstreamfile outputfile
The mapping table of the encoded bit stream is contained in the simulation software.

32 ITU-T Rec. G.729 (01/2007)

5.2 Organization of the simulation software
In the fixed-point ANSI C simulation, only two types of fixed-point data are used as is shown in
Table 10. To facilitate the implementation of the simulation code, loop indices, Boolean values and
flags use the type Flag, which would be either 16 bits or 32 bits depending on the target platform.

Table 10 – Data types used in ANSI C simulation

Type Maximal value Minimal value Description

Word16 0x7fff 0x8000 Signed 2's complement 16-bit word
Word32 0x7fffffffL 0x80000000L Signed 2's complement 32-bit word

All the computations are done using a predefined set of basic operators. The description of these
operators is given in Table 11. The tables used by the simulation coder are summarized in Table 12.
These main programs use a library of routines that are summarized in Tables 13, 14 and 15.

Table 11 – Basic operations used in ANSI C simulation

Operation Description

Word16 sature(Word32 L_var1) Limit to 16 bits
Word16 add(Word16 var1, Word16 var2) Short addition
Word16 sub(Word16 var1, Word16 var2) Short subtraction
Word16 abs_s(Word16 var1) Short absolute value
Word16 sh1(Word16 var1, Word16 var2) Short shift left
Word16 shr(Word16 var1, Word16 var2) Short shift right
Word16 mult(Word16 var1, Word16 var2) Short multiplication
Word32 L_mult(Word16 var1, Word16 var2) Long multiplication
Word16 negate(Word16 var1) Short negate
Word16 extract_h(Word32 L_var1) Extract high
Word16 extract_1(Word32 L_var1) Extract low
Word16 round(Word32 L_var1) Round
Word32 L_mac(Word32 L_var3, Word16 var1, Word16 var2) Multiply and accumulate
Word32 L_msu(Word32 L_var3, Word16 var1, Word16 var2) Multiply and subtract
Word32 L_add(Word32 L_var1, Word32 L_var2) Long addition
Word32 L_sub(Word32 L_var1, Word32 L_var2) Long subtraction
Word32 L_negate(Word32 L_var1) Long negate
Word16 mult_r(Word16 var1, Word16 var2) Multiplication with rounding
Word32 L_sh1(Word32 L_var1, Word16 var2) Long shift left
Word32 L_shr(Word32 L_var1, Word16 var2) Long shift right
Word16 shr_r(Word16 var1, Word16 var2) Shift right with rounding
Word16 mac_r(Word32 L_var3, Word16 var1, Word16 var2) Mac with rounding
Word16 msu_r(Word32 L_var3, Word16 var1, Word16 var2) Msu with rounding
Word32 L_deposit_h(Word16 var1) 16-bit var1 into MSB part
Word32 L_deposit_l(Word16 var1) 16-bit var1 into LSB part
Word32 L_shr_r(Word32 L_var1, Word16 var2) Long shift right with round
Word32 L_abs(Word32 L_var1) Long absolute value

 ITU-T Rec. G.729 (01/2007) 33

Table 11 – Basic operations used in ANSI C simulation

Operation Description

Word16 norm_s(Word16 var1) Short norm
Word16 div_s(Word16 var1, Word16 var2) Short division
Word16 norm_1(Word32 L_var1) Long norm

Table 12 – Summary of tables found in tab_ld8.c

Table name Size Description

tab_hup_s 28 Upsampling filter for postfilter
tab_hup_1 112 Upsampling filter for postfilter
inter_3 13 FIR filter for interpolating the correlation
inter_3 31 FIR filter for interpolating past excitation
lspcb1 128 × 10 LSP quantizer (first stage)
lspcb2 32 × 10 LSP quantizer (second stage)
fg 2 × 4 × 10 MA predictors in LSP VQ
fg_sum 2 × 10 Used in LSP VQ
fg_sum_inv 2 × 10 Used in LSP VQ
gbk1 8 × 2 Codebook GA in gain VQ
gbk2 16 × 2 Codebook GB in gain VQ
map1 8 Used in gain VQ
imap1 8 Used in gain VQ
map2 16 Used in gain VQ
ima21 16 Used in gain VQ
window 240 LP analysis window
lag_h 10 Lag window for bandwidth expansion (high part)
lag_1 10 Lag window for bandwidth expansion (low part)
grid 61 Grid points in LP to LSP conversion
tabsqr 49 Lookup table in inverse square root computation
tablog 33 Lookup table in base 2 logarithm computation
table 65 Lookup table in LSF to LSP conversion and vice versa
slope 64 Line slopes in LSP to LSF conversion
tabpow 33 Lookup table in 2x computation

34 ITU-T Rec. G.729 (01/2007)

Table 13 – Summary of encoder-specific routines

Filename Description

acelp_co.c Search fixed codebook
cod_1d8k.c Encoder routine
lpc.c LP analysis
pitch.c Pitch search
pre_proc.c Preprocessing (HP filtering and scaling)
pwf.c Computation of perceptual weighting coefficients
qua_gain.c Gain quantizer
qua_1sp.c LSP quantizer

Table 14 – Summary of decoder-specific routines

Filename Description

de_acelp.c Decode algebraic codebook
dec_gain.c Decode gains
dec_lag3.c Decode adaptive-codebook index
dec_ld8k.c Decoder routine
lspdec.c LSP decoding routing
post_pro.c Post-processing (HP filtering and scaling)
pst.c Postfilter routines

Table 15 – Summary of general routines

Filename Description

basicop2.c Basic operators
oper_32b.c Extended basic operators
bits.c Bit manipulation routines
dspfunc.c Mathematical functions
filter.c Filter functions
gainpred.c Gain predictor
lpcfunc.c Miscellaneous routines related to LP filter
lspgetq.c LSP quantizer
p_parity.c Compute pitch parity
pred_lt3.c Generation of adaptive codebook
util.c Utility functions

 ITU-T Rec. G.729 (01/2007) 35

6 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.711] ITU-T Recommendation G.711 (1988), Pulse code modulation (PCM) of voice
frequencies.

[ITU-T G.712] ITU-T Recommendation G.712 (2001), Transmission performance
characteristics of pulse code modulation channels.

[ITU-T G.723.1] ITU-T Recommendation G.723.1 (2006), Dual rate speech coder for
multimedia communications transmitting at 5.3 and 6.3 kbit/s.

[ITU-T G.726] ITU-T Recommendation G.726 (1990), 40, 32, 24, 16 kbit/s Adaptive
Differential Pulse Code Modulation (ADPCM).

[ITU-T G.728] ITU-T Recommendation G.728 (1992), Coding of speech at 16 kbit/s using
low-delay code excited linear prediction.

[ITU-T G.729.1] ITU-T Recommendation G.729.1 (2006), G.729-based embedded variable
bit-rate coder: An 8-32 kbit/s scalable wideband coder bitstream interoperable
with G.729.

[ITU-T V.70] ITU-T Recommendation V.70 (1996), Procedures for the simultaneous
transmission of data and digitally encoded voice signals over the GSTN,
or over 2-wire leased point-to-point telephone type circuits.

36 ITU-T Rec. G.729 (01/2007)

Annex A

Reduced complexity 8 kbit/s CS-ACELP speech codec
(This annex forms an integral part of this Recommendation)

Summary
This annex describes the reduced complexity version of the G.729 speech codec. This version is
bit-stream interoperable with the full version.

This annex includes an electronic attachment containing reference C code and test vectors for
fixed-point implementation of reduced complexity CS-ACELP at 8 kbit/s.

A.1 Introduction
This annex provides the high level description of a reduced complexity version of the G.729 speech
codec. This version is bit stream-interoperable with the full version, i.e., a reduced complexity
encoder may be used with a full implementation of the decoder, and vice versa. However,
implementers of the codec defined in this annex should be aware that the performance of this codec
may not be as good as the full implementation of the main body of G.729 in certain circumstances.

The reduced complexity version of the codec has been developed for multimedia simultaneous
voice and data applications, although the use of the codec is not limited to these applications.

The description of the codec is similar to that of the full implementation of the main body of G.729.
This annex describes the changes to the full implementation which have been made in order to
reduce the codec algorithmic complexity. For those parts of the algorithm which have not been
changed, this annex refers to the appropriate clause of the main Recommendation.

A.2 General description of the codec
The general description of the coding/decoding algorithm is similar to that of the full version. The
bit allocation is the same as that given in Table 1. It also has the same delay (speech frame of 10 ms
and look-ahead of 5 ms). The major algorithmic changes to the full version of G.729 are
summarized below:
– The perceptual weighting filter uses the quantized LP filter parameters and it is given by

W(z) = Â(z)/Â(z/γ) with a fixed value of γ = 0.75.
– Open-loop pitch analysis is simplified by using decimation while computing the

correlations of the weighted speech.
– Computation of the impulse response of the weighted synthesis filter W(z)/Â(z),

computation of the target signal, and updating the filter states are simplified since W(z)/Â(z)
is reduced to 1/Â(z/γ).

– The search of the adaptive codebook is simplified. The search maximizes the correlation
between the past excitation and the backward filtered target signal (the energy of filtered
past excitation is not considered).

– The search of the fixed algebraic codebook is simplified. Instead of the nested-loop focused
search, an iterative depth-first tree search approach is used.

– At the decoder, the harmonic postfilter is simplified by using only integer delays.

These changes are described in more detail in clauses A.3 and A.4.

 ITU-T Rec. G.729 (01/2007) 37

Table A.1 – Summary of the principle routines which have been changed

G.729 routine name G.729A routine name

Coder_ld8k () Coder_ld8a ()
Decod_ld8k () Decod_ld8a ()
Pitch_o1 () Pitch_o1_fast ()
Pitch_fr3 () Pitch_fr3_fast ()
ACELP_Codebook () ACELP_Code_A ()
Post () Post-Filter ()

A.2.1 Speech codec definition
The description of the reduced complexity speech codec is made in terms of bit-exact, fixed-point
mathematical operations. The ANSI-C code indicated in clause A.5, which constitutes an integral
part of this annex, reflects this bit-exact, fixed-point descriptive approach. The mathematical
description of the encoder (see clause A.3) and the decoder (see clause A.4), can be implemented in
several other fashions, possibly leading to a codec implementation not complying with this annex.
Therefore, the algorithm description of the ANSI-C code of clause A.5 shall take precedence over
the mathematical descriptions of clauses A.3 and A.4 whenever discrepancies are found. A
non-exhaustive set of test signals, which can be used with the ANSI-C code, are available
from ITU.

As of the approval of this Recommendation, the current version of this ANSI C code is Version 1.1
of September 1996. More recent versions may become available through corrigenda or amendments
to this Recommendation. Please ensure to use the latest available version from the ITU-T website.

A.2.2 Notational conventions
Notational conventions are the same as those given in clause 2.5.

A.3 Functional description of the encoder
In this clause the different functions of the encoder represented in the blocks of Figure 4 are
described. The main body of this Recommendation is referred to in most of this clause except the
parts where algorithmic simplifications have been carried out.

A.3.1 Preprocessing

Same as clause 3.1.

A.3.2 Linear prediction analysis and quantization

A.3.2.1 Windowing and autocorrelation computation
Same as clause 3.2.1.

A.3.2.2 Levinson-Durbin algorithm
Same as clause 3.2.2.

A.3.2.3 LP to LSP conversion
Same as clause 3.2.3 with some simplifications. The number of points at which the polynomials
F1(z) and F2(z) are evaluated is reduced to 50 (instead of 60), and the sign change interval is divided
two times instead of four times for tracking the root of the polynomial.

A.3.2.4 Quantization of the LSP coefficients
Same as clause 3.2.4.

38 ITU-T Rec. G.729 (01/2007)

A.3.2.5 Interpolation of the LSP coefficients
Same as clause 3.2.5, but only the quantized LP coefficients are interpolated since the weighting
filter uses the quantized parameters for simplicity.

A.3.2.6 LSP to LP conversion
Same as clause 3.2.6.

A.3.3 Perceptual weighting
Unlike clause 3.3, the perceptual weighting filter is based on the quantized LP filter coefficients âi,
and is given by:

 () ()
()γ

=
/zÂ
zÂzW (A.1)

with γ = 0.75. This simplifies the combination of synthesis and weighting filters to
W(z)/Â(z) = 1/Â(z/γ), which reduces the number of filtering operations while computing the impulse
response and the target signal and while updating the filter states. Note that the value of γ is fixed
to 0.75 and the procedure for the adaptation of the factors of the perceptual weighting filter
described in clause 3.3 is not used in this reduced complexity version.

The weighted speech signal is not used for computing the target signal since an alternative approach
is used (see clause A.3.6). However, the weighted speech signal (low-pass filtered) is used to
compute the open-loop pitch estimate. The low-pass filtered weighted speech is found by filtering
the speech signal s(n) through the filter Â(z)/[Â(z/γ)(l – 0.7z–1)]. First, the coefficients of the filter
A'(z) = Â(z/γ)(l – 0.7z–1) are computed, then the low-pass filtered weighted speech in a subframe is
computed by:

 () () () 0,...,39,
10

1
=−′−= ∑

=
n insanrnS

i
wiw (A.2)

where r(n) is the LP residual signal given by:

 () () () 0,...,39,ˆ
10

1
=−+= ∑

=
n insansnr

i
i (A.3)

The signal sw(n) is used to find an estimation of the pitch delay in the speech frame.

A.3.4 Open-loop pitch analysis
To reduce the complexity of the search for the best adaptive-codebook delay, the search range is
limited around a candidate delay Top, obtained from an open-loop pitch analysis. This open-loop
pitch analysis is done once per frame (10 ms). The open-loop pitch estimation uses the low-pass
filtered weighted speech signal sw(n) of equation (A.2), and is done as follows: in the first step,
3 maxima of the correlation:

 () () ()knsnskR w
n

w −= ∑
=

22
39

0
 (A.4)

are found in the following three ranges:
 i = 1: 20,...,39
 i = 2: 40,...,79
 i = 3: 80,...,143

 ITU-T Rec. G.729 (01/2007) 39

The retained maxima R(ti), i = 1,...,3, are normalized through:

 () ()

()
1,...,3

2
39

0

2

=

−

=′

∑
=

i ,

tns

tRtR

n
iw

i
i (A.5)

The winner among the three normalized correlations is selected by favouring the delays with the
values in the lower range. This is done by augmenting the normalized correlations corresponding to
the lower delay range if their delays are submultiples of the delays in the higher delay range.

Note that in computing the correlations in equation (A.4) only the even samples are used. Further,
in the third delay region [80, 143] only the correlations at the even delays are computed in the first
pass, then the delays at ±l of the selected even delay are tested.

A.3.5 Computation of the impulse response
The impulse response h(n) of the weighted synthesis filter W(z)/Â(z) is needed for the search of
adaptive and fixed codebooks. The impulse response h(n) is computed for each subframe by
filtering a signal consisting of a unit sample extended by zeros through the filter 1/Â(z/γ).

A.3.6 Computation of the target signal

The target signal x(n) for the adaptive-codebook search is computed by filtering of the LP residual
signal r(n) through the weighted synthesis filter 1/Â (z/γ). After determining the excitation for the
subframe, the initial states of this filter are updated as explained in clause A.3.10.

The residual signal r(n), which is needed for finding the target vector, is also used in the
adaptive-codebook search to extend the past excitation buffer. The computation of the LP residual
is given in equation (A.3).

A.3.7 Adaptive-codebook search
The adaptive-codebook structure is the same as in clause 3.7. In the first subframe, a fractional pitch

delay T1 is used with a resolution of 1/3 in the range ⎥⎦
⎤

⎢⎣
⎡

3
284,

3
119 and integers only in the range

[85, 143]. For the second subframe, a delay T2 with a resolution of 1/3 is always used in the range

() () ⎥⎦
⎤

⎢⎣
⎡ +−

3
24

3
25 11 Tint,Tint , where int(T1) is the integer part of the fractional pitch delay T1 of the

first subframe. This range is adapted for the cases where T1 straddles the boundaries of the delay
range.

The search boundaries tmin and tmax for both subframes are determined in the same way as in
clause 3.7.

Closed-loop pitch search is usually performed by maximizing the term:

 ()
() ()

() ()∑

∑

=

==
39

0

39

0

n
kk

n
k

nyny

nynx
kR (A.6)

40 ITU-T Rec. G.729 (01/2007)

where x(n) is the target signal and yk(n) is the past filtered excitation at delay k [past excitation
convolved with h(n)]. In order to simplify the search in this reduced complexity version, only the
numerator in equation (A.6) is maximized. That is, the term:

 () () () () ()nunxnynxkR k
n n

bkN ∑ ∑
= =

==
39

0

39

0
 (A.7)

is maximized, where xb(n) is the backward filtered target signal (correlation between x(n) and the
impulse response h(n)) and uk(n) is the past excitation at delay k (u(n – k)). Note that the search
range is limited around a preselected value, which is the open-loop pitch Top for the first subframe,
and T1 for the second subframe.

Note that in the search stage, the samples u(n), n = 0,...,39 are not known, and they are needed for
pitch delays less than 40. To simplify the search, the LP residual is copied to u(n).

For the determination of T2 and T1 if the optimum integer delay is less than 85, the fractions around
the optimum integer delay have to be tested. The fractional pitch search is done by interpolating the

past excitation at fractions
3
1– , 0 and

3
1 , and selecting the fraction which maximizes the

correlation in equation (A.7). The interpolation of the past excitation is performed using the same
FIR filter, b30, which is defined in clause 3.7. The interpolated past excitation at a given integer
delay k and fraction t is given by:

 () () () () () 2 1, 0, ,0,...,39 3313 30

9

0
30

9

0
==+−++−+++−= ∑∑

==
tn,itbiknuitbiknunu

ii
kt (A.8)

A.3.7.1 Generation of the adaptive-codebook vector
Same as clause 3.7.1.

A.3.7.2 Codeword computation for adaptive-codebook delays
Same as clause 3.7.2.

A.3.7.3 Computation of the adaptive-codebook gain
Same as clause 3.7.3.

A.3.8 Fixed codebook – Structure and search
The structure of the 17-bit algebraic codebook is the same as clause 3.8.

A.3.8.1 Fixed-codebook search procedure
The signs of the pulses are found using the same approach explained in clause 3.8.1. However, the
pulse positions are found using a more efficient approach. Instead of the nested-loop search
approach, an iterative depth-first, tree search approach is used. In this new approach a smaller
number of pulse position combinations is tested and it has fixed complexity.

A.3.8.2 Codeword computation of the fixed codebook
Same as clause 3.8.2.

A.3.9 Quantization of the gains
Same as clause 3.9.

 ITU-T Rec. G.729 (01/2007) 41

A.3.10 Memory update
An update of the states of the weighted synthesis filter is needed for computing the target signal in
the next subframe. After the two gains are quantized, the excitation signal, u(n), in the present
subframe is obtained using:

 () () () 0,...,39,ˆˆ =+= n ncgnvgnu cp (A.9)

where $gp and $gc , are the quantized adaptive and fixed-codebook gains, respectively, v(n) is the
adaptive-codebook vector (interpolated past excitation), and c(n) is the fixed-codebook vector
including harmonic enhancement. The states of the weighted synthesis filter can be updated by
filtering the signal r(n) – u(n) (difference between residual and excitation) through the filter 1/Â(z/γ)
for the 40 sample subframe and saving the states of the filter. A simpler approach, which requires
no filter operations, is as follows. The output of the filter due to the input r(n) – u(n) is the weighted
error signal ew(n) which can be found by:

 () () () ()nzgnygnxne cpw ˆˆ −−= (A.10)

where x(n) is the target signal, y(n) is the filtered adaptive-codebook vector and z(n) is the filtered
fixed-codebook vector. Since the signals x(n), y(n), and z(n) are available, the states of the weighted
synthesis filter are updated by computing ew(n) as in equation (A.10) for n = 30,...,39.

A.4 Functional description of the decoder
The principle of the decoder is shown in Figure 3. The transmitted parameters are the same as listed
in Table 8. The decoded parameters are used to compute the reconstructed speech signal. This
reconstructed signal is enhanced by a post-processing operation consisting of a postfilter, a high-
pass filter and an upscaling (see clause A.4.2). The detailed signal flow diagram of the decoder is
the same one shown in Figure 6.
The only change in the decoder is in the postfilter which is described in clause A.4.2.

A.4.1 Parameter decoding procedure

Same as clause 4.1.

A.4.2 Post-processing
The post-processing is the same as in clause 4.2 except for some simplification in the adaptive
postfilter.

The adaptive postfilter is the cascade of three filters: a long-term postfilter Hp(z), a short-term
postfilter Hf(z) and a tilt compensation filter Ht(z), followed by an adaptive gain control procedure.
The long-term postfilter is simplified by using only integer delays. In the short-term postfilter and
the tilt compensation filter, the gain terms gf and gt are not used.

The postfiltering process is similar to that described in the main body of this Recommendation with
the exception that the compensation filtering is performed before synthesis filtering
through 1/Â(z/γd).

A.4.2.1 Long-term postfilter
The long-term postfilter is given by:

 () ()T
p

p
p glz

gl
zH −γ+

γ+
= 1

1
1 (A.11)

The only difference from clause 4.2.1 is that the long-term delay T is always an integer delay and it
is computed by searching the range [Tcl – 3, Tcl + 3], where Tcl is the integer part of the (transmitted)
pitch delay in the current subframe bounded by Tcl ≤ 140.

42 ITU-T Rec. G.729 (01/2007)

A.4.2.2 Short-term postfilter
The short-term postfilter is given by:

 () ()
() ∑

∑

=

−

=

−

γ+

γ+
=

γ
γ= 10

1

10

1

ˆ1

ˆ1

/ˆ
/ˆ

i

i
i

i
d

i

i
i

i
n

d

n
f

za

za

zA
zAzH (A.12)

where Â(z) is the received quantized LP inverse filter (LP analysis is not done at the decoder), and
the factors γn and γd control the amount of short-term postfiltering, and are set to γn = 0.55 and
γd = 0.7.

The only difference from clause 4.2.2 is that the gain factor gf is eliminated.

A.4.2.3 Tilt compensation

The filter Ht(z) compensates for the tilt in the short-term postfilter Hf(z) and is given by:

 () 1
11 −′γ+= zkzH tt (A.13)

where 1kt ′γ is a tilt factor, 1k ′ being the first reflection coefficient calculated by:

 ()
()

() () ()ijhjhir
r
rk f

i

j
fh

h

h +=−=′ ∑
−

=

21

0
1 ;

0
1 (A.14)

where hf(n) is the truncated impulse response of the filter () ()dn zAzA γγ /ˆ//ˆ . The value of γt = 0.8
is used if 01 <′k and γt is set to zero if 01 ≥′k . The gain factor gt which is used in clause 4.2.3 is
eliminated.

A.4.2.4 Adaptive gain control
Same as clause 4.2.4. The only difference is that the gain scaling factor G for the present subframe
is computed by:

()

()∑

∑

=

== 39

0

2

39

0

2ˆ

n

n

nsf

ns
G (A.15)

and g(n) is given by:

 0,...,39 1090 1)()(=+= − n,G.g.g nn

A.4.2.5 High-pass filtering and upscaling
Same as clause 4.2.5.

A.4.3 Encoder and decoder initialization
Same as clause 4.3.

A.4.4 Concealment of frame erasures
Same as clause 4.4 with the difference that no voicing detection is used. The excitation is always
the addition of both adaptive and fixed codebook contributions.

 ITU-T Rec. G.729 (01/2007) 43

A.5 Bit-exact description of the reduced complexity CS-ACELP codec
The reduced complexity CS-ACELP codec is simulated in 16-bit fixed-point ANSI-C code using
the same set of fixed-point basic operators defined in Table 11.

A.5.1 Use of the simulation software
Same as clause 5.1.

A.5.2 Organization of the simulation software
Same as clause 5.2.

The tables used by the simulation codec are found in the file tab_ld8a.c which replaces the file
tab_ld8k.c of the full Recommendation. The difference between these two files is that the tables
tab_hup_s, tab_hup_1, and inter_3 found in the file tab_ld8k.c are removed from the file
tab_ld8a.c. Also, the table grid has been modified.

The main programs use a library of routines that are provided in the fixed-point ANSI-C simulation.
Most of the routines are the same as those of the full Recommendation. The principal routines that
have been changed are summarized in Table A.1. Refer to the read.me file provided with the
software for more details.

44 ITU-T Rec. G.729 (01/2007)

Annex B

A silence compression scheme for G.729 optimized for terminals conforming
to ITU-T Recommendation V.70

(This annex forms an integral part of this Recommendation)

Summary
This annex defines a voice activity detector and comfort noise generator for use with G.729 or
Annex A optimized for V.70 DSVD applications.

This annex includes an electronic attachment containing reference C code and test vectors for
fixed-point implementation of CS-ACELP at 8 kbit/s with DTX functionality.

B.1 Introduction
This annex provides a high level description of the voice activity detection (VAD), discontinuous
transmission (DTX) and comfort noise generator (CNG) algorithms. These algorithms are used to
reduce the transmission rate during silence periods of speech. They are designed and optimized to
work in conjunction with [ITU-T V.70]. [ITU-T V.70] mandates the use of Annex A speech coding
methods. However, when it is desirable, the full version of G.729 can also be used to improve the
quality of the speech. The algorithms are adapted to operate with both the full version of G.729 and
Annex A. This description is for the full version of G.729, the only difference for Annex A is
indicated in clause B.3.1.1. A block diagram of a silence compression speech communication
system is depicted in Figure B.1.

Figure B.1 – Speech communication system with VAD

B.2 General description of the VAD/DTX/CNG algorithms

The VAD algorithm makes a voice activity decision every 10 ms in accordance with the frame size
of the G.729 speech coder. A set of difference parameters is extracted and used for an initial
decision. The parameters are the full-band energy, the low-band energy, the zero-crossing rate and a
spectral measure. The long-term averages of the parameters during non-active voice segments

 ITU-T Rec. G.729 (01/2007) 45

follow the changing nature of the background noise. A set of differential parameters is obtained at
each frame. These are a difference measure between each parameter and its respective long-term
average. The initial voice activity decision is obtained using a piecewise linear decision boundary
between each pair of differential parameters. A final voice activity decision is obtained by
smoothing the initial decision.

