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ITU-T Recommendation G.729 
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algebraic-code-excited linear prediction (CS-ACELP) 

 

 

Summary 

This Recommendation contains the description of an algorithm for the coding of speech signals using conjugate-structure 
algebraic-code-excited linear prediction (CS-ACELP).  

In its basic mode, the G.729 coder consists of a mono-rate speech coder at 8 kbits/s using fixed-point arithmetic 
operations. Annexes A, B and D to J extend its functionalities. Annex A provides a reduced-complexity version at the 
basic coding rate of 8 kbit/s. Annex B defines source-controlled rate operation for use with G.729 or Annex A. Annexes 
D, E and H provide multi-rate operation and specify rate-switching mechanisms: Annex D provides lower bit-rate 
extension at 6.4 kbit/s and Annex E provides higher bit-rate extension at 11.8 kbit/s, whereas Annex H provides bit-rate 
extensions at both 6.4 kbit/s and 11.8 kbit/s. Therefore, Annexes D, E and H do not implement the discontinuous 
transmission mode of Annex B. For this functionality, further annexes were developed. Annexes F and G use the basic 
algorithms in Annex B to provide discontinuous transmission (DTX) functionality for, respectively, Annexes D and E. 
Annex I provides DTX functionality for Annex H and describes the integration of G.729 main body with Annexes B, D 
and E. Annex J makes reference to the G.729 extension for the 8-32 kbit/s scalable wideband speech and audio coding 
algorithm in ITU-T Recommendation G.729.1, which is interoperable with G.729 and its Annexes A and B. As G.729 
main body, its Annexes A, B and D to J use fixed-point arithmetic. Alternative implementations based on floating-point 
arithmetic operations are provided in Annex C for G.729 and Annex A, and in Annex C+ for Annex I. 

This information is summarized in the Table below. 
 

 Annexes 

Functionality - A B C D E F G H I C+ J 

Low complexity  X X          
Fixed-point X X X  X X X X X X  X 
Floating-point    X       X  
8 kbit/s X X X X X X X X X X X X 
6.4 kbit/s     X  X  X X X  
11.8 kbit/s      X  X X X X  
DTX   X    X X  X X  
Embedded variable bit rate, wideband            X 

Appendix I deals with external synchronous reset capability in systems using external silence compression in conjunction 
with the speech coding algorithm in the main body of G.729 (fixed-point) or in its Annexes A (low complexity, fixed-
point) and C (floating-point). Since the voice activity detection (VAD) algorithm in Annex B was optimized for 
transmission over connection-oriented circuits, Appendices II and III deal with optimization of the VAD in Annex B 
when it is used for packet circuits such as VoIP applications. 

Reference ANSI C source code and test vectors are provided as an integral part of this Recommendation and its annexes. 
Appendices II and III are also associated with C source code and test vectors. No source code is associated with 
Appendix I. The C source code and test vectors are available as electronic attachments to this Recommendation. 

 

Source 

ITU-T Recommendation G.729 was approved on 13 January 2007 by ITU-T Study Group 16 (2005-2008) under the 
ITU-T Recommendation A.8 procedure. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of 
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing 
Recommendations on them with a view to standardizing telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the 
Recommendation is achieved when all of these mandatory provisions are met.  The words "shall" or some 
other obligatory language such as "must" and the negative equivalents are used to express requirements. The 
use of such words does not suggest that compliance with the Recommendation is required of any party. 
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ITU-T Recommendation G.729 

Coding of speech at 8 kbit/s using conjugate-structure 
algebraic-code-excited linear prediction (CS-ACELP) 

1 Scope 
This Recommendation contains the description of an algorithm for the coding of speech signals at 
8 kbit/s using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP). This 
Recommendation includes an electronic attachment containing reference C code and test vectors for 
fixed-point implementation of CS-ACELP at 8 kbit/s. 

This coder is designed to operate with a digital signal obtained by first performing telephone 
bandwidth filtering [ITU-T G.712] of the analogue input signal, then sampling it at 8000 Hz, 
followed by conversion to 16-bit linear PCM for the input to the encoder. The output of the decoder 
should be converted back to an analogue signal by similar means. Other input/output characteristics, 
such as those specified by [ITU-T G.711] for 64 kbit/s PCM data, should be converted to 16-bit 
linear PCM before encoding, or from 16-bit linear PCM to the appropriate format after decoding. 
The bit stream from the encoder to the decoder is defined within this Recommendation. 