The output of the VAD module is either 1 or 0, indicating the presence or absence of voice activity
respectively. If the VAD output is 1, the G.729 speech codec is invoked to code/decode the active
voice frames. However, if the VAD output is 0, the DTX/CNG algorithms described herein are used
to code/decode the non-active voice frames. Traditional speech coders and decoders use comfort
noise to simulate the background noise in the non-active voice frames. If the background noise is
not stationary, a mere comfort noise insertion does not provide the naturalness of the original
background noise. Therefore it is desirable to intermittently send some information about the
background noise in order to obtain a better quality when non-active voice frames are detected. The
coding efficiency of the non-active voice frames can be achieved by coding the energy of the frame
and its spectrum with as few as fifteen bits. These bits are not automatically transmitted whenever
there is a non-active voice detection. Rather, the bits are transmitted only when an appreciable
change has been detected with respect to the last transmitted non-active voice frame.

At the decoder side, the received bit stream is decoded. If the VAD output is 1, the G.729 decoder is
invoked to synthesize the reconstructed active voice frames. If the VAD output is 0, the CNG
module is called to reproduce the non-active voice frames.

B.3 Detailed description of the VAD algorithm
A flowchart of the VAD operation is given in Figure B.2. The VAD operates on frames of digitized
speech. The frames are processed in time order and are consecutively numbered from the beginning
of each conversation/recording.

At the first stage, four parametric features are extracted from the input signal. Extraction of the
parameters is shared with the active voice encoder module and the non-active voice encoder for
computational efficiency. The parameters are the full- and low-band frame energies, the set of line
spectral frequencies (LSF) and the frame zero crossing rate.

If the frame number is less than Ni, an initialization stage of the long-term averages takes place, and
the voice activity decision is forced to 1 if the frame energy from the LPC analysis is above 15 dB
(see equation (B.1)). Otherwise, the voice activity decision is forced to 0. If the frame number is
equal to Ni, an initialization stage for the characteristic energies of the background noise occurs.

At the next stage, a set of difference parameters are calculated. This set is generated as a difference
measure between the current frame parameters and running averages of the background noise
characteristics. Four difference measures are calculated:
– a spectral distortion;
– an energy difference;
– a low-band energy difference; and
– a zero-crossing difference.

The initial voice activity decision is made at the next stage, using multi-boundary decision regions
in the space of the four difference measures. The active voice decision is given as the union of the
decision regions and the non-active voice decision is its complementary logical decision. Energy
considerations, together with neighbouring past frames decisions, are used for decision smoothing.

The running averages have to be updated only in the presence of background noise, and not in the
presence of speech. An adaptive threshold is tested, and the update takes place only if the threshold
criterion is met.

46 ITU-T Rec. G.729 (01/2007)

Figure B.2 – VAD flowchart

 ITU-T Rec. G.729 (01/2007) 47

B.3.1 Parameter extraction
For each frame, a set of parameters is extracted from the speech signal. The parameters extraction
module can be shared between the VAD, the active voice encoder and the non-active voice encoder.
The basic set of parameters is the set of autocorrelation coefficients, which is derived similarly to
the full version of G.729 (see clause 3.2.1). The set of autocorrelation coefficients will be denoted
by:

 { } 12where)(0 == q,iR q
i

B.3.1.1 Line spectral frequencies (LSF)

A set of linear prediction coefficients is derived from the autocorrelation and a set of { }p
iiLSF 1= ,

where p = 10, is derived from the set of linear prediction coefficients, as described in clauses 3.2.3
or A.3.2.3.

B.3.1.2 Full-band energy

The full-band energy Ef is the logarithm of the normalized first autocorrelation coefficient R()0 :

 ()⎥⎦
⎤

⎢⎣
⎡⋅= 0110 10 R

N
logE f (B.1)

where N = 240 is the LPC analysis window size in speech samples.

B.3.1.3 Low-band energy
The low-band energy El measured on 0 to Fl Hz band, is computed as follows:

 ⎥⎦
⎤

⎢⎣
⎡⋅= RhhT

N
logEl

110 10 (B.2)

where h is the impulse response of an FIR filter with cut-off frequency at Fl Hz, R is the Toeplitz
autocorrelation matrix with the autocorrelation coefficients on each diagonal.

B.3.1.4 Zero-crossing rate
Normalized zero-crossing rate ZC for each frame is calculated by:

 [] [][]∑
−

=
−−=

1

0
)1()(

2
1 M

i
ixsgnixsgn

M
ZC (B.3)

where { ()}x i is the preprocessed input signal (see clause 3.1) and M = 80 .

B.3.2 Initialization of the running averages of the background noise characteristics

For the first Ni frames, the spectral parameters of the background noise, denoted by { }p
iiLSF 1= are

initialized as an average of the { }p
iiLSF 1= of the frames. The average of the background noise

zero-crossings, denoted by ZC is initialized as an average of the zero-crossing rate ZC of the
frames.

48 ITU-T Rec. G.729 (01/2007)

The running averages of the background noise energy, denoted by fE , and the background noise

low-band energy, denoted by lE , are initialized as follows. First, the initialization procedure uses

En , defined as the average of the frame energy fE over the first Ni frames. These three averaging

(En , ZC , and{ }p
iiLSF 1=) include only the frames that have an energy E greater than 15 dB.

Second, the initialization procedure continues as follows:

5

4

else
3

2

then 21 if else

1

0

then1 if

kEnE

KEnE

KEnE

KEnE

TEnT

KEnE

KEnE

TEn

l

f

l

f

l

f

+=

+=

+=

+=

<<

+=

+=

≤

See Table B.1 for constant values.

B.3.3 Generating the long-term minimum energy
A long-term minimum energy parameter, Emin, is calculated as the minimum of Ef over N0 previous
frames. Since N0 is relatively large, Emin is calculated using stored values of the minimum of Ef over
short segments of the past.

B.3.4 Generating the difference parameters
Four difference measures are generated from the current frame parameters and the running averages
of the background noise.

B.3.4.1 The spectral distortion ∆S

The spectral distortion measure is generated as the sum of squares of the difference between the

current frame { }p
iiLSF 1= vector and the running averages of the background noise { }p

iiLSF 1= :

 ()∑
=

−=∆
p

i
iLSFLSFiS

1

2
 (B.4)

B.3.4.2 The full-band energy difference ∆Ef

The full-band energy difference measure is generated as the difference between the current frame
energy, Ef, and the running average of the background noise energy, fE :

 fff EEE −=∆ (B.5)

B.3.4.3 The low-band energy difference ∆El
The low-band energy difference measure is generated as the difference between the current frame
low-band energy, El, and the running average of the background noise low-band energy, lE :

 lll EEE −=∆ (B.6)

 ITU-T Rec. G.729 (01/2007) 49

B.3.4.4 The zero-crossing difference ∆ZC
The zero-crossing difference measure is generated as the difference between the current frame
zero-crossing rate, ZC, and the running average of the background noise zero-crossing rate, ZC :

 ZCZCZC −=∆ (B.7)

B.3.5 Multi-boundary initial voice activity decision
The initial voice activity decision is denoted by IVD, and is set to 0 ("FALSE") if the vector of
difference parameters lies within the non-active voice region. Otherwise, the initial voice activity
decision is set to 1 ("TRUE"). The fourteen boundary decisions in the four-dimensional space are
defined as follows:
1) if ∆S > a1 ⋅ ∆ZC + b1 then IVD = 1
2) if ∆S > a2 ⋅ ∆ZC + b2 then IVD = 1
3) if ∆Ef < a3 ⋅ ∆ZC + b3 then IVD = 1
4) if ∆Ef < a4 ⋅ ∆ZC + b4 then IVD = 1
5) if ∆Ef < b5 then IVD = 1
6) if ∆Ef < a6 ⋅ ∆S + b6 then IVD = 1
7) if ∆S > b7 then IVD = 1
8) if ∆Ef < a8 ⋅ ∆ZC + b8 then IVD = 1
9) if ∆Ef < a9 ⋅ ∆ZC + b9 then IVD = 1
10) if ∆Ef < b10 then IVD = 1
11) if ∆El < a11 ⋅ ∆S + b11 then IVD = 1
12) if ∆El > a12 ⋅ ∆Ef + b12 then IVD = 1
13) if ∆El < a13 ⋅ ∆Ef + b13 then IVD = 1
14) if ∆El < a14 ⋅ ∆Ef + b14 then IVD = 1

If none of the fourteen conditions is "TRUE" IVD = 0. See Table B.1 for constant values.

50 ITU-T Rec. G.729 (01/2007)

Table B.1 – Table of constants

Name Constant Name Constant

Ni 32 N1 4
N0 128 N2 10
K0 0 T1 671088640
K1 –53687091 T2 738197504
K2 –67108864 T3 26843546
K3 –93952410 T4 40265318
K4 –134217728 T5 40265318
K5 –161061274 T6 40265318
a1 23488 b1 28521
a2 –30504 b2 19446
a3 –32768 b3 –32768
a4 26214 b4 –19661
a5 0 b5 –30802
a6 28160 b6 –19661
a7 0 b7 30199
a8 16384 b8 –22938
a9 –19065 b9 –31576
a10 0 b10 –17367
a11 22400 b11 –27034
a12 30427 b12 29959
a13 –24576 b13 –29491
a14 23406 b14 –28087

B.3.6 Voice activity decision smoothing
The initial voice activity decision is smoothed (hangover) to reflect the long-term stationarity nature
of the speech signal. The smoothing is done in four stages.

A flag indicating that hangover has occurred is defined as v flag_ . It is set to zero each time before
the voice activity decision smoothing is performed. Denote the smoothed voice activity decision of
the frame, the previous frame and frame before the previous frame by 0

VDS , SVD
−1 and SVD

−2 ,

respectively. SVD
−1 is initialized to 1, and SVD

−2 is initialized to 1. For start S IVD VD
0 = . The first

smoothing stage is:

() () () 1and1then3and1 and0if 01 ==+>== − flag_vSTEESI VDfVDVD

 ITU-T Rec. G.729 (01/2007) 51

For the second smoothing stage define a Boolean parameter FVD
−1 and a smoothing counter Ce. 1−

VDF
is initialized to 1 and Ce is initialized to 0. Denote the energy of the previous frame by E–1. The
second smoothing stage is:

() () () () (){

(){

}
{

}
}

1

else

0
0

else

1

1
1

1

and1and1and0and1if

1

1

1
1

0

41
211

=

=
=

=

≤
+=
=

=

≤−====

−

−

−

−
−−−

VD

e

VD

VD

e

ee

VD

fVDVDVDVD

F

C
F

F

NCif
CC

flag_v
S

TEESSIF

For the third smoothing stage define a noise continuity counter Cs, which is initialized to 0. If
SVD

0 0= then Cs is incremented. The third smoothing stage is:

() () () {

}
() 01if

0
0

andand1if

0

0

512
0

==

=
=

≤−>= −

sVD

s

VD

fsVD

CS

C
S

TEENCS

In the fourth stage, a voice activity decision is made if the following condition is satisfied:

() () ()() 0then0andandif 0
06 ==>+< VDff Sflag_vNcount_frmTEE

B.3.7 Updating the running averages of the background noise characteristics
The running averages of the background noise characteristics are updated at the last stage of the
VAD module. At this stage, the following condition is tested and the updating takes place if the
following condition is met:

() updatethenif 6TEE ff +<

The running averages of the background noise characteristics are updated using a first order
auto-regressive (AR) scheme. Different AR coefficients are used for different parameters, and
different sets of coefficients are used at the beginning of the recording/conversation or when a large
change of the noise characteristics is detected.

52 ITU-T Rec. G.729 (01/2007)

Let
fEβ be the AR coefficient for the update of E f , βEl

 be the AR coefficient for the update

of E l , βZC be the AR coefficient for the update of ZC and βLSF be the AR coefficient for the update

of { }LSF i i
p
=1 . The total number of frames where the update condition was satisfied is counted by

Cn. Different set of the coefficients βE f
, βEl

, βZC and βLSF is used according to the value of Cn.

The AR update is done according to:

()
()

()
() p,...,iLSFLSFLSF

ZCZCZC

EEE

EEE

iLSFiLSFi

ZCZC

lElEl

fEfEf

ll

ff

11

1

1

1

=⋅β−+⋅β=

⋅β−+⋅β=

⋅β−+⋅β=

⋅β−+⋅β=

 (B.8)

fE and Cn are further updated according to:

() (){

}
0

andif 0

=

=

<>

n

minf

minf

C

EE

EENcountframe

B.4 Detailed description of the DTX/CNG algorithms
The DTX/CNG algorithms provide continuous and smooth information about the non-active voice
periods, while keeping a low average bit rate.

B.4.1 Description of the DTX algorithm
For each non-active voice frame, the DTX module decides if a set of non-active voice update
parameters ought to be sent to the speech decoder by measuring the changes in the non-active voice
signal. Absolute and adaptive thresholds on the frame energy and the spectral distortion measure are
used to obtain the update decision. If an update is needed, the non-active voice encoder sends the
information needed to generate a signal which is perceptually similar to the original non-active
voice signal. This information is comprised of an energy level and a description of the spectral
envelope. If no update is needed, the non-active voice signal is generated by the non-active decoder
according to the last received energy and spectral shape information of a non-active voice frame.

However, a minimum interval of Nmin = 2 frames is required between two consecutive SID frames
i.e., if a spectral or level change has occurred n < Nmin frames after a SID frame, the SID emission is
delayed.
Situated at the transmitting end, the DTX module receives from the VAD module the
active/non-active voice information, and from the encoder modules the autocorrelation function of
the speech signal computed for each 80 sample frame and the past excitation sample. For each
frame, the DTX decision Ftypt (Frame type for frame numbered t) is output as one of the three
values, 0, 1 or 2 corresponding to untransmitted frame, active speech frame or SID frame,
respectively, according to the following procedure:

B.4.1.1 Store the frame autocorrelation function
For every frame t (active or inactive), the autocorrelation coefficients of the current frame t,
including the bandwidth expansion and noise correction (see the G.729 description) are retained in
memory. The set of frame t autocorrelations will be denoted ′r jt () , for j = 0,...,10.

 ITU-T Rec. G.729 (01/2007) 53

B.4.1.2 Computation of the current frame type
If the current frame t is an active speech frame (Vadt = 1), then the current frame type Ftypt = 1 and
the normal speech encoder processing continues.

In the other case, a current LPC filter A zt () calculated over Ncur = 2 previous frames including the
current one t is first evaluated:

The Ncur autocorrelation functions are summed:

 () ()∑
+−=

==
t

Nti

'
i

t

cur

,...,j,jrjR
1

100 (B.9)

and At(z) is calculated by the Levinson-Durbin procedure (see the G.729 description) using Rt(j) as
input. The coefficients of this filter will be noted at(j), j = 0,...,10. The Levinson-Durbin procedure
also provides the residual energy Et, that will be rescaled and used as an estimate of the frame
excitation energy.

Then the current frame type Ftypt is determined in the following way:

– If the current frame is the first inactive frame of the inactive zone, the frame is selected as
the SID frame. The variable E which reflects the energy sum is taken equal to Et, and the
number of frames involved in the summation, kE, is initialized to 1:

 ()
⎪
⎩

⎪
⎨

⎧

=
=

=
⇒=−

1

2
11

E

t

t

t

k
EE

Ftyp
Vad (B.10)

– For the other frames, the algorithm compares the preceding SID parameters to the current
ones: if the current filter is significantly different to the preceding SID filter, or if the
current excitation energy significantly differs from the preceding SID energy, the flag
flag_chang is set to 1, else it does not change.

– The counter count_fr indicating how many frames are elapsed since the previous SID frame
is incremented. If its value is greater than Nmin, the emission of a SID frame is allowed.
Then if flag_chang is equal to 1, a SID frame is sent. In all other cases, the current frame is
untransmitted:

 2
1_

_
=⇒

⎭
⎬
⎫

=
≥

tFtyp
changflag

Nfrcount min (B.11)

Otherwise: 0=tFtyp

In case of a SID frame, the counter count_fr and the flag flag_chang are re-initialized to 0.

LPC filters and energies are compared according to the following methods:

B.4.1.3 Comparison of the LPC filters
The previous SID-LPC filter will be noted Asid(z) and its coefficients asid(j), j = 0,...,10 (the
evaluation of this filter is described in clause B.4.2.2). The current and previous SID-LPC filters are
considered as significantly different if the Itakura distance between the two filters exceeds a given
threshold, which is expressed by:

 () () 1
10

0
thrEiRiR t

j

t
a ×≥×∑

=
 (B.12)

54 ITU-T Rec. G.729 (01/2007)

where Ra(j), j = 0,...,10 is a function derived from the autocorrelation of the coefficients of the SID
filter, given by:

() () ()

() ()⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

≠+×=

∑

∑

=

−

=
10

0

2

10

0

0

0if2

k
sida

j

k
sidsida

kaR

jjkakajR
 (B.13)

A value of 1.20226 is used for thr1.

B.4.1.4 Comparison of the energies
The sum the frame energies is calculated, kE being first incremented up to the maximum value
Ng = 2:

 ∑
+−=

=
t

kti
i

E

EE
1

 (B.14)

Then E is quantized, using the 5-bits logarithmic quantizer described in clause B.4.2.1. The
decoded log-energy Eq is compared to the previous decoded SID log-energy Eq

sid . If the difference
exceeds the threshold thr2=2 dB, the two energies will be considered as significantly different.

B.4.2 SID evaluation and quantization
The silence insertion descriptor (SID) is comprised of the quantized frame excitation energy
(i.e., the current quantized excitation energy Q E() for the SID frames) and the quantized LSPs
corresponding to the estimated SID-LPC filter. Four indices make up the SID frame. One index
describes the energy and three indices describe the spectrum portion of the SID frame.

B.4.2.1 Energy quantization

The quantization of the energy E is performed as follows. First, a scaling factor αw = 0.125 is
introduced that takes into account the effect of windowing and bandwidth expansions present in the
subframes autocorrelation functions)(' jr .

The value used at the input of the gain quantizer is:

 E
Nk

E
curE

w 80
1

××
×α=′ (B.15)

The energy term E' is quantized with a 5-bit non-uniform quantizer in the logarithmic domain in the
range of –12 dB to 66 dB. A uniform step size of 2 dB is used between 16 dB and 66 dB. A step
size of 4 dB is used in the range of –4 dB to 16 dB. Below –4 dB, a single step size of 8 dB is used
giving a quantization level of –12 dB. The quantization is straightforward and does not need the
storage of a quantizer table.

Notice that since the energy comparison (see clause B.4.1.4) is performed with decoded energies,
the quantization of the energy is done for all non-active voice frames.

B.4.2.2 SID-LPC filter estimation and quantization
The SID-LPC filter estimation takes into account the local stationarity or non-stationarity of the
noise at the SID frame neighbourhood.

 ITU-T Rec. G.729 (01/2007) 55

First, a past average filter)(zAp built from Np frames preceding the current SID one is calculated,
using the following autocorrelation sum as input of the Levinson-Durbin procedure:

 () ()∑
−=

==
't

N'tk

'
kp
p

,...,j,jrjR 100 (B.16)

The number of frames involved in the summation has been fixed to Np = 6.

The frame number t' varies in []curNt,t −−1 , depending on the rest of the Euclidian division of the
current frame number t by Ncur.

The SID-LPC filter is then obtained with:

 ()
() () ()()
()⎪⎩

⎪
⎨
⎧ ≥

=
otherwise

3distanceif

zA

thrzA,zAzA
zA

p

ptt
sid (B.17)

The threshold value thr3 is fixed to 1.12202 and the distance between the current LPC filter and the
past average one is calculated in the same manner as in clause B.4.1.3 (see equation (B.12)).

Then the SID-LPC filter is transformed to the LSF domain for quantization. The LSFs are quantized
by a two-stage switched predictive vector quantization (VQ) with 5 and 4 bits each. The
quantization of the LSF vector entails the determination of the best three indices. The first index is
that of the predictor. The last two indices are each taken from a different vector table, as it is done
in a two stage vector quantization. The overall quantization procedure follows the one given in
clause 3.2.4 with the following modifications:
1) The second 4th-order MA predictor used in the full version of G.729 is modified as a linear

combination of the first and second MA predictors as follows:

 2,,1,,2,, 4.06.0 kikiki ppp += (B.18)

 where

 4,...,1,10,...,1 == k i

2) The first stage VQ quantization is similar to the one used in the full version of G.729.
However, only a portion of the first table of the quantizer is used. The relevant subset
entries of the table are stored in an auxiliary lookup table with 32 address indices.
Moreover, a delayed decision quantization is used by keeping few candidates as inputs to
the second stage.

3) The candidates from the first stage, in conjunction with those of the second stage, are used
by the second stage VQ. The second stage VQ quantization is different from the one used in
the full version of G.729. A full VQ is used as compared to the split VQ of the full version
of G.729. Only a portion of the second stage tables is used as well. The relevant subset
entries are stored in another lookup table with two 16-address entries. The combination of
the predictor, a vector from the first stage and a vector from the second stage, leading to the
minimum distortion in the weighted mean squared error sense, is chosen as the LSF
descriptor.

B.4.3 SID bit stream description
The bit stream related to the transmission of a SID frame is described in Table B.2. The bit stream
related to the transmission of an active frame is defined in Table 8. The bit stream ordering is
reflected by the order in the table. For each parameter the most significant bit (MSB) is transmitted
first.

56 ITU-T Rec. G.729 (01/2007)

Table B.2 – SID frame bit stream definition

Parameter description Bits

Switched predictor index of LSF quantizer 1
First stage vector of LSF quantizer 5
Second stage vector of LSF quantizer 4
Gain (energy) 5

B.4.4 Non-active encoder/decoder (CNG) description
At the decoder part, the comfort noise is generated by introducing a pseudo-white excitation signal
of controlled level into interpolated LPC filters in the same manner than the decoder produces
active speech by filtering the decoded excitation. The excitation level and LPC filters are obtained
from the previous SID information. The subframes interpolated LPC filters are obtained by using
the SID-LSPs as current LSPs and performing the interpolation with the previous frame LSPs as
done for active frames in the full version of G.729.

The pseudo-white excitation ex(n) is a mixture between an excitation of the same type as the active
speech one ex1(n) and a white Gaussian excitation ex2(n).
The G.729 excitation ex1(n) is composed of an adaptive excitation with a small gain and an ACELP
fixed excitation, which improves the transition between active and non-active voice frames. The
addition of a Gaussian excitation ex2(n) allows the generation of a whiter signal.

Since the encoder and decoder need to keep synchronized during non-active voice periods, the
excitation generation is performed on both sides, for SID frames and for untransmitted frames.

First, let us define the target excitation gain ~Gt as the square root of the average energy that must
be obtained for the current frame t synthetic excitation. ~Gt is calculated using the following
smoothing procedure, where sidG~ is the SID gain derived for the decoded SID gain:

⎪⎩

⎪
⎨
⎧

+

=
=

−

−

otherwise
8
1

8
7

1if

1

1

sidt

tsid

t G~G~
VadG~

G~ (B.19)

The 80 samples of the frame are divided into 2 subframes of 40 samples. For each subframe, the
CNG excitation samples are synthesized using the following algorithm.

A pitch lag is randomly chosen in the interval [40,103].
Next, the fixed codebook vector of the subframe is built by random selection of the grid and the
signs and positions of the pulses according to the G.729 ACELP code structure.

An adaptive excitation signal of unity gain is then calculated, noted ea(n), n = 0,...,39. The selected
subframe fixed excitation will be noted ef(n), n = 0,...,39.

The adaptive and fixed gains Ga and Gf are then computed in order to yield a subframe average
energy equal to ~Gt

2 , which is expressed by:

 () ()()∑
=

=×+×
39

0

22 ~
40
1

n
tfa GneGfneGa (B.20)

Notice that Gf can take a negative value.

Let us define () () () 2
119

0

39

0

2 40and t
n

fa
n

a G~KneneI,neEa ×=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑

==

 ITU-T Rec. G.729 (01/2007) 57

Due to the ACELP excitation structure ()∑
=

=
39

0

2 4
n

f ne

If we fix randomly the adaptive gain Ga, then equation (B.19) becomes a second order equation on
the fixed gain Gf:

 0
42

2
2 =−×+×+ KGaEaGfIGaGf (B.21)

A constraint may be imposed on Ga to be sure that this equation has a solution. Furthermore it is
desirable to forbid the use of large adaptive gains. For this, the adaptive gain Ga will be randomly
chosen in:

 4with500 2IEaA,
A
K,.Max, −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

 (B.22)

The root of equation (B.20) that has the lowest absolute value is selected for Gf.

Finally the G.729 excitation is built, using:

 () () [] 3901 ,...,n,neGfneGanex fa =×+×= (B.23)

The method of deriving the composite excitation signal ex(n) is as follows:

Let E1 be the energy of ex1(n), E2 be the energy of ex2(n). ex2(n) has a unit variance and a zero
mean. Let E3 be the cross-energy between ex1(n) and ex2(n).

()
()
() ()∑

∑
∑

⋅=

=

=

nexnexE

nexE

nexE

213

2
22

2
11

 (B.24)

where the summation is over the subframe size.

Let α and β be the scale proportion of ex1(n) and ex2(n) used in the mixture excitation respectively.
α is set to be 0.6. β is found as the solution to the following quadratic equation:

 () 0with012 1
2

32
2 >β=−α+αβ+β ,EEE (B.25)

If no solution is found for β, it is set to 0 and α to 1.

The CNG excitation ex(n) becomes:

 () () ()nexnexnex 211 β+α= (B.26)

B.4.5 Frame erasure concealment with regards to the CNG
When a frame erasure is detected by the decoder, the erased frame type depends on the preceding
frame type:
– if the preceding frame was active, then the current frame is considered as active;
– else if the preceding frame was either a SID frame or an untransmitted frame, the current

erased frame is considered as untransmitted:

⎩
⎨
⎧

=⇒=
=⇒=

−

−

02or0
11

1

1

tt

tt

FtypFtyp
FtypFtyp

 (B.27)

If an untransmitted frame has been erased, no error is then introduced.

58 ITU-T Rec. G.729 (01/2007)

If a SID frame is erased, there are two possibilities:
– If it is not the first SID frame of the current inactive period, then the previous SID

parameters are kept.
– If it is the first SID frame of an inactive period, a special protection has been taken.

Notice first that this case is detected by the fact that Ftypt–1 = 1 and Ftypt = 0.

This combination of events does not imply that the preceding frame was a good active frame:
several frames up to the preceding one may have been erased. What is certain is that the last good
frame was an active frame, that the present frame was not erased, and that the SID frame supposed
to provide information for the current untransmitted frame is lost.

To recover the SID information, the CNG module uses parameters provided by the G.729 decoder
main part:
– the LSPs of the last valid active frame are used for the SID-LPC filter;
– an energy term is calculated on the excitation signal by the decoder during the processing of

all valid active voice frames. To recover the missing SID gain ~Gsid , the energy term of the
last valid active frame is quantized with the SID gain quantizer and decoded.

Finally to avoid desynchronization of the random generator used to compute the excitation, the
pseudo-random sequence reset is performed at each active frame, both at the encoder and decoder
parts.

B.5 Bit-exact description of the silence compression scheme
The silence compression scheme is simulated in 16-bit fixed-point ANSI-C code using the same set
of fixed-point basic operators defined in Table 11. The ANSI-C code constitutes an integral part of
this Recommendation reflecting the bit-exact fixed-point description of the silence compression
scheme. In the event of any discrepancy between the printed text of this Recommendation and the C
source, the C source code is presumed to be correct. As of the approval of this text, the current
version of this ANSI C code is Version 1.5 of October 2006. More recent versions may become
available through corrigenda or amendments to G.729. Please ensure to use the latest available
version from the ITU-T website.

B.5.1 Organization of the simulation software
Same as clause 5.2.

The Annex B ANSI-C software modules are listed in Table B.3. Refer to the read.me file provided
with the software for more details.

 ITU-T Rec. G.729 (01/2007) 59

Table B.3 – List of G.729 Annex B software files

G.729 Annex B ANSI-C module names Description

Vad.c VAD
Dtx.c DTX decision
Qsidgain.c SID gain quantization
QsidLSF.c SID-LSF quantization
Calcexc.c CNG excitation calculation
Dec_sid.c Decode SID information
Miscel.c Miscellaneous calculations
G.729 Annex B ANSI-C.h file names Description
Vad.h Prototype and constants
Dtx.h Prototype and constants
Sid.h Prototype and constants
Miscel.h Prototype and constants

60 ITU-T Rec. G.729 (01/2007)

Annex C

Reference floating-point implementation for G.729
CS-ACELP 8 kbit/s speech coding

(This annex forms an integral part of this Recommendation)

Summary
This annex describes an alternative implementation of G.729 Annex A based on floating-point
arithmetic. Subjective quality tests have been performed by NTT (Japan) and CNET (France) to
assess the quality of these floating-point versions under various conditions (input level, error,
background noise, tandeming). Different interoperability configurations with the fixed-point version
of the algorithm have also been tested. These tests proved full interoperability of this floating-point
implementation to both the full version of G.729 and Annex A.

This annex includes an electronic attachment containing reference C codes for floating-point
implementation of CS-ACELP at 8 kbit/s full version and reduced complexity. The design of a set
of test vectors remains for further study.

C.1 Scope
This annex provides a description of an alternative implementation in floating-point arithmetic for
the full version of G.729 and Annex A. The development of an interoperable floating-point
specification for voice activity detection (VAD), discontinuous transmission (DTX) and comfort
noise generation (CNG) with similar properties as the fixed-point specification in Annex B is for
further study.

C.2 Normative references
This annex refers to materials defined in the main body and Annex A of this Recommendation.

C.3 Overview
The full version of G.729 provides bit-exact fixed-point specification of an algorithm for the coding
of speech signals at 8 kbit/s. Annex A is a reduced complexity version interoperable with the full
version of G.729. Exact details of these specifications are given in bit-exact fixed-point C code
available from ITU-T. This annex describes and defines an alternative implementation of the full
version of G.729 and Annex A based on floating-point arithmetic.

C.4 Algorithmic description
This floating-point version of the full version of G.729 (respectively Annex A) has the same
algorithm steps as the fixed-point version. Similarly, the bit stream is identical to that of G.729
(respectively to that of Annex A). For algorithmic details, see the full version of G.729 (respectively
Annex A).

C.5 ANSI C code
ANSI C code simulating the floating-point version of the full version of G.729 (respectively
Annex A) defined in this annex has been developed and is available as an attachment to this annex.
The ANSI C code represents the normative specification of this annex. The algorithmic description
given by the C code shall take precedence over the texts contained in the main body of the full
version of G.729, Annex A or this annex. As of the approval of this text, the current version of this
ANSI C code is Version 1.01 of 15 September 1998. More recent versions may become available
through corrigenda or amendments to G.729. Please ensure to use the latest available version from
the ITU-T website. The structure of these floating-point source codes is related to the corresponding

 ITU-T Rec. G.729 (01/2007) 61

fixed-point source code. As for Annex B to [ITU-T G.723.1], the typedef.h file contains a statement
enabling the definition of all floating-point variables and constants as type either double or single. A
file called version.h is available to select whether the C code will operate according to the full
version of G.729 or Annex A. Tables C.1 to C.3 give the list of the software files names with a brief
description. Note that the fixed-point files basic_op.c, oper_32b.c, dspfunc.c and basic_op.h,
oper_32b.h are not needed for floating-point arithmetic. A float to short conversion routine has been
added to the file util.c.

Table C.1 – List of software files specific to G.729 floating-point source code

File name Description

coder.c Main program for G.729 encoder
cod_ld8k.c G.729 encoder routine
acelp_co.c G.729 fixed codebook search
lpc.c G.729 LP analysis
lpcfunc.c Miscellaneous routines related to LP filter
pitch.c G.729 pitch search
pwf.c G.729 computation of perceptual weighting coefficients
decoder.c Main program for G.729 decoder
dec_ld8k.c G.729 decoder routine
postfil.c G.729 postfilter
tab_ld8k.c G.729 constants tables
ld8k.h G.729 prototypes and constant declarations
tab_ld8k.h G.729 declaration of constants tables
version.h Used to select the G.729 (main body) mode

Table C.2 – List of software files specific to G.729 Annex A
floating-point source code

File name Description

coder.c Main program for G.729 Annex A encoder
acelp_ca.c G.729 Annex A fixed codebook search
cod_ld8a.c G.729 Annex A encoder routine
lpc.c G.729 Annex A LP analysis
lpcfunc.c Miscellaneous routines related to LP filter
pitch_a.c G.729 Annex A pitch search
decoder.c Main program for G.729 Annex A decoder
dec_ld8a.c G.729 Annex A decoder routine
postfila.c G.729 Annex A postfilter
tab_ld8a.c G.729 Annex A tables of constants
ld8a.h G.729 Annex A prototypes and constant declarations
tab_ld8a.h Declaration of G.729 Annex A constants tables
version.h Used to select the G.729 Annex A mode

62 ITU-T Rec. G.729 (01/2007)

Table C.3 – List of software files common to G.729
and G.729 Annex A floating-point source code

File name Description

bits.c Bit manipulation routines
qua_lsp.c LSP quantizer
qua_gain.c Gain quantizer
cor_func.c Miscellaneous routines related to excitation computation
de_acelp.c Algebraic codebook decoder
dec_gain.c Gain decoder
dec_lag3.c Adaptive-codebook index decoder
filter.c Filter functions
gainpred.c Gain predictor
lspdec.c LSP decoding routine
lspgetq.c LSP quantizer
p_parity.c Pitch parity computation
post_pro.c Post-processing (HP filtering)
pre_proc.c Preprocessing (HP filtering)
pred_lt3.c Generation of adaptive codebook
taming.c Pitch taming functions
util.c Utility function
typedef.h Data type definition (machine-dependent)

 ITU-T Rec. G.729 (01/2007) 63

Annex C+

Reference floating-point implementation for integrating G.729 CS-ACELP
speech coding main body with Annexes B, D and E

(This annex forms an integral part of this Recommendation)

Summary
This annex, dubbed "Annex C+", extends the functionalities of Annex C.

Previous Annex C contains G.729 main body and G.729 Annex A and B floating-point
implementation. Annex C+ defines the integration of G.729 main body with Annexes B, D and E in
floating-point arithmetic.

This annex includes an electronic attachment containing reference C code for floating point
implementation of CS-ACELP at 6.4 kbit/s, 8 kbit/s and 11.8 kbit/s with DTX functionality.

C+.1 Scope
This annex provides a description of integrating the G.729 main body with Annexes B, D and E in
floating-point arithmetic. It presents a standard way of performing this integration and expansion of
the functionality, hereby guiding the industry and ensuring a standard speech quality and
compatibility worldwide. The integration has been performed with focus on several constraints in
order to satisfy the need of the industry:
1) Bit-exactness with the main body in floating point (Annex C).
2) Minimum additional program code, memory and complexity usage.
3) Stringent quality requirements to new functionality, in line with quality and application

areas of the according standard annexes.

C+.2 Normative references

This annex refers to materials defined in the G.729 main body and Annexes B, C, D and E.

C+.3 Overview
G.729 main body and Annexes B, D and E provide a bit-exact fixed-point specification of a
CS-ACELP coder at 8 kbit/s, with DTX functionality, lower and higher bit extension capability at
6.4 and 11.8 kbit/s. Exact details of these specifications are given in bit-exact fixed-point C code in
an electronic attachment to this annex. Annex C describes and defines an alternative
implementation of G.729 main body. Annex C+ describes and defines the integration of the G.729
main body with Annexes B, D and E in floating-point arithmetic. It can be considered as an
extension of Annex C.

C+.4 New functionality
This clause presents a brief overview of the modifications/additions to the algorithms in order to
facilitate the integration of the main body and Annexes B, D and E. Also certain additions have
been found necessary in order to accommodate the application area of the different modules.

C+.4.1 Annex B DTX operation with Annex D
Integrating Annexes B and D functionality in order to provide DTX operation with Annex D is
straightforward. The voice activity detection (VAD), silence insertion description (SID) coding and
comfort noise generation (CNG) of Annex B are reused without any modifications. Care is taken to
update the parameters for the phase dispersion for the postfilter in Annex D during discontinued
transmission (see clause C+.5.2).

64 ITU-T Rec. G.729 (01/2007)

C+.4.2 Annex B DTX operation with Annex E
Integrating Annexes B and E functionality in order to provide DTX operation with Annex E is
slightly more involved. Since the DTX operation of Annex B is based on the 10th order LPC
analysis, the VAD function of Annex B is performed after the 10th order forward adaptive LPC
analysis and before the backward adaptive LPC analysis of Annex E. In case the VAD function
detects "non-speech", the LPC mode of Annex E is forced to forward adaptive LPC and the
backward adaptive LPC analysis is skipped. Furthermore, it has been found necessary to add a
correctional module after the VAD in order to detect music and accommodate the somewhat
expanded application area of Annex E – one of the purposes of Annex E is to provide transmission
capability of music with a certain quality. Accordingly, during the development of Annex E there
were strict requirements to the performance with music signals. On the other hand, for the main
body and Annexes B and D there were no strict requirements to the performance with music
signals. In order to guarantee the quality with music signals of Annex E during Annex B DTX
operation, the music detection function forces the VAD to "speech" during music segments, hereby
ensuring that the music segments are coded with the 11.8 kbit/s of Annex E. The SID coding and
the CNG of Annex B are reused without any modifications. Furthermore, care is taken to
appropriately update the parameters of the LPC mode selection algorithm of Annex E during
discontinued transmission (see clause C+.5.3).

C+.5 Algorithm description
This clause presents the algorithm description of the necessary additions to the algorithms of the
individual annexes in order to facilitate the integration. All remaining modules originate from the
main body, Annex B, D or E.

C+.5.1 Music detection
The music detection is a new function. It is performed immediately following the VAD and forces
the VAD to "speech" during music segments. It is active only during Annex E operation, though its
parameters are updated continuously independently of bit-rate mode during DTX operation of the
integrated G.729.

The music detection algorithm corrects the decision from the voice activity detection (VAD) in the
presence of music signals. It is used in conjunction with Annex E during Annex B DTX operation,
i.e., in discontinuous transmission mode. The music detection is based on the following parameters:
– Vad_deci: VAD decision of the current frame.
– PVad_dec: VAD decision of the previous frame.
– Lpc_mod: Flag indicator of either forward or backward adaptive LPC of the previous

frame.
– Rc: Reflection coefficients from LPC analysis.
– Lag_buf: Buffer of corrected open-loop pitch lags of last 5 frames.
– Pgain_buf: Buffer of closed-loop pitch gain of last 5 subframes.
– Energy: First autocorrelation coefficient)0(R from LPC analysis.

– LLenergy: Normalized log energy from VAD module.
– Frm_count: Counter of the number of processed signal frames.
– Rate: Selection of speech coder.

The algorithm has two main parts:
1) Computation of relevant parameters.
2) Classification based on parameters.

 ITU-T Rec. G.729 (01/2007) 65

C+.5.1.1 Computation of relevant parameters
This clause describes the computation of the parameters used by the decision module.

Partial normalized residual energy

()() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∏

=

4

1

2
10 240

1log10
i

EnergyiRcLenergy

Spectral difference and running mean of partial normalized residual energy of background
noise

A spectral difference measure between the current frame reflection coefficients Rc and the running
mean reflection coefficients of the background noise mRc is given by:

∑
=

=
10

1

2))(–)((
i

imRciRcSD

The running means mrc and mLenergy are updated as follows using the VAD decision Vad_deci
that was generated by the VAD module.

}
1090

1090

 if

Lenergy.mLenergy.mLenergy
rc.mrc.mrc

{NOISEdeci_Vad

+=
+=

==

Open-loop pitch lag correction for pitch lag buffer update
The open-loop pitch lag Top is corrected to prevent pitch doubling or tripling as follows:

op

op

op

op

op

i

TLag_buf

T
Lag_buf

lag_avg
T

abs

T
)Lag_buf

lag_avg
T

abs

)i(buf_Laglag_avg

=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
<=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=∑
=

)5(
else

3
)5(

2
3

 if else

2
5(

 2
2

 if

4

4

1

It should be noted that the open loop pitch lag Top is not modified and is the same as derived by the
open-loop analysis.

Pitch lag standard deviation

4
Varstd =

66 ITU-T Rec. G.729 (01/2007)

where:

∑∑
==

=µµ=
5

1

5

1

2
5

)(and))((
ii

ibuf_Lag–ibuf_LagVar

Running mean of pitch gain

θ+= 2.08.0 mPgainmPgain , where ∑
=

=θ
5

1 5
)(_

i

ibufPgain

The pitch gain buffer Pgain_buf is updated after the subframe processing with a pitch gain value
of 0.5 if Vad_deci = NOISE and otherwise with the quantized pitch gain.

Pitch lag smoothness and voicing strength indicator
A pitch lag smoothness and voicing strength indicator Pflag is generated using the following logical
steps:

First, two intermediary logical flags Pflag1 and Pflag2 are obtained as:
 if (std < 1.3 and mPgain > 0.45) set Pflag1 = 1 else 0
 if (mPgain > Thres) set Pflag2 = 1 else 0,

 where Thres = 0.73 if Rate = G729D, otherwise Thres = 0.63

Finally, Pflag is determined from the following:

0 else 1set

))12(or))12or 11(and ((if
=

========
Pflag

PflagPflagPflagVOICEdec_PVad

Stationarity counters
A set of counters are defined and updated as follows:
a) count_consc_rflag tracks the number of consecutive frames where the 2nd reflection

coefficient and the running mean of the pitch gain satisfy the following condition:
 if (Rc(2) < 0.45 and Rc(2) > and mPgain < 0.5)
 count_consc_rflag = count_consc_rflag + 1
 else
 count_consc_rflag = 0
b) count_music tracks the number of frames where the previous frame uses backward adaptive

LPC and the current frame is "speech" (according to the VAD) within a window of
64 frames.

 if (Lpc_mod == 1 and Vad_deci == VOICE)
 count_music = count_music + 1

 Every 64 frames, a running mean of count_music, mcount_music is updated and reset to
zero as described below:

 if ((Frm_count mod 64) == 0){
 if (Frm_count == 64)
 mcount_music = count_music
 else
 mcount_music = 0.9 mcount_music + 0.1count_music
 }

 ITU-T Rec. G.729 (01/2007) 67

c) count_consc tracks the number of consecutive frames where the count_music remains zero:
 if (count_music == 0)
 count_consc = count_consc + 1
 else
 count_consc = 0
 if (count_consc > 500 or count_consc_rflag > 150) set mcount_music = 0
 count_music in b) is reset to zero every 64 frames after the update of the relevant counters.
 The logic in c) is used to reset the running mean of musiccount _ .

d) count_pflag tracks the number of frames where Pflag = 1, within a window of 64 frames.
 if (Pflag == 1)
 count_pflag = count_pflag + 1

 Every 64 frames, a running mean of pflagcount _ , pflagmcount _ , is updated and reset to
zero as described below:

 if ((Frm_count mod 64) == 0){
 if (Frm_count == 64)
 mcount_pflag = count_ pflag
 else{
 if (count_ pflag > 25)
 mcount_pflag = 0.98mcount_pflag + 0.02count_pflag
 else (count_pflag > 20)
 mcount_pflag = 0.95mcount_pflag + 0.05count_pflag
 else
 mcount_pflag = 0.9mcount_pflag + 0.1count_pflag
 }
 }
e) count_consc_pflag tracks the number of consecutive frames satisfying the following

condition.
 if (count_pflag == 0)
 count_consc_pflag = count_consc_pflag + 1
 else
 count_consc_pflag = 0
 if (count_consc_pflag >)100 or count_consc_rflag > 150) set mcount_pflag = 0

 count_pflag is reset to zero every 64 frames. The logic in e) is used to reset the running
mean of count_ pflag.

C+.5.1.2 Classification
Based on the estimation of the above parameters, the VAD decision Vad_deci from the VAD
module is reverted if the following conditions are satisfied:
 if (Rate = G729E){
 if (SD > 0.15 and (Lenergy – mLenergy) > 4 and LLenergy > 50)
 Vad_deci = VOICE

68 ITU-T Rec. G.729 (01/2007)

 else if ((SD > 0.38 or (Lenergy – mLenergy) > 4) and LLenergy > 50)
 Vad_deci = VOICE
 else if ((mcount_pflag >= 10 or mcount_music >= 5 or Frm_count < 64)
 and LLenergy > 7)
 Vad_deci = VOICE
 }

Note that the music detection function is called all the time regardless of the operational coding
mode in order to keep the memories current. However, the VAD decision Vad_deci is altered only
if the integrated G.729 is operating at 11.8 kbit/s (Annex E). It should be noted that the music
detection only has the capability to change the decision from "non-speech" to "speech" and not vice
versa.

C+.5.2 Update of state variables specific to Annex D during discontinued transmission
The only state variables specific to Annex D are the state variables of the phase dispersion module
(see clause D.6.2) at the decoder. In case of inactive frames, the same update procedure as in case of
nominal bit rate (8 kbit/s) is followed using as adaptive and ACELP gain estimations the gain
values computed by the comfort noise excitation generator (see clause B.4.4). Note also that the
update for the higher rate is identical to the update for the nominal bit rate.

C+.5.3 Update of state variables specific to Annex E during discontinued transmission

C+.5.3.1 Update of encoder state variables specific to Annex E
At the encoder in case of inactive frames, the update of state variables is identical to the update
performed in Annex E in case of switch to the nominal bit rate 8 kbit/s. The update procedure is the
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly
switch from LP forward filter to backward LP filter is reset to its maximum value (see
clause E.3.2.7.1). Note that this update is also performed in case of switch to the lower bit rate
6.4 kbit/s.

C+.5.3.2 Update of decoder state variables specific to Annex E during discontinued
transmission

At the decoder in case of inactive frames, the update of state variables is almost identical to the
update performed in Annex E in case of switch to the forward mode only rates (8 kbit/s and
6.4 kbit/s) except that the pitch delay stationary indicator is reset to 0 instead of being computed by
the pitch tracking procedure (see clause E.4.4.5).

C+.6 Description of C source code

The Annex C+ integrating the G.729 main body, Annexes B, D and E functionality is simulated in
floating point arithmetic ANSI-C code. As for Annex C, the typedef.h file contains a statement
enabling the definition of all floating-point variables and constants as type either double or single.
The ANSI-C code represents the normative specification of this annex. The algorithmic description
given by the C code shall take precedence over the texts contained in the main body of G.729 and in
Annexes B, C, D, E and C+. As of the approval of this text, the current version of this ANSI C code
is Version 2.2 of October 2006. More recent versions may become available through corrigenda or
amendments to G.729. Please ensure to use the latest available version from the ITU-T website.

 ITU-T Rec. G.729 (01/2007) 69

C+.6.1 Use of the simulation software
The C code consists of two main programs codercp.c and decodercp.c, which simulate encoder
and decoder, respectively. The encoder is executed as follows:

 codercp inputfile bitstreamfile dtx_option rate_option
The decoder is executed as follows:

 decodercp bitstreamfile outputfile
The input file and output file are 8 kHz sampled data files containing 16-bit PCM signals. The bit
stream file is a binary file containing the bit stream; the mapping table of the encoded bit stream is
contained in the simulation software. The two options for the encoder are: dtx_option and
rate_option where:
dtx_option = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled).
rate_option = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main G.729 (8 kbit/s); = 2 to

select the higher rate (11.8 kbit/s) or a file_rate_name: a binary file of 16-bit word
containing either 0, 1, 2 to select the rate on a frame-by-frame basis; the default
is 1 (8 kbit/s).

C+.6.2 Organization of the simulation software
Table C+.1 gives the list of the software files names with a brief description, and it is also indicated
what annex the file has been derived from (identical or similar to Annex C file or fixed to
floating-point transcription of the files). Note that the fixed-point files basic_op.c, oper_32b.c,
dspfunc.c, basic_op.h and oper_32b.h are not needed for floating-point arithmetic. As for Annex C,
a float to short conversion routine has been added to the file utilities file utilcp.c.

Table C+.1 – List of software files of integrated G.729 in floating point

File name Description Link

Gainpred.c Gain predictor C
Lpfunccp.c Miscellaneous routines related to LP filter C + E
Cor_func.c Miscellaneous routines related to excitation computation C
Pre_proc.c Preprocessing (HP filtering and scaling) C
P_parity.c Compute pitch parity C
Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) C
Pred_lt3.c Generation of adaptive codebook C
Post_pro.c Post-processing (HP filtering and scaling) C
Tab_ld8k.c ROM tables C
Ld8k.h Function prototypes C
Tab_ld8k.h Extern ROM table declarations C
Typedef.h Data type definition (machine-dependent) C
Taming.c Pitch instability control C
Qsidgain.c SID gain quantization B
QsidLSF.c SID-LSF quantization B
Tab_dtx.c ROM tables B
Sid.h Prototype and constants B

70 ITU-T Rec. G.729 (01/2007)

Table C+.1 – List of software files of integrated G.729 in floating point

File name Description Link

Octet.h Octet transmission mode definition B
Tab_dtx.h Extern ROM table declarations B
Pwfe.c Computation of perceptual weighting coefficients (11.8 kbit/s) E
Vad.c VAD B
Dtx.c DTX decision B
Vad.h Prototype and constants B
Dtx.h Prototype and constants B
Calcexc.c CNG excitation calculation B
Dec_sid.c Decode SID information B
Utilcp.c Utility functions C + B
Phdisp.c Phase dispersion D
Bwfw.c Backward/forward switch selection E
Bwfwfunc.c Miscellaneous routines related to backward/forward switch E
Filtere.c Filter functions C + E
Lpccp.c LP analysis C + E
Lspcdece.c LSP decoding routines C + E
Lspgetqe.c LSP quantizer C + E
Qua_lspe.c LSP quantizer C + E
Track_pi.c Pitch tracking E
Codercp.c Main encoder routine C + B + D + E
Codld8cp.c Encoder routine C + B + D + E
Decodcp.c Main decoder routine C + B + D + E
Decld8cp.c Decoder routine C + B + D + E
Acelp_cp.c search ACELP fixed codebook (6.4, 8, 11.8 kbit/s) C + D + E
Dacelpcp.c Decode algebraic codebook (6.4, 8, 11.8 kbit/s) C + D + E
Pitchcp.c Pitch search C + D + E
Declagcp.c Decode adaptive-codebook index C + D + E
Q_gaincp.c Gain quantizer C + D + E
Degaincp.c Decode gain C + D + E
Pstpcp.c Postfilter routines C + B + E
Bitscp.c Bit manipulation routines C + B + D + E
Tabld8cp.c ROM tables for G.729 at 6.4 and 11.8 kbit/s D + E
Tabld8cp.h Extern ROM declarations for G.729 at 6.4 and 11.8 kbit/s D + E
Ld8cp.h Constant and function prototypes for G.729 at 6.4 and 11.8 kbit/s D + E
Mus_dtct.c Music detection module New

 ITU-T Rec. G.729 (01/2007) 71

Annex D

+CS-ACELP speech coding algorithm at 6.4 kbit/s
(This annex forms an integral part of this Recommendation)

Summary
This annex provides the lower bit-rate extension designed to achieve a quality somewhat below the
one achieved with the full version of G.729.

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s and 8 kbit/s.

D.1 Scope
This annex is intended as a lower rate extension to the algorithm in the full version of G.729, and is
specified to increase the flexibility of the algorithm in the full version of G.729, e.g., to handle
overload conditions. It does not provide the same level of quality as does the algorithm in the main
body of G.729, but for most conditions it provides significantly higher quality than G.726 at
24 kbit/s. However, for high levels of car noise, the algorithm could have some performance
limitations. The differences to the main body of G.729 are described in this annex.