This Recommendation is organized as follows: Clause 2 gives a general outline of the CS-ACELP 
algorithm. In clauses 3 and 4, the CS-ACELP encoder and decoder principles are discussed, 
respectively. Clause 5 describes the software that defines this coder in 16 bit fixed-point arithmetic. 

2 General description of the coder 
The CS-ACELP coder is based on the code-excited linear prediction (CELP) coding model. The 
coder operates on speech frames of 10 ms corresponding to 80 samples at a sampling rate of 
8000 samples per second. For every 10 ms frame, the speech signal is analysed to extract the 
parameters of the CELP model (linear prediction filter coefficients, adaptive and fixed-codebook 
indices and gains). These parameters are encoded and transmitted. The bit allocation of the coder 
parameters is shown in Table 1. At the decoder, these parameters are used to retrieve the excitation 
and synthesis filter parameters. The speech is reconstructed by filtering this excitation through the 
short-term synthesis filter, as is shown in Figure 1. The short-term synthesis filter is based on a 10th 
order linear prediction (LP) filter. The long-term, or pitch synthesis filter is implemented using the 
so-called adaptive-codebook approach. After computing the reconstructed speech, it is further 
enhanced by a postfilter. 

Table 1 – Bit allocation of the 8 kbit/s CS-ACELP algorithm (10 ms frame) 

Parameter Codeword Subframe 1 Subframe 2 Total per frame

Line spectrum pairs L0, L1, L2, L3   18 
Adaptive-codebook delay P1, P2 8 5 13 
Pitch-delay parity P0 1  1 
Fixed-codebook index C1, C2 13 13 26 
Fixed-codebook sign S1, S2 4 4 8 
Codebook gains (stage 1) GA1, GA2 3 3 6 
Codebook gains (stage 2) GB1, GB2 4 4 8 
Total    80 
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Figure 1 – Block diagram of conceptual CELP synthesis model 

2.1 Encoder 
The encoding principle is shown in Figure 2. The input signal is high-pass filtered and scaled in the 
preprocessing block. The preprocessed signal serves as the input signal for all subsequent analysis. 
LP analysis is done once per 10 ms frame to compute the LP filter coefficients. These coefficients 
are converted to line spectrum pairs (LSPs) and quantized using predictive two-stage vector 
quantization (VQ) with 18 bits. The excitation signal is chosen by using an analysis-by-synthesis 
search procedure in which the error between the original and reconstructed speech is minimized 
according to a perceptually weighted distortion measure. This is done by filtering the error signal 
with a perceptual weighting filter, whose coefficients are derived from the unquantized LP filter. 
The amount of perceptual weighting is made adaptive to improve the performance for input signals 
with a flat frequency-response. 

The excitation parameters (fixed and adaptive-codebook parameters) are determined per subframe 
of 5 ms (40 samples) each. The quantized and unquantized LP filter coefficients are used for the 
second subframe, while in the first subframe interpolated LP filter coefficients are used (both 
quantized and unquantized). An open-loop pitch delay is estimated once per 10 ms frame based on 
the perceptually weighted speech signal. Then the following operations are repeated for each 
subframe. The target signal x(n) is computed by filtering the LP residual through the weighted 
synthesis filter W(z)/Â(z). The initial states of these filters are updated by filtering the error between 
LP residual and excitation. This is equivalent to the common approach of subtracting the zero-input 
response of the weighted synthesis filter from the weighted speech signal. The impulse 
response h(n) of the weighted synthesis filter is computed. Closed-loop pitch analysis is then done 
(to find the adaptive-codebook delay and gain), using the target x(n) and impulse response h(n), by 
searching around the value of the open-loop pitch delay. A fractional pitch delay with 1/3 resolution 
is used. The pitch delay is encoded with 8 bits in the first subframe and differentially encoded with 
5 bits in the second subframe. The target signal x(n) is updated by subtracting the (filtered) 
adaptive-codebook contribution, and this new target, x'(n), is used in the fixed-codebook search to 
find the optimum excitation. An algebraic codebook with 17 bits is used for the fixed-codebook 
excitation. The gains of the adaptive and fixed-codebook contributions are vector quantized with 
7 bits (with MA prediction applied to the fixed-codebook gain). Finally, the filter memories are 
updated using the determined excitation signal. 
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Figure 2 – Principle of the CS-ACELP encoder 