D.2 Normative references
This annex refers to materials defined in the main body of this Recommendation.

D.3 General coder description for the 6.4 kbit/s extension
The coder is similar to that of the full version of G.729 with a few exceptions. The modifications
are summarized below, and described in more detail in the following clauses.
1) The ACELP codebook of G.729 has been changed to a new ACELP codebook which is

using two signed pulses in two overlapping tracks of different lengths (16 and 32 positions
respectively).

2) The conjugate-structured codebook for the gains has been replaced with a new
conjugate-structured codebook with 6 bits.

3) A modified coding of the pitch delay in the second subframe is used. The number of bits
are reduced to 4 bits. The delta lag range is maintained, using an uneven distribution of
fractional delta values.

4) An additional postfiltering technique is applied to reduce the effects of the sparser algebraic
codebook.

5) The pitch-delay parity bit has been removed.

The new coder uses 6.4 kbit/s or 64 bits per frame instead of the 8.0 kbit/s or 80 bits per frame used
in the full version of G.729.

72 ITU-T Rec. G.729 (01/2007)

D.4 Bit allocation

Table D.1 – Bit allocation for 6.4 kbit/s of G.729

Parameter Number of bits per frame
(10 ms)

LP parameters 18
Adaptive codebook 8 + 4
Fixed codebook 2 * 11
Gain quantizer 2 * 6
Total 64
NOTE – Bold figures represent changes compared to those in the
full version of G.729.

D.5 Functional description of the encoder

D.5.1 Preprocessing
Same as that in the full version of G.729.

D.5.2 Linear prediction analysis and quantization
Same as that in the full version of G.729.

D.5.3 Perceptual weighting
Same as that in the full version of G.729.

D.5.4 Open-loop pitch analysis
Same as that in the full version of G.729.

D.5.5 Computation of the impulse response
Same as that in the full version of G.729.

D.5.6 Computation of the target signal
Same as that in the full version of G.729.

D.5.7 Adaptive codebook search
The LTP coding for the absolute coded subframes (first subframe) are the same as that in the main
body of G.729. The number of LTP lags in the second subframe has been reduced from 32 to 16.
Integer delta lag values are used for the ranges int(T1) – 5 to int(T1) – 2 and int(T1) + 1 to
int(T1) + 4, where T1 is the LTP lag of the previous subframe. Fractional lags with a resolution
of 1/3 are used in the range int(T1) – 1 2/3 to int(T1) + 2/3.

D.5.8 Fixed codebook structure and search
The original four-pulse codebook is exchanged for an ACELP codebook with 2 signed pulses in
two overlapping tracks. The track table is given in Table D.2. The signs of the pulses are preset as
in the main body of G.729. The search of pulse positions is an exhaustive yet computationally
efficient search over all 512 vectors.

 ITU-T Rec. G.729 (01/2007) 73

Table D.2 – ACELP track table

Pulse Sign Positions

i0 +1/−1 1, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, 31, 33, 36, 38

i1 +1/−1 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30,
31, 32, 34, 35, 36, 37, 39

D.5.9 Quantization of the gains
The conjugate-structured gain codebook is redesigned. Six bits per subframe are allocated to the
gain codebook. The codebook is trained with the condition of 0.1% bit error rate with a random
distribution. This codebook requires 32 words of memory.

D.5.10 Memory update
Same as that in the full version of G.729.

D.6 Functional description of decoder

D.6.1 Parameter decoding procedure
Similar to that in the full version of G.729. The number of parameters is smaller. Less fixed
excitation codebook parameters are used.

D.6.2 Fixed codebook post-processing
An additional post-processing filter is applied in the decoder in order to reduce the perceptually
adverse effects of the sparse excitation. The filter alters the innovation signal such that a new
innovation is created which has the energy more spread over the subframe. The filter alters mainly
the phase of the innovation through a "semi-random" impulse response. The filtering is performed
by circular convolution, using one of the three stored impulse responses. The filter selection is
controlled by a voicing decision, based on the filtered received LTP gain. The three impulse
responses correspond to different amounts of spreading. Maximum spreading is applied in
noise-like segments, when the filtered LTP gain is low. Medium spreading is applied for
intermediate LTP gains, and no spreading is applied in voiced speech, when the filtered LTP gain is
high. Additionally, strong increase in codebook gain is detected, to avoid spreading of onsets.

D.6.3 Post filtering and post-processing
Same as that in the full version of G.729.

D.6.4 Concealment of frame-erasures
Same as that in the full version of G.729.

D.7 ANSI C code
ANSI C code specifying the G.729 lower bit rate extension is available as an attachment to this
annex. As of the approval of this text, the current version of this ANSI C code is Version 1.3 of
February 2000. More recent versions may become available through corrigenda or amendments to
G.729. Please ensure to use the latest available version from the ITU-T website. The ANSI C code
represents the normative specification of this annex. The algorithmic description given by the C
code shall take precedence over the texts contained in the main body of G.729 and in Annex D.

74 ITU-T Rec. G.729 (01/2007)

Tables D.3 to D.6 contain lists of the ANSI C code files grouped by function.

Table D.3 – List of software files specific to G.729
lower bit-rate extension encoder

File name Description

acelpcod.c
codld8kd.c
coderd.c
pitchd.c
qua_g6k.c

Search fixed codebook
Encoder routine
Encoder
Pitch search
Gain quantizer

Table D.4 – List of software files specific to G.729
lower bit-rate extension decoder

File name Description

declag3d.c
decld8kd.c
decoderd.c
deacelpd.c
dec_g6k.c

Decode adaptive-codebook index
Decoder routine
Decoder
Decode algebraic codebook
Decode gain

Table D.5 – List of software files specific to G.729
lower bit-rate extension routines common

to encoder and decoder

File name Description

bitsd.c
filterd.c
ld8kd.h
tabld8kd.c
tabld8kd.h

Bit manipulation routines
Filter functions
Switching variables
Tables

 ITU-T Rec. G.729 (01/2007) 75

Table D.6 – List of software files specific to G.729
lower bit-rate extension routines common

to G.729 and Annex D

File name Description

basic_op.h
ld8k.h
oper_32b.h
tab_ld8k.h
typedef.h
basic_op.c
de_acelp.c
dec_gain.c
dspfunc.c
gainpred.c
lpc.c
lpcfunc.c
lspdec.c
lspgetq.c
oper_32b.c
p_parity.c
post_pro.c
pre_proc.c
pred_lt3.c
pst.c
pwf.c
qua_gain.c
qua_lsp.c
tab_ld8k.c
util.c

Common to G.729 main body

76 ITU-T Rec. G.729 (01/2007)

Annex E

CS-ACELP speech coding algorithm at 11.8 kbit/s
(This annex forms an integral part of this Recommendation)

Summary
This annex provides the high level description of the higher bit-rate extensions of this
Recommendation designed to accommodate a wide range of input signals, such as speech, with
background noise and even music.

This annex includes an electronic attachment containing reference C code and test vectors for
fixed-point implementation of CS-ACELP at 8 kbit/s and 11.8 kbit/s.

E.1 Introduction
This annex provides the high-level description of the higher bit-rate extension of G.729 designed to
accommodate a wide range of input signals, such as speech, with background noise and even music.

E.2 General description of the speech codec

The extension algorithm has been designed to limit as much as possible the modifications and
additions brought to the original G.729 algorithm. The only actual additions to G.729 concern the
LP part with the introduction of a backward LP analysis suited for music signals and stationary
background noises and the design of two new algebraic excitation codebooks to extend the bit rate
up to 11.8 kbit/s: one codebook is used in forward mode, the other one, larger, in backward mode.
All the remaining procedures are strictly the same as in G.729 except some minor modifications to
the postfiltering and perceptual weighting procedures. Error concealment has also been modified to
be adapted to the backward/forward LP structure.

Two LP analyses are performed at the frame rate: one backward on the synthesis signal and one
forward on the input signal. An adaptive decision procedure chooses the best filter and performs the
switch if needed. The LP forward part of the algorithm is the same as the G.729 one with the same
LSP quantization scheme. The backward LP analysis has an order of 30 and is performed both in
the coder and in the decoder. Since the LP coefficients are not transmitted, the spare bit rate is used
to increase the size of the algebraic excitation codebooks. One information bit is needed to indicate
the LP mode and is protected by a parity bit. In the proposed extension, all the additional bit rate
from 8 kbit/s to 11.8 kbit/s, except two bits (LP indication mode + parity bit), is used to increase the
size of the algebraic codebooks. The bit allocation of the coder parameters is shown in Table E.1.

The backward/forward decision criterion enables to operate a real discrimination between speech
(mainly coded in forward mode) and music (mainly coded in backward mode). The
backward/forward procedure has also been designed to reduce the number of switches and to
perform, when necessary, smooth switching between filters with no artefacts. The LP mode and the
related information is used to better adapt postfiltering and perceptual weighting to either music or
speech. This is also used for the error concealment.

In the following clauses, a high-level description of the 11.8 kbit/s extension of G.729 is provided.
Only the modifications or additions to the G.729 algorithm will be described.

 ITU-T Rec. G.729 (01/2007) 77

Table E.1 – Bit allocation of the 11.8 kbit/s CS-ACELP algorithm
(10 ms frame)

 Extension at 11.8 kbit/s
LP mode indication bit 1 + 1 (parity)
 Forward Backward
LP filter 18 0
LTP delay (1st/2nd sub-fr.) 8 + 1 (parity)/5 8 + 1 (parity)/5
EXC codes (1st/2nd sub-fr.)
Gains (LTP + EXC) (1st/2nd sub-fr.)

35/35
7/7

44/44
7/7

Total 118 118
NOTE – The numbers of bits corresponding to modified parts of the structure
(compared to G.729) are typed in bold.

E.2.1 Encoder
In order to obtain this high quality with music while keeping a good robustness to transmission
errors and avoiding degradation of less stationary signals and especially speech (compared with a
pure forward structure used in G.729), a new technique called mixed backward/forward LP
structure has been introduced. A criterion enables to choose the most suitable LP analysis given the
stationarity of the input signal and the backward and forward filters' prediction gains.

For music signals, generally very stationary, the LP backward mode is mainly used: the LP analysis
is performed on the synthesis signal with no transmission of the coefficients, with two benefits:
• The LP order is increased up to 30 coefficients which is far more suited for the complex

spectrum of music signals (the 10 coefficients LP filter of LP forward codecs like G.729 is
not sufficient for music).

• The bit rate is better allocated: no bit rate is wasted on successive very similar LP filters.
All the spare bit rates are used to extend the size of the excitation codebook. An algebraic
codebook with 44 bits is used for the fixed codebook excitation.

The weak points of pure backward LP analysis mainly concern the non-stationary signals with sharp
spectrum transitions and the sensitivity to transmission errors. With the mixed LP
backward/forward structure, if a spectrum transition occurs, the forward mode is selected and the
10 LP coefficients are coded and transmitted. Besides, even if backward mode is dominant, the
transmission of forward LP filters clearly improves the robustness when compared with a pure
backward structure.

In forward mode, the encoder is almost identical to G.729 with more bits allocated to the excitation
codebooks. An algebraic codebook with 35 bits is used for the fixed codebook excitation.

E.2.2 Decoder
First, the parameter's indices are extracted from the received bit stream. These indices are decoded
to obtain the coder parameters corresponding to a 10 ms speech frame. The first parameter decoded
is the LP mode information and its parity bit. According to this information, the frame is classified
either as forward, backward or erased. In forward mode, the parameters are the LSP coefficients,
the two fractional pitch delays, the two forward fixed-codebook vectors, and the two sets of
adaptive- and fixed-codebook gains. In backward mode, the parameters are the two fractional pitch
delays, the two backward fixed-codebook vectors, and the two sets of adaptive- and fixed-codebook
gains. First, the LP backward analysis is performed. Then, if the frame is in forward mode, the LSP
coefficients are interpolated and converted to LP filter coefficients for each subframe. Except for
the construction of fixed-codebook excitation, the decoding procedure is very similar to the G.729
decoding procedure.

78 ITU-T Rec. G.729 (01/2007)

Then, for each 5 ms subframe the following steps are done:
– the excitation is constructed by adding the adaptive- and fixed-codebook vectors scaled by

their respective gains;
– the speech is reconstructed by filtering the excitation through the LP synthesis filter (either

forward or backward); and
– the reconstructed speech signal is passed through a post-processing stage, which includes

an adaptive postfilter based on the long-term and short-term synthesis filters, followed by a
high-pass filter and scaling operation. Compared with G.729, the weighting factors of the
postfilter have been made adaptive.

E.2.3 Delay
The same as clause 2.3.

E.2.4 Speech coder description
The description of the speech coding algorithm of this Recommendation is made in terms of
bit-exact fixed-point mathematical operations. The ANSI C code indicated in clause E.5, which
constitutes an integral part of this Recommendation, reflects this bit-exact fixed-point descriptive
approach. The mathematical descriptions of the encoder (clause E.3), and decoder (clause E.4), can
be implemented in several other fashions, possibly leading to a codec implementation not
complying with this Recommendation. Therefore, the algorithm description of the ANSI C code of
clause E.5 shall take precedence over the mathematical descriptions of clauses E.3 and E.4
whenever discrepancies are found. A non-exhaustive set of test signals, which can be used with
ANSI C code, is available from ITU.

E.3 Functional description of the encoder

In this clause, the different functions of the encoder are described. The main body of this
Recommendation is referred to in most of this clause, except the parts where algorithmic
modifications or additions have been carried out.

E.3.1 Preprocessing
The same as clause 3.1.

E.3.2 Linear prediction analysis and quantization

Two LP analyses are performed simultaneously at the 10 ms frame rate: one forward analysis on the
input signal which is strictly the same as G.729 with also the same quantization scheme, and one
backward analysis performed on the past synthesized signal.

E.3.2.1 Windowing and autocorrelation computation
– Forward LP analysis
 The same as clause 3.2.1.
– Backward LP analysis
 A hybrid recursive windowing scheme the same as in G.728 is used.
 Let sample 1 be the more recent sample of the more recent synthesized frame, and let the

indices i represent past samples ordered so that oldest samples have highest indices.
Samples i = 1 to 35 are windowed with the non-recursive part of the window:

() () 0477830where351 .c,...,i,cisiniw lpbwdlpbwdlpbwd ==×=

 The recursive part of the window is given by the function (samples > 35):

() 35)36(>×= − i,abiw i
lpbwdlpbwdlpbwd

 ITU-T Rec. G.729 (01/2007) 79

with 910.99283374 =lpbwda and ()lpbwdlpbwd csinb ×= 36

 The recursive calculation of the autocorrelation coefficients is performed as described in
[ITU-T G.728].

 The same white noise correction factor as for forward LP analysis is applied to the first
autocorrelation coefficient (1.0001), but the bandwidth expansion applied to the
coefficients is reduced from 60 Hz (in G.729) to 5 Hz. A small additional spectral flattening
is applied by a weighting function with γlpbwd = 0.98 on the LP coefficients (calculated in
clause E.3.2.2).

E.3.2.2 Levinson-Durbin algorithm
The algorithm used is the same for forward and backward analysis. Compared to the G.729
algorithm, the size of some arrays has been extended to cope with the higher LP order.

E.3.2.3 LP to LSP conversion
For forward LP filter, the same as clause 3.2.3. For backward LP filter, no LSP calculation is
needed.

E.3.2.4 Quantization of LSP coefficients
The same as clause 3.2.4 for forward LSP coefficients. For backward LP filter, no LSP quantization
is needed.

E.3.2.5 Interpolation of LP coefficients
• For the forward LP analysis
 As in clause 3.2.5, the quantized (and unquantized) LP coefficients are used for the second

subframe. For the first subframe, the forward quantized (and unquantized) LSP coefficients
are interpolated as in clause 3.2.5 when the previous frame is in forward mode. When the
previous frame is in backward mode, no interpolation is performed, the second subframe
quantized (and unquantized) LP filter is also used for the first subframe.

• For the backward LP analysis
 For the second subframe, either the current backward LP filter Abwd computed in

clause E.3.2.2 or a transition filter, as will be described in clause E.3.2.7.1, is used.
 For the first subframe, the LP filter coefficients are directly interpolated with the same

interpolation factors (0.5, 0.5) as G.729 between the second subframe backward LP filter
and the previous frame filter.

E.3.2.6 LSP to LP conversion
For forward LP filter, the same as clause 3.2.6. For backward LP filter, no conversion is needed.

E.3.2.7 Backward/forward decision and switch procedure

E.3.2.7.1 Switching procedure
This clause describes how the switch is performed from a previous frame using a forward
(respectively backward) filter to the current one where the backward (respectively forward) filter is
chosen in order to avoid artefacts in the synthesized signal.
– From forward LP filter to backward LP filter
 This generally occurs when the signal is stationary. It is consequently important to avoid

any filter transition which would bring an audible artificial spectrum transition in the
synthesized signal. To achieve this, the following interpolation is performed both at the
encoder and at the decoder:

80 ITU-T Rec. G.729 (01/2007)

 If switch is decided at frame n:
 Let Afwd(n − 1) be the forward LP filter at frame n − 1.
 Let Abwd (n) be the backward LP filter at current frame n computed in clause E.3.2.2.
 The LP filter A used at frame n + i is given by:
 A(n + i) = 0.1 × i × Abwd (n + i) + (1.–0.1 × i) × A(n + i– 1), 0 ≤ i ≤ 9
 A(n + i) = Abwd (n + i) i ≥ 10
 with A(n – 1) = Afwd (n – 1)
 After 10 transition frames, the filter used is exactly the backward filter.
– From backward filter to forward filter
 This occurs when a spectrum transition exists in the input signal. No smoothing is then

performed:
 If switch is decided at frame n: A(n) = Afwd(n)

E.3.2.7.2 The global stationarity indicator and high stationarity indicator
The global stationarity indicator at frame n (called Stat(n)) characterizes the global stationarity of
the input signal. Calculated at frame n after the backward/forward decision has been taken, it will be
used for the next frame (n + 1) backward/forward decision calculated frame-by-frame to reduce the
number of switches between filters. The principle is to progressively favour one mode according to
the stationarity of the input signal and to reduce the number of switches to the other mode.

The computation of this indicator is based on the history of the backward/forward decisions and on
the backward and forward filters prediction gains. It varies from a value representing a high
stationarity of the input signal (value 32 000) to a value representing a low stationarity (value 0).

This indicator has slow frame-by-frame variations (with the given numerical values, it takes at least
80 frames to vary from min. to max.).

The adaptation depicted below is only performed for frames the energy of which is greater than
40 dB. For other frames that are considered as silence frames, Stat(n) is equal to Stat(n − 1)
bounded by 13 000.
– The first step of the adaptation is based on the preceding switch decisions:
 Let n be the index of the current frame.
 Let Nbwd (n) be the number of consecutive backward frames measured at frame n.
 If frame n is a forward frame, then Nbwd (n) is equal to 0.
 Let the value Stat1(n) represent the output of the first step stationarity evaluation.
 If frame n is a backward to forward transition frame (i.e., frame n − 1 is backward and n is

forward) and if less than 20 consecutive backward frames have occurred:
 Stat1(n) = Stat(n − 1) − (5000 − 250 × Nbwd (n − 1))
 else:
 if (Nbwd(n) > 20) Stat1(n) = Stat(n − 1) + 500
 else:
 if (Nbwd(n) = 20) Stat1(n) = Stat(n − 1) + 2500
 else: Stat1(n) = Stat(n − 1)
– The second step of the adaptation is based on the prediction gains:
 Let x be the difference between the backward LP filter prediction gain and the forward LP

filter prediction gain: x = Gpredb − Gpredf (in dB).

 ITU-T Rec. G.729 (01/2007) 81

 Stat(n) = Stat1(n) + ∆(x) with:
 If Stat1(n) < 13 000,

()

]]
]]

]]
]]

[]
[[
[[
[[
[[

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−<−
−−∈−

−−∈−
−−∈−
−−∈−

−∈
∈
∈
∈
∈
>

=∆

74if6400
474if3200

34if1600
23if800
12if400

01if0
10if400
21if800

32if1600
43if2400

4if3200

.x
,.x

,x
,x
,x

,x
,x
,x

,x
,x

x

x

 else:

()

[[
[[
[[
[[

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−<−
−−∈−

−−∈−
−−∈−
−−∈−

−≥

=∆

74if6400
474if3200

34if1600
23if800
12if400

1if0

.x
,.x

,x
,x
,x

x

x

 A high stationarity state is also determined with the parameter value High_Stat set to 1.
This high stationarity state is detected when the percentage of backward frames becomes
significantly higher than the percentage of forward frames:

 Let Nbwd (respectively Nfwd) represent the number of backward (respectively forward)
frames in the previous Nf/b frames (Nf/b = Nbwd + Nfwd). For the first 100 frames, Nbwd
(respectively Nfwd) is the actual number of backward (respectively forward) frames in the
previous Nf/b frames. Then whenever Nf/b reaches the value 100, Nf/b, Nbwd, Nfwd are divided
by 2.

 If Nf/b < 10, High_Stat = 0
 else:
 If Nbwd > 4 × Nfwd then High_Stat = 1
 else: High_Stat = 0
 This procedure is only performed for frames the energy of which is greater than 40 dB. For

silence frames, Nf/b, Nbwd, Nfwd and High_Stat are not updated.

E.3.2.7.3 Backward/forward decision procedure
At current frame n, the backward/forward decision is taken according to 4 criteria which apply
sequentially.
– 1st criterion on prediction gains
 The prediction gains (in dB) of the backward, backward interpolated (different from

backward only during forward-to-backward transitions) and forward LP filters are
computed (called respectively Gpredb and Gpredint and Gpredf).

 Let Gap be an adaptive decision threshold (in dB).

82 ITU-T Rec. G.729 (01/2007)

 The first stage decision is:
 The backward LP filter is selected if the following condition is verified:

 (Gpredint > Gpredf − Gap) and (Gpredb > Gpredf − Gap) and (Gpredb > 0) and (Gpredint > 0)
 Otherwise, the forward LP filter is selected.
 The Gap parameter is adapted according to the stationarity indicator:

 Gap(n) = 0.0366 × (Stat(n − 1)/320) + 1.0 with Stat(n − 1) ∈[0, 32 000] (see
clause E.3.2.7.2).

– 2nd criterion using the global stationarity indicator
 While the value of the global stationarity indicator Stat(n − 1) ∈[0, 32 000] remains below

13 000, the forward LP mode is selected (second stage decision). This avoids unnecessary
switches to backward mode with speech or other signals of low or medium stationarity.

– 3rd criterion on LSP
 In order to avoid any artificial transition when the short term spectrum is stationary, the

following Euclidean distance is computed between the LSP vectors of two successive
forward LP filters:
 LSPn is the LSP vector of the forward LP filter calculated at current frame n.
 LSPn−1 is the LSP vector of the forward LP filter calculated at frame n − 1.
 dLSP(n) = ||LSPn, LSPn−1||2 is the Euclidean distance between both vectors.

 If dLSP(n) < ThreshLSP(n), if the previous frame is in backward mode and if the prediction
gains Gpredb and Gpredint are positive, switching from backward to forward is forbidden
(selection of backward mode as a third stage decision in this case).
 ThreshLSP is adapted at each frame according to the value of Stat(n − 1):
 If Stat(n − 1) = 32 000 (max. value), ThreshLSP(n) = 0.03
 Else ThreshLSP(n) = 0

– 4th criterion on the energy
 In order to increase the robustness of the algorithm to transmission errors, the forward LP

filter is imposed for frames with energy below 40 dB.

E.3.3 Perceptual weighting

The perceptual weighting filter is given by: ()
()2

1
/
/)(
γ
γ=

zA
zAzW

– In forward mode
 The parameters γ1 and γ2 are computed as in clause 3.3. The LP filter A(z) is the

unquantized forward filter Afwd(z) when High_Stat is equal to 0, and the quantized forward
filter otherwise.

– In backward mode
 If no High_Stat state is detected, the LP filter A(z) used is the unquantized forward filter,

else it is the backward calculated filter.
 The parameters γ1 and γ2 take fixed values depending on the high stationarity indicator

(High_Stat).

 ITU-T Rec. G.729 (01/2007) 83

 In case of high stationarity of the input signal (High_Stat = 1), the noise masking effect is
reinforced:
 γ1bwdh = 0.98
 γ2bwdh = 0.4

 In case of normal stationarity (High_Stat = 0):
 γ1bwdl = 0.9
 γ2bwdl = 0.4

– The weighted speech is calculated as indicated in equation (33) of clause 3.3, the filtering
order depending on the selected weighting filter chosen (10 or 30).

E.3.4 Open-loop pitch analysis
The same as clause 3.4.

E.3.5 Computation of the impulse response
Similar to clause 3.5. (The order of the LP filters could be 30 instead of 10.)

E.3.6 Computation of the target signals

Similar to clause 3.6. (The order of the LP filters could be 30 instead of 10.)

E.3.7 Adaptive-codebook search
The adaptive-codebook search, the generation of the adaptive-codebook vector, the codeword
computation for the delay index P1 and P2 and the computation of the adaptive-codebook gain are
identical to the procedure described in clause 3.7. The parity bit P0 is computed on the seven
(instead of six in G.279) most significant bits of the delay index P1 of the first subframe.

E.3.8 Fixed-codebook structure and search

E.3.8.1 Fixed-codebook in forward LP mode
In the forward LP mode, an algebraic codebook with 35 bits is used as the fixed codebook. In this
codebook, each excitation vector contains 10 non-zero pulses. The pulse amplitudes are either −1
or +1. The 40 positions in each subframe are divided into 5 tracks where each track contains two
pulses. In the design, the two pulses for each track may overlap resulting in a single pulse with
amplitude +2 or −2. The allowed positions for pulses are shown in Table E.2.

Table E.2 – Structure of fixed codebook in forward mode C fwd

Track Pulses Signs Positions

1 p0, p1 s0, s1: ± 1 0, 5, 10, 15, 20, 25, 30, 35

2 p2, p3 s2, s3: ± 1 1, 6, 11, 16, 21, 26, 31, 36

3 p4, p5 s4, s5: ± 1 2, 7, 12, 17, 22, 27, 32, 37

4 p6, p7 s6, s7: ± 1 3, 8, 13, 18, 23, 28, 33, 38

5 p8, p9 s8, s9: ± 1 4, 9, 14, 19, 24, 29, 34, 39

Similar to G.729, the selected codebook vector is filtered through the pre-filter:

()TzzP −β−= 1/1)(

to enhance the harmonic components. The way β is adapted is the same as in the main body
of G.729.

84 ITU-T Rec. G.729 (01/2007)

E.3.8.1.1 Search procedure of the 35-bit codebook
The fixed codebook is searched by minimizing the mean-squared error between the weighted input
speech and the weighted reconstructed speech. If ck(n) is the algebraic codevector at index k, h(n) is
the impulse response of the weighted synthesis filter, and d(n) is the correlation between the target
vector and h(n), then the algebraic codebook is searched by maximizing the criterion:

()
k

k
k E

CT
2

=

where C is the correlation between ck(n) and d(n) and E is the energy of the filtered codevector
(ck(n) × h(n)). Since the algebraic codevector contains few non-zero pulses, the correlation can be
written as:

()∑
−

=
=

1

0

pN

i
ii mdsC

where mi is the position of the ith pulse, si is its amplitude, and Np is the number of pulses
(Np = 10), and the energy in the denominator is given by:

() ()∑ ∑ ∑
−

=

−

=

−

+=
φ+φ=

1

0

2

0

1

1
,2,

p p pN

i

N

i

N

ij
jijiii mmssmmE

where φ(i, j) contains the correlations between h(n − i) and h(n − j). The signal d(n) and the
correlations φ(i, j) are computed before the codebook search.

Similar to G.729, in order to speed up the search procedure, the pulse amplitudes are preset outside
the closed-loop search using the so-called signal-selected pulse amplitude approach. In this
approach, the most likely amplitude of a pulse occurring at a certain position is estimated using a
certain side information signal. In G.729, the signal d(n) is used for preselecting the pulse
amplitudes. In this bit rate extension, a signal b(n), which is a weighted sum of the normalized d(n)
vector and the normalized long-term prediction residual, is used.

The signal b(n) is given by:

 b(n)= d(n)/σd + e(n)/ σe

where e(n) is the long-term prediction residual and σd and σe are the r.m.s. values of d(n) and e(n),
respectively. The sign of a pulse at a certain position is set a priori equal to the sign of b(n) at that
position. The sign information is incorporated into the signals d(n) and φ(i, j) before starting the
search for the best pulse positions, similar to G.729.

The optimal pulse positions are determined using a non-exhaustive analysis-by-synthesis search
procedure. The procedure used is a special case of a general depth-first tree search method which is
efficient for searching huge codebooks with a reasonable complexity. In this approach, the Np
excitation pulses are partitioned into M subsets of Nm pulses. The search begins with subset 1 and
proceeds with subsequent subsets according to a tree structure whereby subset m is searched at the
mth level of the tree. The search is repeated by changing the order in which the pulses are assigned
to the position tracks. In this particular codebook structure, the pulses are partitioned into 5 subsets
of 2 pulses (the tree has 5 levels).

The pulse positions are determined as follows:

For each of the five tracks, the pulse positions with maximum absolute values of d(n) are found.
From these, the two successive tracks,

0kT and () 510 modkT + with the largest combined maxima are
determined. This index k0 is used for the initial assignment of pulses to tracks. Then the two

 ITU-T Rec. G.729 (01/2007) 85

successive tracks,
1kT and () 511 modkT + with the second largest combined maxima and the two

successive tracks,
2kT and () 512 modkT + with the third largest combined maxima are also determined.

In the first iteration, the pulses are assigned to the tracks as follows: the pulses in, n = 0,...,9, are
assigned to tracks () 50 modnkT + , n = 0,...,9, respectively.

The pulses are searched in subsets of two pulses. We start by setting pulse i0 to the maximum of
track

0kT and pulse i1 to the maximum of track () 510 modkT + . We then proceed by searching the pulse

pair (i2,i3) by testing all the 8 × 8 possible position combinations in tracks () 520 modkT + and

() 530 modkT + (given pulses i0 and i1 are known). The same procedure is repeated for the rest of the

pulse pairs(i4,i5), (i6,i7) and (i8,i9) by testing the 8 × 8 possible position combinations in their
respective tracks. At each level of the tree, the test criterion is computed based only on the available
pulses at that level. This results in a total of 4 × 8 × 8 positions tested (since the first pulse pairs are
set to their track maxima).

Another two iterations are carried out by changing pulse assignment to tracks (replacing k0 by k1 for
the second iteration and k0 by k2 for the third iteration). All 10 initial pulse positions are assigned to
tracks () 51 modnkT + in the second iteration and to tracks () 52 modnkT + in the third iteration. The same
search procedure described above is repeated for these other two iterations. For the three iterations,
the total number of tested position combinations is 3 × 4 × 8 × 8 = 768.

E.3.8.1.2 Codeword computation of the 35-bit fixed codebook
The two pulse positions in each track are encoded with 6 bits and the sign of the first pulse in each
track is encoded with one bit. The second pulse sign is implicitly determined based on the order of
pulse positions.

The two pulses in each track (2 positions and 2 signs) are encoded in 7 bits. Each pulse position
needs 3 bits (8 possible positions) and each sign needs 1 bit. That is a total of 8 bits for each pair of
pulses. However, 1 bit can be reduced considering the fact that about half the position combinations
are redundant. For example, placing pulse 1 at position a and pulse 2 at position b is equivalent to
placing pulse 1 at position b and pulse 2 at position a (when the signs are not considered). A simple
approach of implementing the pulse encoding is to use only 1 bit for the sign information and 6 bits
for the two positions, while ordering the positions in a way such that the other sign information can
be easily deduced.

To better explain this, assume that the two pulses in a track are located at positions p1 and p2 with
sign indices s1 and s2, respectively (s = 0 if the sign is positive and s = 1 if the sign is negative).
The index of the two pulses is given by:

I = (p1/5) + s1 × 8 + (p2/5) × 16

If p1 ≤ p2 then s2 = s1; otherwise, s2 is different from s1. Thus, when constructing the codeword, if
the two signs are equal, then the smaller position is assigned to p1 and the larger position to p2;
otherwise, the larger position is assigned to p1 and the smaller position to p2.

This procedure is repeated for each track to obtain five 7-bit indices.

E.3.8.2 Fixed codebook in backward LP mode
In the backward LP mode, the 18 bits needed for the LP model are not transmitted. Thus, 9 bits are
saved every subframe, which are used to increase the size of the fixed codebook form 35 to 44 bits.
In this 44-bit codebook, each codebook vector contains 12 pulses. The positions in a subframe are
divided into the same track structure described in Table E.2. However, two more pulses are placed,
such that two consecutive tracks can contain three pulses instead of two. The two consecutive tracks

86 ITU-T Rec. G.729 (01/2007)

containing three pulses will be called triple-pulse tracks and the other three tracks containing two
pulses will be called double-pulse tracks.

The pulses in each double-pulse track are encoded with 7 bits (as in the 35-bit codebook) and those
in each triple-pulse track are encoded with 10 bits. The index of the first triple-pulse track can have
5 different values (5 tracks). This index needs an extra 3 bits. This results in a total of 44 bits
(3 × 7 + 2 × 10 + 3).

E.3.8.2.1 Search procedure of the 44-bit codebook
The codebook search is very similar to that of the 35-bit codebook, with the exception that the tree
has now 6 levels of pulse pairs. The same search procedure described in clause E.3.8.1.1 is
followed.

The same procedure is used for presetting the pulse signs.

The initial tracks Tk an d Tk+1 are determined in the same manner.

The 12 pulses in, n = 0,...,11 are assigned to tracks T(k+n) mod 5, n = 0,...,11 respectively.

The pulses are searched in subsets of two pulses, by initially setting pulse i0 to the maximum of
track Tk and pulse i1 to the maximum of track T(k+1) mod 5. Then it is proceeded by searching the pulse
pair (i2, i3) by testing all the 8 × 8 possible position combinations in tracks T(k+2) mod 5 and T(k+2) mod 5
and repeating the procedure for the rest of the pulse pairs (i4, i5), (i6, i7), (i8, i9), and (i10, i11). This
results now in a total of 5 × 8 × 8 positions tested.

Two more iterations are carried out similar to the 35-bit codebook resulting in a total of
3 × 5 × 8 × 8 = 960 tested positions.

Similar to G.729 and to the 35-bit forward codebook, the selected codebook vector is filtered
through the pre-filter P(z) = 1/(1 − βz−T) to enhance the harmonic components.

E.3.8.2.2 Codeword computation of the 44-bit fixed codebook
The two pulses in each of the three double-pulse tracks are encoded using the same approach
described in clause E.3.8.1.2.

The three pulses in a triple-pulse track are encoded using the same philosophy by adding three bits
for the position of the third pulse. The three positions are encoded with 3 bits each and the sign of
the first pulse is encoded with 1 bit. The signs of the other two pulses are deduced from the pulse
orders, similar to the double-pulse tracks. Again, we will explain this with an example. Assume that
the three pulses in a triple-pulse track are located at positions p1, p2 and p3 with sign indices s1, s2,
and s3, respectively. The index of the three pulses is given by:

I = (p1/5) + s1 × 8 + (p2/5) × 16 + (p3/5) × 128

If p1 ≤ p2 then s2 = s1; otherwise, s2 is different from s1. Similarly, if p2 ≤ p3 then s3 = s2;
otherwise, s3 is different from s2. When constructing the codeword, the pulse positions in a track
are assigned to p1, p2, and p3 taking this sign relationship into consideration.

In total, 5 indices are returned, one for each track. The first index is that of the first triple-pulse
track. This index is encoded with 13 bits; 10 for the positions and signs, as explained above, and 3
for the track index (0 to 4). The second index is that of the second triple-pulse track and is encoded
with 10 bits. The last three indices are those of the three double-pulse tracks and are encoded with
7 bits each.

E.3.9 Quantization of the gains
The same as clause 3.9.

 ITU-T Rec. G.729 (01/2007) 87

E.3.10 Memory update
The same as clause 3.10.

E.4 Functional description of the decoder
First, the parameters are decoded. The transmitted parameters are listed in Table E.3. The first
parameter decoded is the LP mode information and its parity bit. According to this information, the
frame is classified either as forward, backward or erased. In forward mode, the decoder parameters
are the LSP coefficients, the two fractional pitch delays, the two forward fixed-codebook vectors,
and the two sets of adaptive- and fixed-codebook gains. In backward mode, the decoded parameters
are the two fractional pitch delays, the two backward fixed-codebook vectors, and the two sets of
adaptive- and fixed-codebook gains. Then, the LP backward analysis is performed on the past
synthesized signal and the decoded parameters are used to compute the reconstructed speech signal
as will be described in clause E.4.1. This reconstructed signal is enhanced by a post-processing
operation consisting of a postfilter, a high-pass filter and an upscaling (see clause E.4.2). Clause
E.4.4 describes the error concealment procedure used when either a parity error has occurred, or
when the frame erasure flag has been set.

Table E.3 – Description of transmitted parameters indices

a) Parameters indices in forward mode

Symbol Description Description

M0 Switch LP mode 1
M1 Parity bit for LP mode 1
L0 Switched MA predictor of LSP quantizer 1
L1 First stage vector of quantizer 7
L2 Second stage lower vector of LSP quantizer 5
L3 Second stage higher vector of LSP quantizer 5
P1 Pitch delay first subframe 8
P0 Parity bit for pitch delay 1

C0_1 Track 0 fixed codebook first subframe 7
C1_1 Track 1 fixed codebook first subframe 7
C2_1 Track 2 fixed codebook first subframe 7
C3_1 Track 3 fixed codebook first subframe 7
C4_1 Track 4 fixed codebook first subframe 7
GA1 Gain codebook (stage 1) first subframe 3
GB1 Gain codebook (stage 2) first subframe 4
P2 Pitch delay second subframe 5

C0_2 Track 0 fixed codebook second subframe 7
C1_2 Track 1 fixed codebook second subframe 7
C2_2 Track 2 fixed codebook second subframe 7
C3_2 Track 3 fixed codebook second subframe 7
C4_2 Track 4 fixed codebook second subframe 7
GA2 Gain codebook (stage 1) second subframe 3
GB2 Gain codebook (stage 2) second subframe 4

88 ITU-T Rec. G.729 (01/2007)

Table E.3 – Description of transmitted parameters indices

b) Parameters indices in backward mode

M0 Switch LP mode 1
M1 Parity bit for LP mode 1
P1 Pitch delay first subframe 8
P0 Parity bit for pitch delay 1

C0_1 Fixed codebook track index + pulses 0, 5 and 10 first subframe 13
C1_1 Fixed codebook pulses 1, 6 and 11 first subframe 10
C2_1 Fixed codebook pulses 2 and 7 first subframe 7
C3_1 Fixed codebook pulses 3 and 8 first subframe 7
C4_1 Fixed codebook pulses 4 and 9 first subframe 7
GA1 Gain codebook (stage 1) first subframe 3
GB1 Gain codebook (stage 2) first subframe 4
P2 Pitch delay second subframe 5

C0_2 Fixed codebook track index + pulses 0, 5 and 10 second subframe 13
C1_2 Fixed codebook pulses 1, 6 and 11 second subframe 10
C2_2 Fixed codebook pulses 2 and 7 second subframe 7
C3_2 Fixed codebook pulses 3 and 8 second subframe 7
C4_2 Fixed codebook pulses 4 and 9 second subframe 7
GA2 Gain codebook (stage 1) second subframe 3
GB2 Gain codebook (stage 2) second subframe 4

NOTE – The bit stream ordering is reflected by the order in the table. For each parameter, the most
significant bit (MSB) is transmitted first.

E.4.1 Parameter decoding procedure
Similar to G.729. The number of parameters is greater (more excitation codebook parameters and
one LP mode indication parameter). The decoding process is done in the following order.

E.4.1.1 Backward/forward decoding procedure
One bit is used to indicate to the decoder the LP mode: backward or forward. Then, the parity bit
mode is compared with this LP mode bit. If these bits are not identical, the frame is considered as
erased and the procedure described in clause E.4.4 is applied. Otherwise, according to this LP mode
indication, the same switching procedure as described in clause E.3.2.7 is performed at the decoder
to obtain the LP filter that will be used for the synthesis.

The high stationarity indicator High_Stat(n) is computed once per frame as described in
clause E.3.2.7.2.

Another high stationarity indicator High_Stat2 that will be used by the gain attenuation procedure in
case of erased frame is computed each subframe (see clause E.4.4.3). If the current subframe is at
least the 30th of consecutive backward subframes, High_Stat2 is set to 1, else it is set to 0.

 ITU-T Rec. G.729 (01/2007) 89

E.4.1.2 Decoding of LP parameters

E.4.1.2.1 Computing the LP backward filter
In any LP mode (backward or forward) and even if the frame is erased (see clause E.4.4), one
backward LP analysis per frame is performed, using the same procedures as those performed in the
encoder in clause E.3.2 to obtain the encoder LP backward filter (windowing and autocorrelation
computation, Levinson-Durbin algorithm).

E.4.1.2.2 Forward mode
In forward mode, the same decoding procedure of the LP parameters is applied as in G.729. The
interpolation procedure of the LP coefficients is the same as described in clause E.3.2.5.

E.4.1.2.3 Backward mode
In case that one of the previous frames has been erased, the current backward filter computed in
clause E.4.1.2.1 Abwd

(current) is not directly used but linearly interpolated with the last "correct"
backward filter (see clause E.4.4) prior to the interpolation procedure of the LP coefficients
described in clause E.3.2.5.

E.4.1.3 Computation of the parity bit of the adaptive-codebook delay
Before the excitation is reconstructed, the parity bit is recomputed from the adaptive-codebook
delay index P1 (see clause E.3.7). If this bit is not identical to the transmitted parity bit P0, it is
likely that bit errors occurred during transmission. If a parity error occurs on P1, the delay value T1
is replaced by the delay value calculated in the previous subframe (see clause E.4.4.5).

E.4.1.4 Decoding of the adaptive-codebook vector
The same as clause 4.1.3.

E.4.1.5 Decoding of the fixed-codebook vector
The received codebook indices are used to extract the positions and signs of the pulses. This is done
by reversing the process described in clauses E.3.8.1.2 and E.3.8.2.2 for the 35-bit and 44-bit
codebooks, respectively. Once the pulse positions and signs are decoded, the fixed codebook
vector c(n) is constructed by:

() ()∑
−

=
−δ=

1

0

pN

i
ii pnsnc

where si are pulse signs, pi are the pulse positions, and Np is the number of pulses (10 or 12). If the
integer part of the pitch delay is less than the subframe size 40, c(n) is modified similar to
equation (48) in G.729.

E.4.1.6 Decoding of the adaptive- and fixed-codebook gains
The same as clause 4.1.5.

E.4.1.7 Computing the reconstructed speech
Similar to clause 4.1.6. (The order of the LP filter could be 30 instead of 10.)

E.4.2 Post-processing
As in G.729. The post-processing consists of three functions: adaptive postfiltering, high-pass
filtering and signal upscaling. The adaptive postfiltering is similar to G.729 postfiltering except for
the parameters γp, γn, and γd that have been made adaptive according to the high stationarity
indicator High_Stat and the current frame LP mode. After 20 consecutive high stationarity
backward frames, there is no more postfiltering.

90 ITU-T Rec. G.729 (01/2007)

E.4.2.1 Long-term postfilter
The long-term postfiltering procedure is the same as clause 4.2.1:

Adaptive filter:

 () ()T
lp

lp
p zg

g
zH −γ+

γ+
= 1

1
1

except for the value of the parameter γp that has been made adaptive according to the high
stationarity indicator High_Stat and the current frame LP mode.

If the high stationarity state is detected on the input signal (High_Stat = 1), the long-term perceptual
filter is progressively flattened.

At frame n, if (High_Stat = 1) and if the frame is in backward then:

γp(n) = γp(n − 1) − (γpmax/20)

if (γp(n) < 0) then γp(n) = 0

Else, the filter recovers progressively the initial value γpmax:

γp(n) = γp(n − 1) + (γpmax/20)

if (γp(n) > γpmax) then γp(n) = γpmax

The value of γpmax is set to 0.25. When γp(n) is equal to 0, there is no adaptive (neither harmonic,
neither short-term) postfiltering.

E.4.2.2 Short-term postfilter
The only modifications brought to the G.729 algorithm concern:
– The LP filter used to calculate the short-term perceptual weighting filter Hf(z) is the LP

filter computed in clause E.4.1.2: either the 10 coefficients forward LP filter (computed in
clause E.4.1.2.2) if the frame is in forward mode or the 30 coefficients backward LP filter
(computed in clause E.4.1.2.3) if the frame is in backward mode.

()
∑

∑
=

=

−

=

=

−

γ+

γ+
=

γ
γ=

f/b

f/b

mi

i

i
i

i
d

mi

i

i
i

i
n

d

n
f

za

za

)/z(A
)/z(AzH

1

1

1

1

– The values of the parameters γn and γd that are adapted according to the high stationarity
indicator High_Stat (see clause E.4.1.1) and the LP mode of the current frame (backward or
forward).

If a high stationarity state is detected on the input signal (High_Stat = 1) and if the current frame is
in backward, the short-term LP postfilter is progressively flattened down to no postfiltering at all
(γn(n) = γd(n) = 0).

At frame n, if (High_Stat = 1 and LP_mode = 1) then:
γn(n) = γn(n − 1) − (γnmax/20)
γd(n) = γd(n − 1) − (γdmax/20)
if (γn(n) < 0) then γn(n) = 0
if (γd(n) < 0) then γd(n) = 0

 ITU-T Rec. G.729 (01/2007) 91

Else, the filter recovers progressively the initial values γnmax and γdmax:
γn(n) = γn(n − 1) + (γnmax/20)
γd(n) = γd(n − 1) + (γdmax/20)

if (γn(n) > γnmax) then γn(n) = γnmax
if (γd(n) > γdmax) then γd(n) = γdmax

With γnmax = 0.7 and γdmax = 0.65

E.4.2.3 Tilt compensation
The tilt compensation filtering is the same as clause 4.2.3, except for the computation of the first
parcor where the length of the impulse response is 32 instead of 20.

E.4.2.4 Adaptive gain control
The same as clause 4.2.4.

E.4.2.5 High-pass filtering and up-scaling
The same as clause 4.2.5.

E.4.3 Encoder and decoder initialization
All static encoder and decoder variables should be initialized to 0, except the variables listed in
Tables 9 and E.4.

Table E.4 – Description of parameters with non-zero initialization

Variable Reference Initial value

Stat(−1) E.3.2.7.2 10 000

γp(−1) E.4.2.2 0.25

γn(−1) E.4.2.2 0.7

γd(−1) E.4.2.2 0.65

αg
(–1) E.4.4.3 1.0

Tsav
(–1) E.4.4.5 30

E.4.4 Concealment of frame erasures
Basically, the bad frame concealment procedure is similar to clause 4.4. The same voicing decision
as in G.729 is used but some refinements in the gain attenuation procedure have been brought
taking into account the high stationarity indicator High_Stat2 to adapt the muting factor. A special
procedure has also been added to improve the backward filter robustness to frame erasures.

The specific steps taken for an erased frame are:
1) repetition of the LP mode;
2) in forward mode, repetition of the synthesis filter parameter; in backward mode, use of the

second step backward LP filter as described in clause E.4.4;
3) attenuation of adaptive- and fixed-codebook gains;
4) attenuation of the memory of the gain predictor; and
5) generation of the replacement excitation.

92 ITU-T Rec. G.729 (01/2007)

E.4.4.1 Repetition of LP mode
When a frame is erased, the LP mode is set to the previous frame LP mode. The initial value is set
to 0 (forward mode).

E.4.4.2 Computation of synthesis filter parameters
Note that the backward LP analysis described in clause E.4.1.2.1 is always performed, even if the
frame is erased.

To improve the robustness of the backward filter, for each frame, a second step backward filter is
computed. This filter is equal to the computed backward filter in error free conditions, but is
different if an erasure has occurred at some frame before the current one: Let)(nAbwd

∗ denote the
second step backward filter for frame n. The computed LP filter of the current frame n being
denoted)(nAbwd ,)(nAbwd

∗ is obtained by linear interpolation of)(nAbwd and)(ebwd nA∗
 where

ne represents the last erased frame (i.e., the last reliable second step backward filter).

)()01()()(nA.nAnA bwdlpbwdebwdlpbwdbwd α−+α= ∗∗

The initial value of the interpolation factor αlpbwd is 0.0. αlpbwd is updated at the end of the current
frame to be applied for the next frame. The adaptation procedure is the following:

Whenever an erased frame occurs, αlpbwd is fixed to the maximum value 1.0.

For each valid frame n:

if frame n is in forward mode, αlpbwd = 0.0.

else (frame n is in backward mode) αlpbwd is decreased by an amount depending on the value of the
high stationarity indicator High_Stat: If High_Stat is equal to 1, then αlpbwd is decreased by a step
of 0.1, else it is decreased by a step of 0.5 (slow recovery for highly stationary signals, else fast
recovery).

The second step backward filter)(nAbwd
∗ will then be used in the frame n processing.

If the erased frame is considered as forward, the same procedure as in clause 4.4.1 is applied.

E.4.4.3 Attenuation of adaptive- and fixed-codebook gains
The attenuation of the adaptive- and fixed-codebook gains depends on the number of consecutive
erased subframes before the current subframe and the second stationary indicator High_Stat2
computed in clause E.4.1.1. Let Nbf be the number of consecutive erased subframes before the
current subframe indexed m. The attenuation procedure is the following:

If less than 2 consecutive subframes have been erased (Nbf < 2),

)1()(−= m
c

m
c gg

If High_Stat2 is equal to 1 then ()m
pg = 1.0, else ()g p

m = 0.95

otherwise: (Nbf ≥ 2)

)1()1()(−− α×= m
g

m
p

m
p gg

)1()1()(−− α×= m
g

m
c

m
c gg

 ITU-T Rec. G.729 (01/2007) 93

The adaptation of the attenuation factor also depends on Nbf and on High_Stat2:

If less than 2 consecutive subframes have been erased (Nbf < 2),

)01()1()(.m
g

m
g =α=α −

otherwise: (Nbf ≥ 2)

If High_Stat2 is equal to 1 then:

if (Nbf >10) then h
g

m
g

m
g α×α=α −)1()(

else l
g

m
g

m
g α×α=α −)1()(

with 98.0=αl
g and 995.0=αh

g . When the subframe is not erased, ()m
gα is reset to the initial

value ()1−αg equal to 1.

E.4.4.4 Attenuation of the memory gain predictor

The same as clause 4.4.3.

E.4.4.5 Generation of the replacement excitation
As in clause 4.4.4, the excitation used depends on the periodicity classification. If the last
reconstructed frame was classified as periodic, the current frame is considered to be periodic as
well. In that case only the adaptive-codebook is used, and the fixed-codebook contribution is set to
zero.

The adaptive-codevector index of an erroneous subframe m (either belonging to an erased frame or
if the pitch delay parity bit has detected an error) uses a fractional pitch delay calculated and stored
at the preceding subframe. Let T(m) be the fractional pitch delay of any valid or not subframe m and
let Tsav

(m) be the fractional pitch delay stored for the next subframe error concealment. If m is a valid
subframe, T(m) takes the valid decoded value else T(m) is taken equal to Tsav

(m–1). The computation of
Tsav

(m) is as follows:

Let us introduce the integer statT
(m) with values in [0,7] that indicates the stationary nature of the

pitch delay. statT
(m) is initialized to 0. Let ()()mTint denote the integer part of T(m).