2.2 Decoder 
The decoder principle is shown in Figure 3. First, the parameter's indices are extracted from the 
received bit stream. These indices are decoded to obtain the coder parameters corresponding to a 
10 ms speech frame. These parameters are the LSP coefficients, the two fractional pitch delays, the 
two fixed-codebook vectors, and the two sets of adaptive and fixed-codebook gains. The LSP 
coefficients are interpolated and converted to LP filter coefficients for each subframe. Then, for 
each 5 ms subframe the following steps are done: 
– the excitation is constructed by adding the adaptive and fixed-codebook vectors scaled by 

their respective gains; 
– the speech is reconstructed by filtering the excitation through the LP synthesis filter; and 
– the reconstructed speech signal is passed through a post-processing stage, which includes 

an adaptive postfilter based on the long-term and short-term synthesis filters, followed by a 
high-pass filter and scaling operation. 
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Figure 3 – Principle of the CS-ACELP decoder 

2.3 Delay 
This coder encodes speech and other audio signals with 10 ms frames. In addition, there is a 
look-ahead of 5 ms, resulting in a total algorithmic delay of 15 ms. All additional delays in a 
practical implementation of this coder are due to: 
– processing time needed for encoding and decoding operations; 
– transmission time on the communication link; and 
– multiplexing delay when combining audio data with other data. 

2.4 Speech coder description 
The description of the speech coding algorithm of this Recommendation is made in terms of 
bit-exact fixed-point mathematical operations. The ANSI C code indicated in clause 5, which 
constitutes an integral part of this Recommendation, reflects this bit-exact fixed-point descriptive 
approach. The mathematical descriptions of the encoder (clause 3), and decoder (clause 4), can be 
implemented in several other fashions, possibly leading to a codec implementation not complying 
with this Recommendation. Therefore, the algorithm description of the ANSI C code of clause 5 
shall take precedence over the mathematical descriptions of clauses 3 and 4 whenever discrepancies 
are found. A non-exhaustive set of test signals, which can be used with the ANSI C code, are 
available from the ITU. 

2.5 Notational conventions 

Throughout this Recommendation, it is tried to maintain the following notational conventions: 
– Codebooks are denoted by calligraphic characters (e.g., ). 
– Time signals are denoted by their symbol and a sample index between parenthesis 

[e.g., s(n)]. The symbol n is used as sample index. 
– Superscript indices between parenthesis (e.g., g(m)) are used to indicate time-dependency of 

variables. The variable m refers, depending on the context, to either a frame or subframe 
index, and the variable n to a sample index. 

– Recursion indices are identified by a superscript between square brackets (e.g., E[k]). 
– Subscript indices identify a particular element in a coefficient array. 
– The symbol ^ identifies a quantized version of a parameter (e.g., gĉ  ). 
– Parameter ranges are given between square brackets, and include the boundaries 

(e.g., [0.6, 0.9]). 
– The function log denotes a logarithm with base 10. 
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– The function int denotes truncation to its integer value. 
– The decimal floating-point numbers used are rounded versions of the values used in the 

16 bit fixed-point ANSI C implementation. 

Table 2 lists the most relevant symbols used throughout this Recommendation. A glossary of the 
most relevant signals is given in Table 3. Table 4 summarizes relevant variables and their 
dimensions. Constant parameters are listed in Table 5. The acronyms used in this Recommendation 
are summarized in Table 6. 