If ()() ()() 5intint 1 <− −mm TT then () () 11 += −m
T

m
T statstat and () ()mm

sav TT =

else if there exists a multiple multT of ()() ()()()1intintmin −mm T,T

such that ()() ()()() 5intintmax 1 <− −mm
mult T,TT : if 0)1(>−m

Tstat then 1)1()(−= −m
T

m
T statstat

and)1()(−= m
sav

m
sav TT

otherwise 0)(=m
Tstat and)()(mm

sav TT =

Therefore multiples or submultiples of the pitch delay are replaced by the estimated pitch period
during stationary voiced parts of the signal.

The adaptive-codebook gain is based on an attenuated value computed in clause E.4.4.3.

If the last reconstructed frame was classified as non-periodic, the current frame is considered to be
non-periodic as well, and the adaptive-codebook contribution is set to zero. The fixed-codebook
contribution is generated by randomly selecting the 5 codebook indices. The same random
generator as that of G.729 is used. The fixed-codebook gain is attenuated with the procedure
described in clause E.4.4.3.

94 ITU-T Rec. G.729 (01/2007)

E.5 Bit-exact description of the CS-ACELP coder
ANSI C code specifying the 11.8 kbit/s CS-ACELP coder in 16-bit fixed-point is available from
ITU-T. As of the approval of this text, the current version of this ANSI C code is Version 1.3 of
February 2000. More recent versions may become available through corrigenda or amendments to
G.729. Please ensure to use the latest available version from the ITU-T website.

The following clauses summarize the use of this simulation code, and how the software is
organized.

E.5.1 Use of the simulation software
The C code consists of two main programs codere.c, which simulates the encoder, and decodere.c,
which simulates the decoder. The encoder is run as follows:
 codere inputfile bitstreamfile rate_option
The decoder is run as follows:
 decodere bitstreamfile outputfile
The input file and output file are sampled data files containing 16-bit PCM signals. The mapping
table of the encoded bit stream is contained in the simulation software. The rate_option is either 1 to
select the high level extension (11.8 kbit/s) or 0 to select the main body of G.729 (8 kbit/s) or a
file_rate_name: a binary file of 16-bit word containing either 0 or 1 to select the rate on a frame-by-
frame basis; the default is 0 (8 kbit/s).

E.5.2 Organization of the simulation software
In the fixed-point ANSI C simulation, the types of fixed-point data and the set of basic operators
used are the same as in the G.729 software. Some additional tables have been added that are found
in tab_ld8e.h (see Table E.5).

Table E.5 – Summary of tables found in tab_ld8e.h

Table name Size Description

lag_h_bwd 30 Lag window for backward LP bandwidth expansion (high part)
lag_l_bwd 30 Lag window for backward LP bandwidth expansion (low part)

bitsno_E_fwd 18 Bit allocation in forward mode
bitsno_E_bwd 16 Bit allocation in backward mode

hw 145 Backward LP analysis window
bitrates 2 Table of available bit rates
tab_log 17 Lookup table in base 2 logarithm Q.11

The files can be classified into four groups:
1) Files identical to G.729 software files, part of the main body of G.729 listed in Table E.6.
2) Files similar to G.729 software files, some minor modifications have been introduced to

cope with Annex E listed in Table E.7.
3) Files adapted from G.729 software files, some source code lines have been introduced to

existing G.729 files to deal with Annex E listed in Table E.8.
4) Files specific to Annex E (new files) listed in Table E.9.

 ITU-T Rec. G.729 (01/2007) 95

Table E.6 – List of software files identical to G.729 software

File name Description

basic_op.c Basic operators
oper_32b.c Extended basic operators
dspfunc.c Mathematical functions
gainpred.c Gain predictor
lpcfunc.c Miscellaneous routines related to LP filter
pred_lt3.c Generation of adaptive codebook
pre_proc.c Preprocessing (HP filtering and scaling)
p_parity.c Compute pitch parity
qua_gain.c Gain quantizer

pwf.c Computation of perceptual weighting coefficients (8 kbit/s)
pitch.c Pitch search
util.c Utility functions

acelp_co.c Search fixed codebook (8 kbit/s)
post_pro.c Post processing (HP filtering and scaling)
de_acelp.c Decode algebraic codebook (8 kbit/s)
dec_lag3.c Decode adaptive-codebook index
basic_op.h Basic operators prototypes

ld8k.h Function prototypes
oper_32b.h Extended basic operators prototypes
tab_ld8k.c ROM tables
tab_ld8k.h Extern ROM table declarations
typedef.h Data type definition (machine-dependent)

Table E.7 – List of software files similar to G.729 software

File name Description

qua_lspe.c LSP quantizer
filtere.c Filter functions

96 ITU-T Rec. G.729 (01/2007)

Table E.8 – List of software files adapted from G.729 software

File name Description

codere.c Main encoder routine
cod_ld8e.c Encoder routine
decodere.c Main decoder routine
dec_ld8e.c Decoder routine
decgaine.c Decode gains

pste.c Postfilter routines
bitse.c Bit manipulation routines

lspgetqe.c LSP quantizer
lpce.c LP analysis

lspdece.c LSP decoding routing

Table E.9 – List of software files specific to Annex E software

File name Description

bwfw.c Backward/forward switch selection
bwfwfunc.c Miscellaneous routines related to backward/forward switch selection

ld8e.h Function prototypes for G.729, Annex E
pwfe.c Computation of perceptual weighting coefficients (11.8 kbit/s)

acelp_e.c Search fixed codebook (11.8 kbit/s)
deacelpe.c Decode algebraic codebook (11.8 kbit/s)
tab_ld8e.c ROM tables for G.729, Annex E
tab_ld8e.h Extern ROM declarations for G.729, Annex E
track_pi.c Pitch tracking

E.6 Bibliography
– ITU-T Recommendation G.728 (1992), Coding of speech at 16 kbit/s using low-delay code

excited linear prediction.

 ITU-T Rec. G.729 (01/2007) 97

Annex F

Reference implementation of G.729 Annex B
DTX functionality for Annex D

(This annex forms an integral part of this Recommendation)

Summary
This annex provides the DTX functionality for the 6.4 kbit/s CS-ACELP algorithm of Annex D
using the basic algorithm in Annex B.

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s and 8 kbit/s with DTX functionality.

F.1 Scope
This annex provides a description of integrating Annexes B and D, hereby defining DTX
functionality for Annex D. It presents a standard way of performing this integration and expansion
of the functionality thereby guiding the industry and ensuring a standard speech quality and
compatibility worldwide. The integration has been performed with focus on several constraints in
order to satisfy the needs of the industry:
1) Bit-exactness with the main body and individual annexes.
2) Minimum additional program code, memory, and complexity usage.
3) Stringent quality requirements to new functionality in line with quality and application

areas of the according standard annexes.

F.2 Normative references
This annex refers to materials defined in the main body and Annexes B and D.

F.3 Overview

G.729 main body and Annexes B and D provide a bit-exact fixed-point specification of a
CS-ACELP coder at 8 kbit/s, with DTX functionality and lower bit-rate extension capability at
6.4 kbit/s. Exact details of these specifications are given in bit-exact fixed-point C in an electronic
file attached to this annex. This annex describes and defines the integration of Annexes B and D.

F.4 New functionality
This clause presents a brief overview of the modifications/additions to the algorithms in order to
facilitate the integration of Annexes B and D.

F.4.1 Annex B DTX operation with Annex D
Integrating Annexes B and D functionality in order to provide DTX operation with Annex D is
straightforward. The voice activity detection (VAD), silence insertion description (SID) coding and
comfort noise generation (CNG) of Annex B are reused without any modifications. Care is taken to
update the parameters for the phase dispersion for the postfilter in Annex D during discontinued
transmission (see clause F.5.1).

F.5 Algorithm description
This clause presents the algorithm description of the necessary additions to the algorithms of the
individual annexes in order to facilitate the integration. All remaining modules originate from the
main body, Annex B or D.

98 ITU-T Rec. G.729 (01/2007)

F.5.1 Update of state variables specific to Annex D during discontinued transmission
The only state variables specific to Annex D are the state variables of the phase dispersion module
(see clause D.6.2) at the decoder. In case of inactive frames, the same update procedure as in case of
nominal bit rate (8 kbit/s) is followed using as adaptive and ACELP gain estimations the gain
values computed by the comfort noise excitation generator (see clause B.4.4).

F.6 Description of C source code
Annex F, integrating Annexes B and D, is simulated in 16-bit fixed-point ANSI-C code using the
same types of fixed-point data and the same set of fixed-point basic operators as in the G.729
software. The ANSI-C code represents the normative specification of this annex. The algorithmic
description given by the C code shall take precedence over the texts contained in the main body of
this Recommendation and in Annexes B, D and F. As of the approval of this text, the current
version of this ANSI C code is Version 1.2 of October 2006. More recent versions may become
available through corrigenda or amendments to G.729. Please ensure to use the latest available
version from the ITU-T website.

The following clauses summarize the use of this simulation code, and how the software is
organized.

F.6.1 Use of the simulation software
The C code consists of two main programs coderf.c and decoderf.c, which simulate encoder and
decoder, respectively. The encoder is run as follows:

 coderf inputfile bitstreamfile dtx_option rate_option
The decoder is run as follows:

 decoderf bitstreamfile outputfile
The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream
is contained in the simulation software. The two parameters are used for the encoder: dtx_option
and rate_option where:
dtx_option = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled).
rate_option = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main body of G.729

(8 kbit/s); or a file_rate_name: a binary file of 16-bit word containing either 0, 1 to
select the rate on a frame-by-frame basis; the default is 1 (8 kbit/s).

F.6.2 Organization of the simulation software
The files can be classified into three groups:
1) Files identical to software files of G.729 main body, Annex B or D are listed in Table F.1.
2) Files adapted from software files of G.729 Annex B or D, listed in Table F.2, some minor

modifications have been introduced to cope with the integration.
3) Files integrating software files from G.729 main body, Annexes B and D, listed in

Table F.3.

 ITU-T Rec. G.729 (01/2007) 99

Table F.1 – List of software files identical to software files
of G.729 main body, Annex B or D

File name Description Identical to

Basic_op.c Basic operators Main
Oper_32b.c Extended basic operators Main
Dspfunc.c Mathematical functions Main
Gainpred.c Gain predictor Main
Lpcfunc.c Miscellaneous routines related to LP filter Main
Pre_proc.c Preprocessing (HP filtering and scaling) Main
P_parity.c Compute pitch parity Main

Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main
Pred_lt3.c Generation of adaptive codebook Main
Post_pro.c Post-processing (HP filtering and scaling) Main
Typedef.h Data type definition (machine-dependent) Main
Basic_op.h Basic operators prototypes Main
Oper_32b.h Extended basic operators prototypes Main

Filter.c Filter functions Main
Lspgetq.c LSP quantizer Main

De_acelp.c ACELP decoding Main
Lpc.c LP analysis B

Lspcdec.c LSP decoding routines B
Qua_lsp.c LSP quantizer B

Tab_ld8k.c ROM tables B
Taming.c Pitch instability control B

Dtx.c DTX decision B
Dtx.h Prototype and constants B

Qsidgain.c SID gain quantization B
QsidLSF.c SID-LSF quantization B
Tab_dtx.c ROM tables B

Pst.c Postfilter routines B
Vad.c VAD B
ld8k.h Function prototypes B
Vad.h Prototype and constants B

Tab_ld8k.h Extern ROM tables declarations B
Sid.h Prototype and Constants B

Octet.h Octet transmission mode definition B
Tab_dtx.h Extern ROM table declarations B

Util.c Utility functions B
Pitchd.c Pitch search D

100 ITU-T Rec. G.729 (01/2007)

Table F.1 – List of software files identical to software files
of G.729 main body, Annex B or D

File name Description Identical to

Declag3d.c Decode adaptive-codebook index D
Acelpcod.c ACELP codebook search D
Deacelpd.c Decode ACELP codebook D
Qua_g8k.c Gain quantizer D
Dec_g8k.c Decode gain D
Qua_g6k.c Gain quantizer D
Dec_g6k.c Decode gain D
Tabld8kd.c ROM tables for G.729 at 6.4 kbit/s D
Tabld8kd.h Extern ROM declarations for G.729 at 6.4 kbit/s D

ld8kd.h Function prototypes for G.729 Annex D D

Table F.2 – List of software files adapted from software files
of G.729 Annexes B and D

File name Description Adapted from

Calcexc.c CNG excitation calculation B
Dec_sidf.c Decode SID information B
Phdisp.c Phase dispersion D

Table F.3 – List of software files integrating software files
from G.729 main body, Annexes B and D

File name Description Integrated from

Coderf.c Main encoder routine Main + B + D
Cod_ld8f.c Encoder routine Main + B + D
Decoderf.c Main decoder routine Main + B + D
Dec_ld8f.c Decoder routine Main + B + D

Bitsf.c Bit manipulation routines Main + B + D
Ld8f.h Constant and function prototypes for G.729 Annex F Main + B + D

 ITU-T Rec. G.729 (01/2007) 101

Annex G

Reference implementation of Annex B
DTX functionality for Annex E

(This annex forms an integral part of this Recommendation)

Summary
This annex provides the DTX functionality for the 11.8 kbit/s CS-ACELP algorithm of G.729
Annex E using the basic algorithm in Annex B.

This annex includes an electronic attachment containing reference C code and test vectors fixed-
point implementation of CS-ACELP at 8 kbit/s and 11.8 kbit/s with DTX functionality.

G.1 Scope
This annex provides a description of integrating Annexes B and E, hereby defining DTX
functionality for Annex E. It presents a standard way of performing this integration and expansion
of the functionality thereby guiding the industry and ensuring a standard speech quality and
compatibility worldwide. The integration has been performed with focus on several constraints in
order to satisfy the needs of the industry:
1) Bit-exactness with the main body and individual annexes.
2) Minimum additional program code, memory, and complexity usage.
3) Stringent quality requirements to new functionality in line with quality and application

areas of the according standard annexes.

G.2 Normative references
This annex refers to materials defined in the main body and Annexes B and E.

G.3 Overview

G.729 main body and Annexes B and E provide a bit-exact fixed-point specification of a
CS-ACELP coder at 8 kbit/s, with DTX functionality and higher bit-rate extension capability at
11.8 kbit/s. Exact details of these specifications are given in bit-exact fixed-point C code in an
electronic file attached to this annex. This annex describes and defines the integration of Annexes B
and E.

G.4 New functionality

This clause presents a brief overview of the modifications/additions to the algorithms in order to
facilitate the integration of Annexes B and E. Also certain additions have been found necessary in
order to accommodate the application area of the different modules.

G.4.1 Annex B DTX operation with Annex E
Integrating Annexes B and E functionality in order to provide DTX operation with Annex E
requires certain considerations. Since the DTX operation of Annex B is based on the 10th order
LPC analysis, the VAD function of Annex B is performed after the 10th order forward adaptive
LPC analysis and before the backward adaptive LPC analysis of Annex E. In case the VAD
function detects "non-speech" the LPC mode of Annex E is forced to forward adaptive LPC and the
backward adaptive LPC analysis is skipped. Furthermore, it has been found necessary to add a
correctional module after the VAD in order to detect music and accommodate the somewhat
expanded application area of Annex E – one of the purposes of Annex E is to provide transmission
capability of music with a certain quality. Accordingly, during the development of Annex E there
were strict requirements to the performance with music signals. On the other hand, for the main

102 ITU-T Rec. G.729 (01/2007)

body and Annexes B and D, there were no strict requirements to the performance with music
signals. In order to guarantee the quality with music signals of Annex E during Annex B DTX
operation, the music detection function forces the VAD to "speech" during music segments, hereby
ensuring that the music segments are coded with the 11.8 kbit/s of Annex E. The SID coding and
the CNG of Annex B are reused without any modifications. Furthermore, care is taken to
appropriately update the parameters of the LPC mode selection algorithm of Annex E during
discontinued transmission (see clause G.5.2).

G.5 Algorithm description
This clause presents the algorithm description of the necessary additions to the algorithms of the
individual annexes in order to facilitate the integration. All remaining modules originate from the
main body, Annex B or E.

G.5.1 Music detection
The music detection is a new function. It is performed immediately following the VAD and forces
the VAD to "speech" during music segments.

The music detection algorithm corrects the decision from the voice activity detection (VAD) in the
presence of music signals. The music detection is based on the following parameters:
– Vad_deci: VAD decision of the current frame.
– PVad_dec: VAD decision of the previous frame.
– Lpc_mod: Flag indicator of either forward or backward adaptive LPC of the previous

frame.
– Rc: Reflection coefficients from LPC analysis.
– Lag_buf: Buffer of corrected open-loop pitch lags of last 5 frames.
– Pgain_buf: Buffer of closed-loop pitch gain of last 5 subframes.
– Energy: First autocorrelation coefficient)0(R from LPC analysis.

– LLenergy: Normalized log energy from VAD module.
– Frm_count: Counter of the number of processed signal frames.
– Rate: Selection of speech coder.

The algorithm has two main parts:
1) Computation of relevant parameters.
2) Classification based on parameters.

G.5.1.1 Computation of relevant parameters
This clause describes the computation of the parameters used by the decision module.

Partial normalized residual energy

 ()() ⎥
⎦

⎤
⎢
⎣

⎡
−= ∏

= 240
1log10

4

1

2
10

EnergyiRcLenergy
i

 ITU-T Rec. G.729 (01/2007) 103

Spectral difference and running mean of partial normalized residual energy of background
noise

A spectral difference measure between the current frame reflection coefficients Rc and the running
mean reflection coefficients of the background noise mRc is given by:

 () ()()∑
=

−=
10

1

2

i
imRciRcSD

The running means mrc and mLenergy are updated as follows using the VAD decision Vad_deci
that was generated by the VAD module.

{

}
LenergymLenergymLenergy

rcmrcmrc

NoisedeciVad if

0.10.9
0.10.9

_

+=
+=

==

Open-loop pitch lag correction for pitch lag buffer update

The open-loop pitch lag Top is corrected to prevent pitch doubling or tripling as follows:

 ()∑
=

=
4

1 4
__

i

ibufLaglagavg

op

op

op

op

op

T)Lag_buf(

T
bufLag

lagavg
T

abs

T
bufLag

lagavg
T

abs

=

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
<=⎥

⎦

⎤
⎢
⎣

⎡
−

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
<=⎥

⎦

⎤
⎢
⎣

⎡
−

5
else

3
)5(_

2_
3

 if else

2
)5(_

2_
2

 if

It should be noted that the open-loop pitch lag Top is not modified and is the same as derived by the
open-loop analysis.

Pitch lag standard deviation

4

Varstd =

where:

 () ∑∑
==

⎥⎦
⎤

⎢⎣
⎡=µµ=

5

1

5

1

2

5
)(and)(

ii

ibuf_Lag–ibuf_LagVar

104 ITU-T Rec. G.729 (01/2007)

Running mean of pitch gain

θ,2.08.0 += mPgainmPgain where ∑
=

⎥⎦
⎤

⎢⎣
⎡=θ

5

1 5
)(

i

ibuf_Pgain

The pitch gain buffer Pgain_buf is updated after the subframe processing with a pitch gain value
of 0.5 if Vad_deci = NOISE, and otherwise with the quantized pitch gain.

Pitch lag smoothness and voicing strength indicator
A pitch lag smoothness and voicing strength indicator Pflag is generated using the following logical
steps:

First, two intermediary logical flags Pflag1 and Pflag2 are obtained as:

 if (std < 1.3 and mPgain > 0.45) set Pflag1 = 1 else 0

 if (mPgain > Thres) set Pflag2 = 1 else 0,
 where Thres = 0.63

Finally, Pflag is determined from the following:

0 else 1set

))12(or))12or 11(and ((if
=

========
Pflag

PflagPflagPflagVOICEdec_PVad

Stationarity counters
A set of counters are defined and updated as follows:
a) count_consc_rflag tracks the number of consecutive frames where the 2nd reflection

coefficient and the running mean of the pitch gain satisfy the following condition:
 if (Rc(2) < 0.45 and Rc(2) > 0 and mPgain < 0.5)
 count_consc_rflag = count_consc_rflag + 1
 else
 count_consc_rflag = 0
b) count_music tracks the number of frames where the previous frame uses backward adaptive

LPC and the current frame is "speech" (according to the VAD) within a window of 64
frames.

 if (Lpc_mod == 1 and Vad_deci == VOICE)
 count_music = count_music + 1
 Every 64 frames, a running mean of count_music, mcount_music is updated and reset to

zero as described below:
 if ((Frm_count mod 64) == 0){
 if (Frm_count == 64)
 mcount_music = count_music
 else
 mcount_music = 0.9 mcount_music + 0.1count_music
 }
c) count_consc tracks the number of consecutive frames where the count_music remains zero:
 if (count_music == 0)
 count_consc = count_consc + 1

 ITU-T Rec. G.729 (01/2007) 105

 else
 count_consc = 0
 if (count_consc > 500 or count_consc_rflag > 150) set mcount_music = 0
 count_music in b) is reset to zero every 64 frames after the update of the relevant counters.
 The logic in c) is used to reset the running mean of count_music.
d) count_pflag tracks the number of frames where Pflag = 1, within a window of 64 frames.
 if (Pflag == 1)
 count_pflag = count_pflag + 1
 Every 64 frames, a running mean of count_pflag, mcount_pflag, is updated and reset to zero

as described below:
 if ((Frm_count mod 64) == 0){
 if (Frm_count == 64)
 mcount_pflag = count_ pflag
 else{
 if (count_ pflag > 25)
 mcount_pflag = 0.98mcount_pflag + 0.02count_pflag
 else (count_pflag > 20)
 mcount_pflag = 0.95mcount_pflag + 0.05count_pflag
 else
 mcount_pflag = 0.9mcount_pflag + 0.1count_pflag
 }
 }
e) count_consc_pflag tracks the number of consecutive frames satisfying the following

condition:
 if (count_pflag == 0)
 count_consc_pflag = count_consc_pflag + 1
 else
 count_consc_pflag = 0
 if (count_consc_pflag > 100 or count_consc_rflag > 150) set mcount_pflag = 0
 count_pflag is reset to zero every 64 frames. The logic in e) is used to reset the running

mean of count_pflag.

G.5.1.2 Classification

Based on the estimation of the above parameters, the VAD decision Vad_deci from the VAD
module is reverted if the following conditions are satisfied:
 if (Rate = G729E){
 if (SD > 0.15 and (Lenergy – mLenergy) > 4 and LLenergy > 50)
 Vad_deci = VOICE
 else if ((SD > 0.38 or (Lenergy – mLenergy) > 4) and LLenergy > 50))
 Vad_deci = VOICE
 else if ((mcount_pflag >= 10 or mcount_music >= 1.0938 or Frm_count < 64)

106 ITU-T Rec. G.729 (01/2007)

 and LLenergy > 7)
 Vad_deci = VOICE
 }

Note that the music detection function is called all the time regardless of the operational coding
mode in order to keep the memories current. However, the VAD decision Vad_deci is altered only
if Annex G is operating at 11.8 kbit/s (Annex E). It should be noted that the music detection only
has the capability to change the decision from "non-speech" to "speech" and not vice versa.

G.5.2 Update of state variables specific to Annex E during discontinued transmission

G.5.2.1 Update of encoder state variables specific to Annex E
At the encoder in case of inactive frames, the update of state variables is identical to the update
performed in Annex E in case of switch to the nominal 8 kbit/s bit rate. The update procedure is the
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly
switch from LP forward filter to backward LP filter is reset to its maximum value (see
clause E.3.2.7.1).

G.5.2.2 Update of decoder state variables specific to Annex E during discontinued
transmission

At the decoder in case of inactive frames, the update of state variables is almost identical to the
update performed in Annex E in case of switch to the forward mode only rates (8 kbit/s) except that
the pitch delay stationary indicator is reset to 0 instead of being computed by the pitch tracking
procedure (see clause E.4.4.5).

G.6 Description of C source code
This annex, integrating Annexes B and E, is simulated in 16-bit fixed-point ANSI-C code using the
same types of fixed-point data and the same set of fixed-point basic operators as in the G.729
software. The ANSI-C code represents the normative specification of this annex. The algorithmic
description given by the C code shall take precedence over the texts contained in the main body of
G.729 and in Annexes B, E and G. As of the approval of this text, the current version of this
ANSI C code is Version 1.2 of October 2006. More recent versions may become available through
corrigenda or amendments to G.729. Please ensure to use the latest available version from the
ITU-T website.

The following clauses summarize the use of this simulation code, and how the software is
organized.

G.6.1 Use of the simulation software
The C code consists of two main programs coderg.c and decoderg.c, which simulate encoder and
decoder, respectively. The encoder is run as follows:

 coderg inputfile bitstreamfile dtx_option rate_option
The decoder is run as follows:

 decoderg bitstreamfile outputfile

The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream
is contained in the simulation software. The two parameters are used for the encoder: dtx_option
and rate_option where:
dtx_option = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled).

 ITU-T Rec. G.729 (01/2007) 107

rate_option = 1 to select the main G.729 (8 kbit/s); = 2 is to select the higher rate (11.8 kbit/s) or
a file_rate_name: a binary file of 16-bit word containing either 1, 2 to select the
rate on a frame-by-frame basis; the default is 1 (8 kbit/s).

G.6.2 Organization of the simulation software
The files can be classified into four groups:
1) Files identical to software files of G.729 main body, Annex B or E listed in Table G.1.
2) Files adapted from software files of G.729 Annex B or E, listed in Table G.2, some minor

modifications have been introduced to cope with the integration.
3) Files integrating G.729 software files of G.729 main body, Annexes B and E, listed in

Table G.3.
4) New files specific to integrated Annexes B and E, listed in Table G.4.

Table G.1 – List of software files identical to software files
of G.729 main body and Annex B or E

File name Description Identical to

Basic_op.c Basic operators Main
Oper_32b.c Extended basic operators Main
Dspfunc.c Mathematical functions Main
Gainpred.c Gain predictor Main
Lpcfunc.c Miscellaneous routines related to LP filter Main
Pre_proc.c Preprocessing (HP filtering and scaling) Main
P_parity.c Compute pitch parity Main

Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main
Pred_lt3.c Generation of adaptive codebook Main
Post_pro.c Post-processing (HP filtering and scaling) Main

Pitch.c Pitch search Main
Dec_lag3.c Decode adaptive-codebook index Main
Typedef.h Data type definition (machine dependent) Main
Basic_op.h Basic operators prototypes Main
Oper_32b.h Extended basic operators prototypes Main
Acelp_co.c ACELP codebook search Main
De_acelp.c Decode ACELP codebook Main
Qua_gain.c Gain quantizer Main
De_acelp.c ACELP decoding Main
Tab_ld8k.c ROM tables B
Taming.c Pitch instability control B

Qsidgain.c SID gain quantization B
QsidLSF.c SID-LSF quantization B
Tab_dtx.c ROM tables B
Calcexc.c CNG excitation calculation B

Util.c Utility functions B
Ld8k.h Function prototypes B

108 ITU-T Rec. G.729 (01/2007)

Table G.1 – List of software files identical to software files
of G.729 main body and Annex B or E

File name Description Identical to

Tab_ld8k.h Extern ROM tables declarations B
Dtx.h Prototype and constants B
Sid.h Prototype and constants B

Octet.h Octet transmission mode definition B
Tab_dtx.h Extern ROM table declarations B

Vad.h Prototype and constants B
Pwfe.c Computation of perceptual weighting coefficients E

Filtere.c Filter functions E
Lspgetqe.c LSP quantizer E
Lspdece.c LSP decoding routing E
Qua_lspe.c LSP quantizer E
Bwfwfunc.c Miscellaneous routines related to backward/forward switch selection E

Ld8e.h Function prototypes for G.729, Annex E E
Acelp_e.c Search fixed codebook (11.8 kbit/s) E
Deacelpe.c Decode algebraic codebook (11.8 kbit/s) E
Decgaine.c Decode gains E
Tab_ld8e.c ROM tables for G.729 at 11.8 kbit/s E
Tab_ld8e.h Extern ROM declarations for G.729 at 11.8 kbit/s E
Track_pi.c Pitch tracking E

Table G.2 – List of software files adapted from software files
of G.729 main body, Annexes B and E

File name Description Adapted from

Dtxg.c DTX decision B
Vadg.c VAD B

Dec_sidf.c Decode SID information B
Bwfwg.c Backward/forward switch selection E

 ITU-T Rec. G.729 (01/2007) 109

Table G.3 – List of software files integrating software files
from G.729 main body, Annexes B and E

File name Description Integrated from

Coderg.c Main encoder routine B + E
Cod_ld8g.c Encoder routine B + E
Decoderg.c Main decoder routine B + E
Dec_ld8g.c Decoder routine B + E

Bitsg.c Bit manipulation routines B + E
Lpcg.c LP analysis B + E
Pstg.c Postfilter routines B + E
Ld8g.h Constant and function prototypes for G.729, Annex G B + E

Table G.4 – List of software files specific to integrated G.729
Annexes B and E

File name Description

Mus_dtct.c Music detection module

110 ITU-T Rec. G.729 (01/2007)

Annex H

Reference implementation of switching procedure between Annexes D and E
(This annex forms an integral part of this Recommendation)

Summary
This annex defines the necessary mechanisms for switching operation between 6.4 kbit/s Annex D
and 11.8 kbit/s Annex E. Previously, only one switching from 8 kbit/s G.729 was specified.

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s, 8 kbit/s and 11.8 kbit/s without DTX
functionality.

H.1 Scope
This annex provides a description of the integration of Annexes D and E, hereby defining switching
procedure between Annexes D and E. It presents a standard way of performing this integration and
expansion of the functionality thereby guiding the industry and ensuring a standard speech quality
and compatibility worldwide. The integration has been performed with focus on several constraints
in order to satisfy the needs of the industry:
1) Bit-exactness with the main body and individual annexes.
2) Minimum additional program code, memory, and complexity usage.
3) Stringent quality requirements to new functionality in line with quality and application

areas of the according standard annexes.

H.2 Normative references

This annex refers to materials defined in the main body and Annexes D and E.

H.3 Overview

G.729 main body and Annexes D and E provide a bit-exact fixed-point specification of a
CS-ACELP coder at 8 kbit/s, lower and higher bit-rate extension capability at 6.4 and 11.8 kbit/s.
Exact details of these specifications are given in bit-exact fixed-point C code in an electronic file
attached to this annex. This annex describes and defines the integration of Annexes D and E.

H.4 Algorithm description
This clause presents the algorithm description of the necessary additions to the algorithms of the
individual annexes in order to facilitate the integration. All remaining modules originate from the
main body, Annex D or E.

H.4.1 Update of state variables specific to Annex D during Annex E frames
The only state variables specific to Annex D are the state variables of the phase dispersion module
(see clause D.6.2) at the decoder. In case of 11.8 kbit/s frames, the same update procedure as in case
of nominal bit rate (8 kbit/s) is followed.

H.4.2 Update of state variables specific to Annex E during Annex D frames

H.4.2.1 Update of encoder state variables specific to Annex E

At the encoder in case of 6.4 kbit/s frames, the update of state variables is identical to the update
performed in Annex E in case of switch to the nominal bit rate 8 kbit/s. The update procedure is the
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly

 ITU-T Rec. G.729 (01/2007) 111

switch from LP forward filter to backward LP filter is reset to its maximum value (see
clause E.3.2.7.1).

H.4.2.2 Update of decoder state variables specific to Annex E during Annex D frames
At the decoder in case of 6.4 kbit/s frames, the update of state variables is identical to the update
performed in Annex E in case of switch to the nominal bit-rate (8 kbit/s) mode.

H.5 Description of C source code
This annex, integrating Annexes D and E, is simulated in 16-bit fixed-point ANSI-C code using the
same types of fixed-point data and the same set of fixed-point basic operators as in the G.729
software. The ANSI-C code represents the normative specification of this annex. The algorithmic
description given by the C code shall take precedence over the texts contained in the main body
of G.729 and in Annexes D, E and H. As of the approval of this text, the current version of this
ANSI C code is Version 1.2 of October 2006. More recent versions may become available through
corrigenda or amendments to G.729. Please ensure to use the latest available version from the
ITU-T website.

The following clauses summarize the use of this simulation code, and how the software is
organized.

H.5.1 Use of the simulation software
The C code consists of two main programs coderh.c and decoderh.c, which simulate encoder and
decoder, respectively. The encoder is run as follows:

 coderh inputfile bitstreamfile rate_option
The decoder is run as follows:

 decoderh bitstreamfile outputfile

The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream
is contained in the simulation software. The parameter used for the encoder is: rate_option where:
rate_option = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main G.729 (8 kbit/s); = 2 is

to select the higher rate (11.8 kbit/s) or a file_rate_name: a binary file of 16-bit
word containing either 0, 1, 2 to select the rate on a frame-by-frame basis; the
default is 1 (8 kbit/s).

H.5.2 Organization of the simulation software
The files can be classified into three groups:
1) Files identical to software files of G.729 main body, Annex D or E, listed in Table H.1.
2) Files adapted from software files of G.729 main body and Annexes D and E, listed in

Table H.2, some minor modifications have been introduced to cope with the integration of
Annexes D and E. Most modifications come from the integration of annexes routines
prototypes declaration files in one file (ld8cp.h) or to the integration of extern ROM
declaration annexes files into one file (tabld8cp.h). Some were introduced to deal with the
update of the annexes state variables.

3) Files integrating G.729 software files of Annex D or E, listed in Table H.3.

112 ITU-T Rec. G.729 (01/2007)

Table H.1 – List of software files identical to software files
of G.729 main body, Annex D or E

File name Description Identical to

Basic_op.c Basic operators Main
Oper_32b.c Extended basic operators Main
Dspfunc.c Mathematical functions Main
Gainpred.c Gain predictor Main
Lpcfunc.c Miscellaneous routines related to LP filter Main
Pre_proc.c Preprocessing (HP filtering and scaling) Main
P_parity.c Compute pitch parity Main

Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main
Pred_lt3.c Generation of adaptive codebook Main
Post_pro.c Post-processing (HP filtering and scaling) Main
Tab_ld8k.c ROM tables Main
Basic_op.h Basic operators prototypes Main

Ld8k.h Function prototypes Main
Oper_32b.h Extended basic operators prototypes Main
Tab_ld8k.h Extern ROM table declarations Main
Typedef.h Data type definition (machine-dependent) Main
Taming.c Pitch instability control B

Qua_g8k.c Gain quantizer D
Qua_g6k.c Gain quantizer D
Tabld8kd.c ROM tables for G.729 at 6.4 kbit/s D
Tabld8kd.h Extern ROM declarations for G.729 at 6.4 kbit/s D

ld8kd.h Function prototypes for G.729 Annex D D
Bwfwfunc.c Miscellaneous routines related to backward/forward switch selection E

Filtere.c Filter functions E
Lpce.c LP analysis E

Lspcdece.c LSP decoding routines E
Lspgetqe.c LSP quantizer E
Qua_lspe.c LSP quantizer E

Pstpe.c Postfilter routines E
Track_pi.c Pitch tracking E
Tab_ld8e.c ROM tables for G.729 at 11.8 kbit/s E
Tab_ld8e.h Extern ROM declarations for G.729 at 11.8 kbit/s E

Util.c Utility functions E

 ITU-T Rec. G.729 (01/2007) 113

Table H.2 – List of software files adapted from software files
of G.729 main body and Annexes D and E

File name Description Adapted from

Phdisp.c Phase dispersion D
Bwfwh.c Backward/forward switch selection E

Table H.3 – List of software files integrating software files
from G.729 main body, Annex D or E

File name Description Integrated from

Coderh.c Main encoder routine D + E
Cod_ld8h.c Encoder routine D + E
Decoderh.c Main decoder routine D + E
Dec_ld8h.c Decoder routine D + E
Acelp_h.c Search ACELP fixed codebook (6.4, 8, 11.8 kbit/s) D + E
Deacelph.c Decode algebraic codebook (6.4, 8, 11.8 kbit/s) D + E

Pitchh.c Pitch search D + E
Declagh.c Decode adaptive-codebook index D + E

Decgainh.c Decode gain D + E
Bitsh.c Bit manipulation routines D + E
Ld8h.h Constant and function prototypes for G.729 Annex H D + E

114 ITU-T Rec. G.729 (01/2007)

Annex I

Reference fixed-point implementation for integrating G.729 CS-ACELP speech
coding main body with Annexes B, D and E

(This annex forms an integral part of this Recommendation)

Summary
This annex describes the integration of G.729 main body with Annexes B, D and E.

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s, 8 kbit/s and 11.8 kbit/s with discontinuous
transmission (DTX) functionality.

I.1 Scope
This annex provides a description of integrating the G.729 main body with Annexes B, D and E,
hereby defining the integrated C code. It presents a standard way of performing this integration and
expansion of the functionality thereby guiding the industry and ensuring a standard speech quality
and compatibility worldwide. The integration has been performed with focus on several constraints
in order to satisfy the needs of the industry:
1) Bit-exactness with the main body and individual annexes.
2) Minimum additional program code, memory, and complexity usage.
3) Stringent quality requirements to new functionality in line with quality and application

areas of the according standard annexes.

I.2 Normative references
This annex refers to materials defined in the main body and Annexes B, D, and E.

I.3 Overview

G.729 main body and Annexes B, D and E provide a bit-exact fixed-point specification of a
CS-ACELP coder at 8 kbit/s, with DTX functionality, lower and higher bit-rate extension capability
at 6.4 kbit/s and 11.8 kbit/s. Exact details of these specifications are given in bit-exact fixed-point
C code in an electronic attachment to this annex. This annex describes and defines the integration of
the G.729 main body with Annexes B, D and E.

I.4 New functionality
This clause presents a brief overview of the modifications/additions to the algorithms in order to
facilitate the integration of the main body and Annexes B, D and E. Also certain additions have
been found necessary in order to accommodate the application area of the different modules.

I.4.1 Annex B DTX operation with Annex D
Integrating Annexes B and D functionality in order to provide DTX operation with Annex D is
straightforward. The voice activity detection (VAD), silence insertion description (SID) coding, and
comfort noise generation (CNG) of Annex B are reused without any modifications. Care is taken to
update the parameters for the phase dispersion for the postfilter in Annex D during discontinued
transmission (see clause I.5.2).

I.4.2 Annex B DTX operation with Annex E
Integrating Annexes B and E functionality in order to provide DTX operation with Annex E is
slightly more involved. Since the DTX operation of Annex B is based on the 10th order LPC
analysis, the VAD function of Annex B is performed after the 10th order forward adaptive LPC

 ITU-T Rec. G.729 (01/2007) 115

analysis and before the backward adaptive LPC analysis of Annex E. In case the VAD function
detects "non-speech", the LPC mode of Annex E is forced to forward adaptive LPC and the
backward adaptive LPC analysis is skipped. Furthermore, it has been found necessary to add a
correctional module after the VAD in order to detect music and accommodate the somewhat
expanded application area of Annex E – one of the purposes of Annex E is to provide transmission
capability of music with a certain quality. Accordingly, during the development of Annex E there
were strict requirements for performance with music signals. On the other hand, for the main body
and Annexes B and D there were no strict requirements for performance with music signals. In
order to guarantee the quality with music signals of Annex E during Annex B DTX operation, the
music detection function forces the VAD to "speech" during music segments, hereby ensuring that
the music segments are coded with the 11.8 kbit/s of Annex E. The SID coding and the CNG of
Annex B are reused without any modifications. Furthermore, care is taken to appropriately update
the parameters of the LPC mode selection algorithm of Annex E during discontinued transmission
(see clause I.5.3).

I.5 Algorithm description
This clause presents the algorithm description of the necessary additions to the algorithms of the
individual annexes in order to facilitate the integration. All remaining modules originate from the
main body, Annex B, D or E.

I.5.1 Music detection
The music detection is a new function. It is performed immediately following the VAD and forces
the VAD to "speech" during music segments. It is active only during Annex E operation, though its
parameters are updated continuously independently of bit-rate mode during DTX operation of the
integrated G.729.

The music detection algorithm corrects the decision from the voice activity detection (VAD) in the
presence of music signals. It is used in conjunction with Annex E during Annex B DTX operation,
i.e., in discontinuous transmission mode. The music detection is based on the following parameters:
– Vad_deci: VAD decision of the current frame.
– PVad_dec: VAD decision of the previous frame.
– Lpc_mod: Flag indicator of either forward or backward adaptive LPC of the previous

frame.
– Rc: Reflection coefficients from LPC analysis.
– Lag_buf: Buffer of corrected open-loop pitch lags of last 5 frames.
– Pgain_buf: Buffer of closed-loop pitch gain of last 5 subframes.
– Energy: First autocorrelation coefficient)0(R from LPC analysis.

– LLenergy: Normalized log energy from VAD module.
– Frm_count: Counter of the number of processed signal frames.
– Rate: Selection of speech coder.

The algorithm has two main parts:
1) Computation of relevant parameters.
2) Classification based on parameters.

116 ITU-T Rec. G.729 (01/2007)

I.5.1.1 Computation of relevant parameters
This clause describes the computation of the parameters used by the decision module.

Partial normalized residual energy

 ()() ⎥
⎦

⎤
⎢
⎣

⎡
−= ∏

= 240
1log10

4

1

2
10

EnergyiRcLenergy
i

Spectral difference and running mean of partial normalized residual energy of background
noise
A spectral difference measure between the current frame reflection coefficients Rc and the running
mean reflection coefficients of the background noise mRc is given by:

 () ()()∑
=

−=
10

1

2

i
imRciRcSD

The running means mrc and mLenergy are updated as follows using the VAD decision Vad_deci
that was generated by the VAD module.

}
1.09.0

1.09.0

{_

LenergymLenergymLenergy
rcmrcmrc

NOISEdeciVad if

+=
+=

==

Open-loop pitch lag correction for pitch lag buffer update

The open-loop pitch lag opT is corrected to prevent pitch doubling or tripling as follows:

 ()∑
=

=
4

1 4
__

i

ibufLaglagavg

op

op

op

op

op

T)Lag_buf(

T
bufLag

lagavg
T

abs

T
bufLag

lagavg
T

abs

=

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
<=⎥

⎦

⎤
⎢
⎣

⎡
−

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
<=⎥

⎦

⎤
⎢
⎣

⎡
−

5
else

3
)5(_

2_
3

 if else

2
)5(_

2_
2

 if

It should be noted that the open loop pitch lag Top is not modified and is the same as derived by the
open-loop analysis.

Pitch lag standard deviation

4

Varstd =

 ITU-T Rec. G.729 (01/2007) 117

where:

 () ∑∑
==

⎥⎦
⎤

⎢⎣
⎡=µµ=

5

1

5

1

2

5
)(and)(

ii

ibuf_Lag–ibuf_LagVar

Running mean of pitch gain

θ,2.08.0 += mPgainmPgain where ∑
=

⎥⎦
⎤

⎢⎣
⎡=θ

5

1 5
)(

i

ibuf_Pgain

The pitch gain buffer Pgain_buf is updated after the subframe processing with a pitch gain value of
0.5 if Vad_deci = NOISE, and otherwise with the quantized pitch gain.

Pitch lag smoothness and voicing strength indicator

A pitch lag smoothness and voicing strength indicator Pflag is generated using the following
logical steps:

First, two intermediary logical flags 2 and 1 PflagPflag are obtained as:

 if (std < 1.3 and mPgain > 0.45) set Pflag1 = 1 else 0

 if (mPgain > Thres) set Pflag2 = 1 else 0,
 where Thres = 0.73 if Rate = G729D, otherwise Thres = 0.63

Finally, Pflag is determined from the following:

0 else 1set

))12(or))12or 11(and ((if
=

========
Pflag

PflagPflagPflagVOICEdec_PVad

Stationarity counters
A set of counters are defined and updated as follows:
a) rflagconsccount __ tracks the number of consecutive frames where the 2nd reflection

coefficient and the running mean of the pitch gain satisfy the following condition:
 if (Rc(2) < 0.45 and Rc(2) > and mPgain < 0.5)
 count_consc_rflag = count_consc_rflag + 1
 else
 count_consc_rflag = 0
b) count_music tracks the number of frames where the previous frame uses backward adaptive

LPC and the current frame is "speech" (according to the VAD) within a window of
64 frames.

 if (Lpc_mod == 1 and Vad_deci == VOICE)
 count_music = count_music + 1
 Every 64 frames, a running mean of count_music, mcount_music is updated and reset to

zero as described below:
 if ((Frm_count mod 64) == 0){
 if (Frm_count mod 64)
 mcount_music = count_music
 else
 mcount_music = 0.9 mcount_music + 0.1count_music
 }

118 ITU-T Rec. G.729 (01/2007)

c) count_consc tracks the number of consecutive frames where the count_music remains zero:
 if (count_music == 0)
 count_consc = count_consc + 1
 else
 count_consc = 0
 if (count_consc > 500 or count_consc_rflag > 150) set mcount_music = 0

 count_music in b) is reset to zero every 64 frames after the update of the relevant counters.

 The logic in c) is used to reset the running mean of count_music.
d) count_pflag tracks the number of frames where 1=Pflag , within a window of 64 frames.

 if (Pflag == 1)
 count_pflag = count_pflag + 1
 Every 64 frames, a running mean of count_pflag, mcount_pflag, is updated and reset to zero

as described below:
 if ((Frm_count mod 64) == 0){
 if (Frm_count == 64)
 mcount_pflag = count_ pflag
 else{
 if (count_ pflag > 25)
 mcount_pflag = 0.98mcount_pflag + 0.02count_pflag
 else (count_pflag > 20)
 mcount_pflag = 0.95mcount_pflag + 0.05count_pflag
 else
 mcount_pflag = 0.9mcount_pflag + 0.1count_pflag
 }
 }
e) count_consc_pflag tracks the number of consecutive frames satisfying the following

condition:
 if (count_pflag == 0)
 count_consc_pflag = count_consc_pflag + 1
 else
 count_consc_pflag = 0
 if (count_consc_pflag > 100 or count_consc_rflag > 150) set mcount_pflag = 0
 count_pflag is reset to zero every 64 frames. The logic in e) is used to reset the running

mean of count_pflag.

I.5.1.2 Classification
Based on the estimation of the above parameters, the VAD decision Vad_deci from the VAD
module is reverted if the following conditions are satisfied:
 if (Rate = G729E){
 if (SD > 0.15 and (Lenergy – mLenergy) > 4 and LLenergy > 50)
 Vad_deci = VOICE

 ITU-T Rec. G.729 (01/2007) 119

 else if ((SD > 0.38 or (Lenergy – mLenergy) > 4) and LLenergy > 50)
 Vad_deci = VOICE
 else if ((mcount_pflag >= 10 or mcount_music >= 1.0938 or Frm_count < 64)
 and LLenergy > 7)
 Vad_deci = VOICE
 }

Note that the music detection function is called all the time regardless of the operational coding
mode in order to keep the memories current. However, the VAD decision Vad_deci is altered only
if the integrated G.729 is operating at 11.8 kbit/s (Annex E). It should be noted that the music
detection only has the capability to change the decision from "non-speech" to "speech" and not vice
versa.

I.5.2 Update of state variables specific to Annex D during discontinued transmission
The only state variables specific to Annex D are the state variables of the phase dispersion module
(see clause D.6.2) at the decoder. In case of inactive frames, the same update procedure as in case of
nominal bit rate (8 kbit/s) is followed using as adaptive and ACELP gain estimations the gain
values computed by the comfort noise excitation generator (see clause B.4.4). Note also that the
update for the higher rate is identical to the update for the nominal bit rate.

I.5.3 Update of state variables specific to Annex E during discontinued transmission

I.5.3.1 Update of encoder state variables specific to Annex E
At the encoder in case of inactive frames, the update of state variables is identical to the update
performed in Annex E in case of switch to the nominal bit rate 8 kbit/s. The update procedure is the
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly
switch from LP forward filter to backward LP filter is reset to its maximum value (see
clause E.3.2.7.1). Note that this update is also performed in case of switch to the lower bit rate
6.4 kbit/s.

I.5.3.2 Update of decoder state variables specific to Annex E during discontinued
transmission

At the decoder in case of inactive frames, the update of state variables is almost identical to the
update performed in Annex E in case of switch to the forward mode only rates (8 kbit/s and
6.4 kbit/s) except that the pitch delay stationary indicator is reset to 0 instead of being computed by
the pitch tracking procedure (see clause clause E.4.4.5).

I.6 Description of C source code

This annex, integrating the G.729 main body with Annexes B, D and E, is simulated in 16-bit fixed-
point ANSI-C code using the same types of fixed-point data and the same set of fixed-point basic
operators as in the G.729 software. The ANSI-C code represents the normative specification of this
annex. The algorithmic description given by the C code shall take precedence over the texts
contained in the main body of G.729 and in Annexes B, D, E and I. As of the approval of this text,
the current version of this ANSI C code is Version 1.2 of October 2006. More recent versions may
become available through corrigenda or amendments to G.729. Please ensure to use the latest
available version from the ITU-T website.

The following clauses summarize the use of this simulation code, and how the software is
organized.

120 ITU-T Rec. G.729 (01/2007)

I.6.1 Use of the simulation software
The C code consists of two main programs coderi.c and decoderi.c, which simulate encoder and
decoder, respectively. The encoder is run as follows:
 coderi inputfile bitstreamfile dtx_option rate_option
The decoder is run as follows:
 decoderi bitstreamfile outputfile
The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream
is contained in the simulation software. The two parameters are used for the encoder: dtx_option
and rate_option where:
dtx_option = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled).
rate_option = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main G.729 (8 kbit/s); = 2 is

to select the higher rate (11.8 kbit/s) or a file_rate_name: a binary file of 16-bit
word containing either 0, 1, 2 to select the rate on a frame-by-frame basis; the
default is 1 (8 kbit/s).

I.6.2 Organization of the simulation software

The files can be classified into four groups:
1) Files identical to software files of G.729 main body and Annex B, D or E, listed in

Table I.1.
2) Files adapted from software files of G.729 main body and Annex B, D or E, listed in

Table I.2, some minor modifications have been introduced to cope with the integration.
Most modifications come from the integration of annexes routine prototype declaration files
in one file (ld8cp.h) or to the integration of extern ROM declaration annexes files into one
file (tabld8cp.h). Some were introduced to deal with the update of the annexes state
variables.

3) Files integrating G.729 software files of Annex B, D or E, listed in Table I.3.
4) Files specific (new files) to this integrated G.729 listed in Table I.4.