Table 2 – Glossary of most relevant symbols 

Name Reference Description 

1/Â(z) Equation (2) LP synthesis filter 
Hh1(z) Equation (1) Input high-pass filter 
Hp(z) Equation (78) Long-term postfilter 
Hf(z) Equation (84) Short-term postfilter 
Ht(z) Equation (86) Tilt-compensation filter 
Hh2(z) Equation (91) Output high-pass filter 
P(z) Equation (46) Pre-filter for fixed codebook 
W(z) Equation (27) Weighting filter 

Table 3 – Glossary of most relevant signals 

Name Reference Description 

c(n) 3.8 Fixed-codebook contribution 
d(n) 3.8.1 Correlation between target signal and h(n) 
ew(n) 3.10 Error signal 
h(n) 3.5 Impulse response of weighting and synthesis filters 
r(n) 3.6 Residual signal 
s(n) 3.1 Preprocessed speech signal 
ŝ(n) 4.1.6 Reconstructed speech signal 
s'(n) 3.2.1 Windowed speech signal 
sf(n) 4.2 Postfiltered output 
sf ' (n) 4.2 Gain-scaled postfiltered output 
sw(n) 3.6 Weighted speech signal 
x(n) 3.6 Target signal 
x'(n) 3.8.1 Second target signal 
u(n) 3.10 Excitation to LP synthesis filter 
v(n) 3.7.1 Adaptive-codebook contribution 
y(n) 3.7.3 Convolution v(n) * h(n) 
z(n) 3.9 Convolution c(n) * h(n) 
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Table 4 – Glossary of most relevant variables 

Name Size Description 

gp 1 Adaptive-codebook gain 
gc 1 Fixed-codebook gain 
gl 1 Gain term for long-term postfilter 
gf 1 Gain term for short-term postfilter 
gt 1 Gain term for tilt postfilter 
G 1 Gain for gain normalization 
Top 1 Open-loop pitch delay 
ai 11 LP coefficients (a0 = 1.0) 
ki 10 Reflection coefficients 
k'1 1 Reflection coefficient for tilt postfilter 
Oi 2 LAR coefficients 
ωi 10 LSF normalized frequencies 
p̂i, j 40 MA predictor for LSF quantization 
qi 10 LSP coefficients 
r(k) 11 Auto-correlation coefficients 
r'(k) 11 Modified auto-correlation coefficients 
wi 10 LSP weighting coefficients 

il̂  10 LSP quantizer output 

Table 5 – Glossary of most relevant constants 

Name Value Description 

fs 8000 Sampling frequency 
f0 60 Bandwidth expansion 
γ1 0.94/0.98 Weight factor perceptual weighting filter 

γ2 0.60/[0.4 – 0.7] Weight factor perceptual weighting filter 

γn 0.55 Weight factor postfilter 

γd 0.70 Weight factor postfilter 

γp 0.50 Weight factor pitch postfilter 

γt 0.90/0.2 Weight factor tilt postfilter 

C Table 7 Fixed (algebraic) codebook 

L0 3.2.4 Moving-average predictor codebook 

L1 3.2.4 First stage LSP codebook 

L2 3.2.4 Second stage LSP codebook (low part) 

L3 3.2.4 Second stage LSP codebook (high part) 

GA 3.9 Gain codebook (first stage) 

GB 3.9 Gain codebook (second stage) 

wlag Equation (6) Correlation lag window 
wlp Equation (3) LP analysis window 
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Table 6 – Glossary of acronyms 

Acronym Description 
CELP Code-Excited Linear Prediction 
CS-ACELP Conjugate-Structure Algebraic CELP 
MA Moving Average 
MSB Most Significant Bit 
MSE Mean-Squared Error 
LAR Log Area Ratio 
LP Linear Prediction 
LSP Line Spectral Pair 
LSF Line Spectral Frequency 
VQ Vector quantization 

3 Functional description of the encoder 
This clause describes the different functions of the encoder represented in the blocks of Figure 2. A 
detailed signal flow is shown in Figure 4. 

3.1 Preprocessing 
As stated in clause 2, the input to the speech encoder is assumed to be a 16-bit PCM signal. Two 
preprocessing functions are applied before the encoding process: 
1) signal scaling; and 
2) high-pass filtering. 

The scaling consists of dividing the input by a factor 2 to reduce the possibility of overflows in the 
fixed-point implementation. The high-pass filter serves as a precaution against undesired 
low-frequency components. A second order pole/zero filter with a cut-off frequency of 140 Hz is 
used. Both the scaling and high-pass filtering are combined by dividing the coefficients at the 
numerator of this filter by 2. The resulting filter is given by: 

  ( ) 21

21

1 9114024.09059465.11
46363718.092724705.046363718.0

−−

−−

+−
+−=

zz
zzzHh  (1) 

The input signal filtered through Hh1(z) is referred to as s(n), and will be used in all subsequent 
coder operations. 

3.2 Linear prediction analysis and quantization 
The short-term analysis and synthesis filters are based on 10th order linear prediction (LP) filters. 

The LP synthesis filter is defined as: 

  

∑
=

−+
= 10

1
ˆ1

1
)(ˆ

1

i

i
i zazA

 (2) 

where âi, i = 1,...,10, are the (quantized) linear prediction (LP) coefficients. Short-term prediction, 
or linear prediction analysis is performed once per speech frame using the autocorrelation method 
with a 30 ms asymmetric window. Every 80 samples (10 ms), the autocorrelation coefficients of 
windowed speech are computed and converted to the LP coefficients using the Levinson-Durbin 
algorithm. Then the LP coefficients are transformed to the LSP domain for quantization and 
interpolation purposes. The interpolated quantized and unquantized filters are converted back to the 
LP filter coefficients (to construct the synthesis and weighting filters for each subframe). 
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Figure 4 – Signal flow at the CS-ACELP encoder 
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3.2.1 Windowing and autocorrelation computation 
The LP analysis window consists of two parts: the first part is half a Hamming window and the 
second part is a quarter of a cosine function cycle. The window is given by: 

  ( ) ( )    
   

       239...,002            
159

2002cos

0,...,199     
399
2cos 46.054.0

⎪
⎪
⎩

⎪⎪
⎨

⎧

=⎟
⎠
⎞

⎜
⎝
⎛ −π

=⎟
⎠
⎞

⎜
⎝
⎛ π−

=
nn

nn

nwlp  (3) 

There is a 5 ms look-ahead in the LP analysis which means that 40 samples are needed from the 
future speech frame. This translates into an extra algorithmic delay of 5 ms at the encoder stage. 
The LP analysis window applies to 120 samples from past speech frames, 80 samples from the 
present speech frame, and 40 samples from the future frame. The windowing procedure is 
illustrated in Figure 5. 

 

Figure 5 – Windowing procedure in LP analysis 

The different shading patterns identify corresponding excitation and LP analysis windows. 

The windowed speech: 

  ( ) ( ) ( ) 0,...,239   ==′ nnsnwns lp  (4) 

is used to compute the autocorrelation coefficients: 

  ( ) ( ) ( ) 0,...,10   
239

=−= ∑
=

kkn'sn'skr
kn

 (5) 

To avoid arithmetic problems for low-level input signals the value of r(0) has a lower boundary of 
r(0) = 1.0. A 60 Hz bandwidth expansion is applied by multiplying the autocorrelation coefficients 
with: 

  ( ) 1,...,10     2
2
1

2
0 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−= k
f

kfexpkw
s

lag
 (6) 

where f0 = 60 Hz is the bandwidth expansion and fs = 8000 Hz is the sampling frequency. 
Furthermore, r(0) is multiplied by a white-noise correction factor 1.0001, which is equivalent to 
adding a noise floor at –40 dB. The modified autocorrelation coefficients are given by: 

  
( ) ( )
( ) ( ) ( ) 1,...,10     

0 000110
==′

=′
kkrkwkr

r.r

lag

 (7) 
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3.2.2 Levinson-Durbin algorithm 
The modified autocorrelation coefficients r'(k) are used to obtain the LP filter coefficients, 
ai, i = 1,...,10, by solving the set of equations: 

  ( ) ( ) 1,...,10     
10

1
=′−=−′∑

=
kkrkira

i
i

 (8) 

The set of equations in (8) is solved using the Levinson-Durbin algorithm. This algorithm uses the 
following recursion: 

 

[ ] ( )
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[ ] ( ) [ ]
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[ ] [ ] [ ]
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end
1          

end          

                   

1  to1for           
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10  to1for 
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−

=

−

−

−=
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−=
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⎥
⎥
⎦

⎤

⎢
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⎣

⎡
−′−=
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=
′=

∑
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i

i
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j

i
j

i
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i
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i
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i
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i

EkE

akaa

ij
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E/jirak

a

i
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The final solution is given as [ ]10
jj aa = , j = 0,...,10, with a0 = 1.0. 