Table I.1 – List of software files identical to software files
of G.729 main body and Annex B, D or E

File name Description Identical to

Basic_op.c Basic operators Main
Oper_32b.c Extended basic operators Main
Dspfunc.c Mathematical functions Main
Gainpred.c Gain predictor Main
lpcfunc.c Miscellaneous routines related to LP filter Main

Pre_proc.c Preprocessing (HP filtering and scaling) Main
P_parity.c Compute pitch parity Main

pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main
Pred_lt3.c Generation of adaptive codebook Main
Post_pro.c Post-processing (HP filtering and scaling) Main
Tab_ld8k.c ROM tables Main
Basic_op.h Basic operators prototypes Main

 ITU-T Rec. G.729 (01/2007) 121

Table I.1 – List of software files identical to software files
of G.729 main body and Annex B, D or E

File name Description Identical to

Ld8k.h Function prototypes Main
Oper_32b.h Extended basic operators prototypes Main
Tab_ld8k.h Extern ROM table declarations Main
Typedef.h Data type definition (machine-dependent) Main
Taming.c Pitch instability control B

Qsidgain.c SID gain quantization B
QsidLSF.c SID-LSF quantization B
Tab_dtx.c ROM tables B

Sid.h Prototype and constants B
Octet.h Octet transmission mode definition B

Tab_dtx.h Extern ROM table declarations B
Pwfe.c Computation of perceptual weighting coefficients (11.8 kbit/s) E

Table I.2 – List of software files adapted from software files
of G.729 main body and Annex B, D or E

File name Description Adapted from

Vad.c VAD B
Dtx.c DTX decision B
Vad.h Prototype and constants B
Dtx.h Prototype and constants B

Calcexc.c CNG Excitation calculation B
Dec_sid.c Decode SID information B
Utilcp.c Utility functions B
Phdisp.c Phase dispersion D
Bwfw.c Backward/forward switch selection E

Bwfwfunc.c Miscellaneous routines related to backward/forward switch selection E
Filtere.c Filter functions E
Lpccp.c LP analysis E

Lspcdece.c LSP decoding routines E
Lspgetqe.c LSP quantizer E
Qua_lspe.c LSP quantizer E
Track_pi.c Pitch tracking E

122 ITU-T Rec. G.729 (01/2007)

Table I.3 – List of software files integrating software files
from G.729 main body and Annex B, D or E

File name Description Integrated from

Coderi.c Main encoder routine B + D + E
Codld8i.c Encoder routine B + D + E
Decodi.c Main decoder routine B + D + E
Decld8i.c Decoder routine B + D + E
Acelpcp.c Search ACELP fixed codebook (6.4, 8, 11.8 kbit/s) D + E
Dacelpcp.c Decode algebraic codebook (6.4, 8, 11.8 kbit/s) D + E
Pitchcp.c Pitch search D + E

Declagcp.c Decode adaptive-codebook index D + E
Q_gaincp.c Gain quantizer D + E
Degaincp.c Decode gain D + E

Pstpcp.c Postfilter routines B + E
Bitscp.c Bit manipulation routines B + D + E

Tabld8cp.c ROM tables for G.729 at 6.4 and 11.8 kbit/s D + E
Tabld8cp.h Extern ROM declarations for G.729 at 6.4 and 11.8 kbit/s D + E

Ld8cp.h Constant and Function prototypes for G.729 at 6.4 and 11.8 kbit/s D + E

Table I.4 – List of software files specific to integrated G.729
Annexes B, D and E

File name Description

Mus_dtct.c Music detection module

 ITU-T Rec. G.729 (01/2007) 123

Annex J

An embedded variable bit-rate extension to G.729:
An interoperable 8-32 kbit/s scalable

wideband extension to G.729
(This annex forms an integral part of this Recommendation)

This annex describes an extension of G.729 for 8-32 kbit/s scalable wideband speech and audio
coding algorithm interoperable with the main body of G.729 and its Annexes A and B.

The details of this annex are specified and published in ITU-T Rec. G.729.1 in order to provide for
easier maintenance and to give it better visibility.

124 ITU-T Rec. G.729 (01/2007)

Appendix I

External synchronous reset performance for G.729 codecs
in systems using external VAD/DTX/CNG

(This appendix does not form an integral part of this Recommendation)

Summary
This appendix deals with external synchronous reset capability in systems using external
VAD/DTX/CNG, e.g., circuit multiplication equipments (CME) in conjunction with G.729 main
body and Annexes A and C.

The use of the external synchronous reset is intended for systems using external VAD/DTX/CNG in
conjunction with G.729 main body and Annex A or C. In this situation, the use of external
synchronous reset is generally preferable to obtain the best possible speech quality in noisy
scenarios where VAD is used. This is especially true when an aggressive VAD is used. When the
external VAD has a sufficiently long hangover period (i.e., a less-aggressive VAD), the quality
increase of external synchronous reset case compared with "no reset" case is less perceivable.

Scope
Although Annex B defines a "native" (or internal) VAD/DTX/CNG mechanism, some applications
require that a different algorithm be used, because of system or complexity constraints. In these
cases, when an external VAD/DTX/CNG algorithm (i.e., one that operates independently and does
not exploit the internal information of the encoder) is used, there is the possibility that the state of
the encoder and decoder will differ significantly, which will degrade quality. Hence, synchronous
reset of the encoder and decoder can be beneficial to the overall quality when such external
VAD/DTX/CNG algorithms are used. This appendix deals with external synchronous reset
capability in systems using external VAD/DTX/CNG, such as CME (circuit multiplication
equipment) in conjunction with G.729 main body and Annexes A and C.

I.1 Introduction
The definition of the synchronous reset is that both the encoder state variables and the decoder state
variables are set to their respective initial values at the same frame time.

The use of the external synchronous reset is intended for systems using an external
VAD/DTX/CNG in conjunction with G.729 main body, Annex A or C. In this situation, the use of
external synchronous reset is generally preferable to obtain the best possible speech quality in noisy
scenarios where VAD is used. This is especially true when an aggressive VAD using a relatively
short hangover period is used. When the external VAD has a sufficiently long hangover period (i.e.,
a less-aggressive VAD), the quality increase of external synchronous reset case compared to the
"no-reset" case is less perceivable. In any case, no harm is expected on quality by applying
synchronous reset to the G.729 encoder and decoder in systems using an external VAD/DTX/CNG.
Conversely, in spite of the quick convergence of the G.729 algorithm after loss of synchronization,
there is evidence that the use of synchronous reset will generally allow attainment of the best
possible speech quality.

I.2 Experimental design

Some limited experiments have been performed to test the impact on quality of the introduction of
synchronous reset in G.729 codecs into systems using external VAD/DTX/CNG, such as CME
(circuit multiplication equipment) in conjunction with G.729 main body, Annexes A and C. The
experience has been limited to simulation of CME operation in a pooled codec configuration using
Annex C (and G.729 main body). In this CME operation, the "one-to-one relationship" between

 ITU-T Rec. G.729 (01/2007) 125

encoders and decoders cannot be expected throughout the call, which will lead to loss of
synchronization between encoder and decoder.

To test the effect of the introduction of synchronous reset in G.729 codecs, some experiments have
been run to evaluate the quality of both schemes (with synchronous reset and without synchronous
reset). Various test conditions were used: clean speech at nominal-, high- and low-input levels, and
speech with different types of background noise (babble noise, hall noise, vehicular noise) at
different signal-to-noise ratio (SNR) values. For each condition, one male and one female talker
were used. Two expert listening experiments were performed, one in North American english and
the other in french, each experiment using its own external VAD indicator.

To simulate CME operation with pooled codecs configuration, the input bit stream for the G.729
decoder has been composed by interleaving two bit stream files coming from two different G.729
encoders. The interleaving was done according to the respective VAD of the two input files (first
active segment of file 1, first active segment of file 2, second active segment of file 1, second active
segment of file 2, etc.). Finally, the decoder output file was decomposed into two decoded files
according the interleaving scheme. When synchronous reset was used, both encoder and decoder
were reset at the beginning of each active spurt, otherwise no reset was used.

I.3 Performance observations
To evaluate the impact on quality of both schemes, an informal expert listening test has been
performed using pair-comparison of the active speech segments in the decoded files. The results
depended on the external VAD and on the background noise similarities of the two interleaved files.
When the external VAD has a sufficiently long hangover period (i.e., a less-aggressive VAD), the
two schemes have similar performances when the two interleaved files have similar or high SNR
background noise; no artefacts were perceived. When low SNR background noise segments were
interleaved with high SNR background noise segments, some artefacts were heard at the beginning
of active periods, although their duration was short thanks to the quick convergence of G.729 after
loss of synchronization. When a more aggressive VAD was used, the synchronous reset provides a
clear improvement.

I.4 Conclusion

Some limited experiments have been performed to test the impact on quality of the introduction of
synchronous reset in G.729 codecs. The existing evidence confirms the expectation that no
degradation in quality occurs by applying synchronous reset of the G.729 encoder and decoder in
CME scenarios. Furthermore, it has been found that the introduction of synchronous reset was
generally preferable to obtain the best possible speech quality in noisy scenarios where VAD is
used. It is expected that this result can be extended to other systems using external VAD/DTX/CNG
in conjunction with G.729.

126 ITU-T Rec. G.729 (01/2007)

Appendix II

G.729 Annex B enhancements in voice-over-IP applications – Option 1
(This appendix does not form an integral part of this Recommendation)

II.1 Scope
Although Annex B, defines a VAD/DTX/CNG mechanism, some applications require that a
different VAD algorithm be used, because of specific constraints. In particular, this is the case for
VoIP applications, where the algorithm described in Annex B shows bad performance under the
following conditions:
1) Undesired performance for input signals starting at levels below 15 dB.
2) Annoying breathing-like noise in CNG phase.
3) VAD bad performance under noisy conditions.
4) Additionally, wrong variable initialization has been depicted in the current Annex B.

This appendix deals with corresponding proposals to correct points 1) to 4) as described above, as
an alternative to the current Annex B.

II.2 Abbreviations and acronyms
This appendix uses the following abbreviations and acronyms.

DSVD Digital Simultaneous Voice and Data

DTX Discontinuous Transmission Mode

G.729B Silence compression scheme defined in Annex B

SID Silence Insertion Descriptor

SNR Signal-to-Noise Ratio

VAD Voice Activity Detection

II.3 Introduction
Annex B to ITU-T Rec. G.729 ("G.729B") specifies a silence compression scheme for use with
G.729, which was optimized for V.70 digital simultaneous voice and data (DSVD) applications.
Despite its initial target application, G.729B has been heavily used in VoIP applications, and will
continue to serve the industry in the future. G.729B allows G.729 (and its annexes) to operate in
two transmission modes, voice and silence, which are classified using voice activity detection
(VAD). The discontinuous transmission mode (DTX) is used to determine which of the silence
frames are represented with the silence insertion descriptor (SID). During the last few years,
problems concerning the use of G.729B in VoIP applications have been reported.

II.4 Identified problems of G.729B in VoIP applications
The reported problems addressed by this appendix are the following:
1) Undesired performance for input signals starting at levels below 15 dB.
2) Annoying breathing-like noise in silence frames.
3) VAD performance on noise condition.

 ITU-T Rec. G.729 (01/2007) 127

Problem 1: Undesired performance for input signals starting at levels below 15 dB
If the energy of the initial 32 input frames (320 ms) is below 15 dB, G.729B detects all the
consecutive input frames above 15 dB as voice. This defeats the purpose of using G.729B; it adds
the extra MIPS/memory cost of running G.729B and yet results in no bandwidth savings.

The proposed solution is to restart the initialization frame counter every 320 ms until background
noise characteristics are properly initialized.

Problem 2: Annoying breathing-like noise in silence frames
When digital silence or very low level noise follows more than 129 frames (1.29 s) of tones or other
stationary signals, the noise gain in the first SID frame is estimated at a very high level; this
introduces high level breathing-like noise and causes speech quality degradation. This problem has
been reported from various customers of Alcatel, Texas Instruments. The proposed solution is to
introduce a hangover at the end of voice frames.

Problem 3: VAD performance on noisy environments
With SNR below 15 dB, current VAD has two problems: on one hand, it oscillates between voice
and noise decision, thus reducing the benefits in terms of spare bandwidth due to SID updates, and
on the other hand, noise decision is often taken during voice signal.

This appendix results in very few modifications to the existing coder and no change to the existing
decoder. The goal is to try to lose as little information as possible from the voice signal instead of
having as much as possible "noise decision".

The proposed solution reduces misclassification from voice to noise, especially for low SNR
(≤15 dB). It consists of modifying the condition of background noise updates and the condition of
voice activity decision smoothing.

The three changes that have been introduced to the existing coder are the following:
– the test that fixes NOISE, when the difference between current signal and previous noise is

too small, is withdrawn;
– hysteresis is introduced in the decision to switch from VOICE to NOISE when the mean

energy of the background noise is important enough. In the proposal, at least 6 consecutive
NOISEs have to be detected before switching from VOICE to NOISE; and

– the required condition to update the running averages of the background noise
characteristics is modified.

The modified C code addressing these three problems is provided in the electronic attachment to
this appendix.

II.5 Experimental design
Experiments have been performed to test the impact of the introduction of these enhancements.

Problem 1: Undesired performance for input signals starting at levels below 15 dB
Annex B VAD has the following running averages of the background noise characteristics: average
full band energy fE ; average low band energy lE ; average zero crossing rate ZC ; and average

spectral parameters { }p
iiLSF 1= . fE , lE , ZC and { }p

iiLSF 1= are initialized to 0 at the very beginning
in function vad_init. In Annex B source codes, Annex B VAD makes initial update of the running
averages of background noise characteristics using only the frames that have energy Ef greater than
15 dB during the first 32 frames of the input signal. When the energy of all 32 beginning frames is
below 15 dB, the running averages of the background noise characteristics are not updated.
Practically, the initial 320 ms input occurs during the channel establishment period, so it may not

128 ITU-T Rec. G.729 (01/2007)

reflect the real background noise. If the phone is in mute mode or on-hook at the beginning of
channel connection, the input signal level is usually less than 15 dB. In this case, the running
averages of the background noise characteristics are set to zeros without any initial updates. It
follows that Annex B VAD detects all the frames as voice in that channel.

To make the initial update more robust than it is now, we proposed that frame counter should be
restarted if energies of all the 32 frames are less than 15 dB at the beginning of call set-up. The
proposed version of Annex B source codes is compliant with current Annex A and B provisions,
and with Annex B test vectors.

Problem 2: Annoying breathing-like noise in silence frames

Different tones at different levels were tested (especially French and US ringing-back tones).

Problem 3: VAD performance on noisy environments

Various test conditions were used: clean speech at nominal-, high- and low-input levels, and speech
with different types of background noise (white noise, babble noise, fan noise) at different
signal-to-noise ratio (SNR) values.

II.5.1 The fourth smoothing stage
The smoothing of the voice activity decision is divided into four stages (see clause B.3.6). The
fourth smoothing stage is:

 if (()614+< ff EE and (Frm_count > 128) and (v_flag = 0) and
 (rc < 19661)) then (marker = noise)

First, this test is the only smoothing test that does not take the previous decisions into consideration,
whereas the aim of this smoothing function is to "reflect the long-term stationary nature of the
speech signal". Moreover, it is assumed in this test that whatever the background noise, there will
always be at least 614 between E and fE , if the current frame is a voiced one. In fact, when the
energy of the background noise becomes too high, this assertion is no more true, and this test
introduces mistakes in the VAD.

The fourth smoothing stage has been suppressed. The Boolean v_flag, which is only used in this
test, is removed.

II.5.2 Hysteresis
In a noisy environment, it is more difficult for the multi-boundary initial voice activity decision
function to clearly make the distinction between voice and noise because the coefficients of the
vector of difference parameters are smaller. That is why the initial VAD output is more erratic in
this case. In order to avoid this comportment and to obtain a more coherent output signal, a
hysteresis has been added at the beginning of the smoothing function:
 if (marker = VOICE) then (Count_inert = 0)
 if ((marker = NOISE) and (Count_inert < 6) and (MeanSE > 8000)) then{
 Count_inert; + +
 marker = VOICE; }

In the third smoothing stage, line 264, the equation Count_inert = 6 is added, in order to avoid
interactions between both tests.

II.5.3 The updating test
According to clause B.3.7, the running averages of the background noise characteristics are updated
if)(6TEE ff +< . In the C source code, this condition is replaced by: (()614+< ff EE and
(rc < 24576) and (∆S < 83)).

 ITU-T Rec. G.729 (01/2007) 129

Let us consider the test vector called tstseq3.bin. in Annex B.

Figure II.1 shows the input signal and the decision taken by the multi-boundary initial VAD. The
last section of the signal, where there is only noise, is not supposed to be transmitted. Nevertheless,
the initial VAD decision is constant and equal to one, even if the noise is maintained for a longer
time. This is due to the fact that the update condition described above is always wrong, because of
the too high ∆S value. Figure II.2 shows ∆S with the current test (solid red curve) and without the
(SD < 83) condition (dotted blue curve).
NOTE – ∆S, the spectral distortion, is called SD in the C source code.

Figure II.1 – G.729 + VAD simulation (Code ITU version 1.3)

130 ITU-T Rec. G.729 (01/2007)

Figure II.2 – Comparison of SD values

Without this condition, the running averages are correctly updated, and the ∆S value is much
smaller as it is supposed to be in a noisy environment. The decision taken by the VAD algorithm is
correct again (see Figure II.3).

 ITU-T Rec. G.729 (01/2007) 131

Figure II.3 – G.729 + VAD simulation (Code ITU version 1.3, modified)

II.6 Electronic attachments
Two sets of electronic attachments are provided with this appendix.

The first one is the modified file vad.c, which implements modifications in the VAD algorithm of
Annex B according to the descriptions in this appendix.

The second electronic attachment is a set of test files that were used to test the algorithm in this
appendix.

132 ITU-T Rec. G.729 (01/2007)

Appendix III

Annex B enhancements in voice-over-IP applications – Option 2
(This appendix does not form an integral part of this Recommendation)

III.1 Scope
Annex B provides a silence compression scheme for G.729 implementations that are optimized for
terminals conforming to [ITU-T V.70]. The silence compression scheme includes voice activity
detection (VAD), discontinuous transmission (DTX), silence insertion description (SID), and
comfort noise generation (CNG). The application of this Recommendation has expanded beyond
V.70 devices and is commonly utilized in voice packet networks (e.g., VoIP), which also require
voice activity detection and discontinuous transmission algorithms for bandwidth-efficient
communication. Several issues were reported with respect to the operation of Annex B for voice
packet networks. This Appendix describes a solution to the problems reported in Annex B,
providing improved voice quality while maintaining high bandwidth efficiency, suitable for voice
packet-network applications.

This appendix addresses in particular the following issues noted for Annex B:
1) Initialization of background noise statistics at the beginning of the call and updates of

background noise statistics when the background noise characteristics change.
2) Early estimation of SID parameters which generate breathing-like noise in sharp-edge

energy offsets.
3) Classification of portions of very long and high-level tonal signals as "inactive speech".
4) Frequent changes between "inactive speech" and "active speech" for particular types of

background noises.
5) Frequent SID update frames, which is undesirable for VoIP applications where the packet

overhead information is considerably larger than the payload for such frames.

III.2 Solutions for the reported issues with Annex B
The issues reported with respect to Annex B were resolved by several modifications. The
modifications are under the flag VAD_VOIP_APP_III in the attached C program files vad.c and
dtx.c. This flag needs to be defined in the project or the makefile.

III.3 Examples for the solutions of reported issues with Annex B

For packet voice applications (e.g., VoIP), the following issues on the operation of VAD and the
DTX of Annex B were noted. This appendix provides the solution to these issues:
1) The initial estimation of the background noise characteristics is done during the first

320 ms with a threshold of 15 dB. These two constraints can result in ineffective initial
estimate of the background noise characteristics. For example, some voice packet network
processors start the G.729 encoder before the actual speech channel is established, which
can result in this ineffective initial estimate of the background noise characteristics. Similar
behaviour may also happen if the type or the level of background noise changes abruptly.
This ineffective update might result in classifying subsequent background noise frames
"active-speech", which reduces the bandwidth efficiency expected from the silence
compression scheme in Annex B. Figure III.1 contains an example of the result of
ineffective estimation of the background noise characteristics in Annex B and how it is
handled by this appendix.

 ITU-T Rec. G.729 (01/2007) 133

Figure III.1 – Example of estimation of the background noise characteristics

2) Early estimation of the energy and the spectral content of the first SID frame after a sharp
edge from high level into a very low level (e.g., silence) can occur, resulting in a
breathing-like noise. This issue is mostly noticeable at the sharp offset edge of voice-band
tones, such as ring-back or busy tones. Figure III.2 contains an example of sharp-edge
offset issue in Annex B and its resolution by this appendix.

Figure III.2 – Example of sharp-edge offset issue

134 ITU-T Rec. G.729 (01/2007)

3) For very long and high-level tonal signals (typically longer than 1 second), the later
portions could be classified as "inactive-speech". These later portions of such very long
tonal signals might be erroneously reproduced at the decoder as a high-level noise signal.
Figure III.3 contains an example of the issue of very long and high-level tonal signals in
Annex B and its resolution by this appendix.

Figure III.3 – Example of very long and high-level tonal signals issue

 ITU-T Rec. G.729 (01/2007) 135

4) For particular types of background noise, frequent changes between full-rate encoding at
8 kbit/s and low-rate silence encoding may occur. Figure III.4 contains an example of the
issue of frequent changes between full-rate encoding at 8 kbit/s and low-rate silence
encoding in Annex B and its resolution by this appendix.

Figure III.4 – Example of frequent changes between full-rate
encoding at 8 kbit/s and low-rate silence encoding

5) In voice packet network applications, the transmitted-signal bandwidth is affected not only
by the payload but also by the address and header information. Although the size of the
payload of a SID frame is small, frequent update of the SID might be a considerable factor
on the bandwidth used by Annex B for these applications.

Table III.1 contains an example of the percentage of active frames, SID frames and NT frames in
Annex B and in this appendix, demonstrating the reduction in SID frames by this appendix.

Table III.1 – Example of the reduction in active frames, SID frames and NT frames

Noise type VAD Speech frames SID frames NT frames SID/Inactive

G.729B 4805 (46.2%) 799 (7.68%) 4796 (46.12%) 14.3% 15 dB
street noise App III 6079 (58.45%) 275 (2.64%) 4046 (38.90%) 6.4%

G.729B 4986 (47.94%) 846 (8.13%) 4568 (43.92%) 15.6% 15 dB
car noise App III 5806 (55.83%) 292 (2.81%) 4302 (41.37%) 6.4%

G.729B 4991 (47.99%) 1287 (12.38%) 4122 (39.63%) 23.8% 15 dB
babble noise App III 5896 (56.69%) 561 (5.39%) 3943 (37.91%) 12.5%

136 ITU-T Rec. G.729 (01/2007)

III.4 Electronic attachments
There are three electronic attachments to this appendix. The first two are the modified C source
code files vad.c and dtx.c. For correct compilation, the flag VAD_VOIP_APP_III needs to be defined
in the project or makefile. The other is a set of test files that were used to test the algorithm in this
appendix.

Printed in Switzerland
Geneva, 2008

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. G.729 (01/2007) Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP)
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 General description of the coder
	2.1 Encoder
	2.2 Decoder
	2.3 Delay
	2.4 Speech coder description
	2.5 Notational conventions

	3 Functional description of the encoder
	3.1 Preprocessing
	3.2 Linear prediction analysis and quantization
	3.3 Perceptual weighting
	3.4 Open-loop pitch analysis
	3.5 Computation of the impulse response
	3.6 Computation of the target signal
	3.7 Adaptive-codebook search
	3.8 Fixed codebook - Structure and search
	3.9 Quantization of the gains
	3.10 Memory update

	4 Functional description of the decoder
	4.1 Parameter decoding procedure
	4.2 Post-processing
	4.3 Encoder and decoder initialization
	4.4 Concealment of frame erasures

	5 Bit-exact description of the CS-ACELP coder
	5.1 Use of the simulation software
	5.2 Organization of the simulation software

	6 References
	Annex A – Reduced complexity 8 kbit/s CS-ACELP speech codec
	A.1 Introduction
	A.2 General description of the codec
	A.3 Functional description of the encoder
	A.4 Functional description of the decoder
	A.5 Bit-exact description of the reduced complexity CS-ACELP codec
	Annex B – A silence compression scheme for G.729 optimized for terminals conforming to ITU-T Recommendation V.70
	B.1 Introduction
	B.2 General description of the VAD/DTX/CNG algorithms
	B.3 Detailed description of the VAD algorithm
	B.4 Detailed description of the DTX/CNG algorithms
	B.5 Bit-exact description of the silence compression scheme
	Annex C – Reference floating-point implementation for G.729 CS-ACELP 8 kbit/s speech coding
	C.1 Scope
	C.2 Normative references
	C.3 Overview
	C.4 Algorithmic description
	C.5 ANSI C code
	Annex C+ – Reference floating-point implementation for integrating G.729 CS-ACELP speech coding main body with Annex...
	C+.1 Scope
	C+.2 Normative references
	C+.3 Overview
	C+.4 New functionality
	C+.5 Algorithm description
	C+.6 Description of C source code
	Annex D – +CS-ACELP speech coding algorithm at 6.4 kbit/s
	D.1 Scope
	D.2 Normative references
	D.3 General coder description for the 6.4 kbit/s extension
	D.4 Bit allocation
	D.5 Functional description of the encoder
	D.6 Functional description of decoder
	D.7 ANSI C code
	Annex E – CS-ACELP speech coding algorithm at 11.8 kbit/s
	E.1 Introduction
	E.2 General description of the speech codec
	E.3 Functional description of the encoder
	E.4 Functional description of the decoder
	E.5 Bit-exact description of the CS-ACELP coder
	E.6 Bibliography
	Annex F – Reference implementation of G.729 Annex B DTX functionality for Annex D
	F.1 Scope
	F.2 Normative references
	F.3 Overview
	F.4 New functionality
	F.5 Algorithm description
	F.6 Description of C source code
	Annex G – Reference implementation of Annex B DTX functionality for Annex E
	G.1 Scope
	G.2 Normative references
	G.3 Overview
	G.4 New functionality
	G.5 Algorithm description
	G.6 Description of C source code
	Annex H – Reference implementation of switching procedure between Annexes D and E
	H.1 Scope
	H.2 Normative references
	H.3 Overview
	H.4 Algorithm description
	H.5 Description of C source code
	Annex I – Reference fixed-point implementation for integrating G.729 CS-ACELP speech coding main body with Annexes B...
	I.1 Scope
	I.2 Normative references
	I.3 Overview
	I.4 New functionality
	I.5 Algorithm description
	I.6 Description of C source code
	Annex J – An embedded variable bit-rate extension to G.729: An interoperable 8-32 kbit/s scalable wideband extension...
	Appendix I – External synchronous reset performance for G.729 codecs in systems using external VAD/DTX/CNG
	I.1 Introduction
	I.2 Experimental design
	I.3 Performance observations
	I.4 Conclusion
	Appendix II – G.729 Annex B enhancements in voice-over-IP applications - Option 1
	II.1 Scope
	II.2 Abbreviations and acronyms
	II.3 Introduction
	II.4 Identified problems of G.729B in VoIP applications
	II.5 Experimental design
	II.6 Electronic attachments
	Appendix III – Annex B enhancements in voice-over-IP applications - Option 2
	III.1 Scope
	III.2 Solutions for the reported issues with Annex B
	III.3 Examples for the solutions of reported issues with Annex B
	III.4 Electronic attachments