3.2.3 LP to LSP conversion 
The LP filter coefficients ai, i = 0,...,10 are converted to line spectral pair (LSP) coefficients for 
quantization and interpolation purposes. For a 10th order LP filter, the LSP coefficients are defined 
as the roots of the sum and difference polynomials: 

  ( ) ( ) ( )111
1

−−+=′ zAzzAzF  (9) 

and: 

  ( ) ( ) ( )111
2

−−−=′ zAzzAzF  (10) 

respectively. The polynomial F1′(z) is symmetric, and F2′(z) is antisymmetric. It can be proven that 
all roots of these polynomials are on the unit circle and they alternate each other. F1′(z) has a root 
z = –1 (ω = π) and F2′(z) has a root z = 1 (w = 0). These two roots are eliminated by defining the new 
polynomials: 

  ( ) ( ) ( )1
11 1/ −+′= zzFzF  (11) 

and: 

  ( ) ( ) ( )1
22 1/ −−′= zzFzF  (12) 

Each polynomial has five conjugate roots on the unit circle (e±jωi), and they can be written as: 

  ( ) ( )∏
=

−− +−=
9,...,3,1

21
1 21

i
i zzqzF  (13) 
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and: 

  ( ) ( )∏
=

−− +−=
10,...,4,2

21
2 21

i
i zzqzF  (14) 

where qi = cos(ωi). The coefficients ωi are the line spectral frequencies (LSF) and they satisfy the 
ordering property 0 < ωi < ω2 < ... < ω10 < π. The coefficients qi are referred to as the LSP 
coefficients in the cosine domain. 

Since both polynomials F1(z) and F2(z) are symmetric only the first five coefficients of each 
polynomial need to be computed. The coefficients of these polynomials are found by the recursive 
relations: 

  
( ) ( )
( ) ( ) 401

401

21012

11011

,...,iifaaif
,...,iifaaif

ii

ii

=+−=+
=−+=+

−+

−+  (15) 

where f1(0) = f2(0) = 1.0. The LSP coefficients are found by evaluating the polynomials F1(z) and 
F2(z) at 60 points equally spaced between 0 and π and checking for sign changes. A sign change 
signifies the existence of a root and the sign change interval is then divided four times to allow 
better tracking of the root. The Chebyshev polynomials are used to evaluate F1(z) and F2(z). In this 
method the roots are found directly in the cosine domain. The polynomials F1(z) or F2(z), evaluated 
at z = ejω, can be written as: 

  ( ) ( )xCeF j ωω 52 −=  (16) 

with: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2/54321 12345 fxTfxTfxTfxTfxTxC +++++=  (17) 

where Tm(x) = cos(mω) is the mth order Chebyshev polynomial, and f(i), i = 1,...,5, are the 
coefficients of either F1(z) or F2(z), computed using equation (15). The polynomial C(x) is 
evaluated at a certain value of x = cos(ω) using the recursive relation: 

 
( )

( ) ( ) 25
end

52          
1  4 

21

21

/fbxbxC

–kfb xbb
todownkfor

kkk

+−=

+−=
=

++  

with initial values b5 = 1 and b6 = 0. 

3.2.4 Quantization of the LSP coefficients 

The LSP coefficients qi are quantized using the LSF representation ωi in the normalized frequency 
domain [0, π]; that is: 

  ( ) 1,...,10     arccos ==ω iqii  (18) 

A switched 4th order MA prediction is used to predict the LSF coefficients of the current frame. 
The difference between the computed and predicted coefficients is quantized using a two-stage 
vector quantizer. The first stage is a 10-dimensional VQ using codebook L1 with 128 entries 
(7 bits). The second stage is a 10-bit VQ which has been implemented as a split VQ using 
two 5-dimensional codebooks, L2 and L3 containing 32 entries (5 bits) each. 
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To explain the quantization process, it is convenient to first describe the decoding process. Each 
coefficient is obtained from the sum of two codebooks: 

  
( ) ( )
( ) ( )⎩

⎨
⎧

=+
=+

=
− 6,...,10    3311

1,...,5       2211

5 iLL
iLL

l̂
ii

ii
i LL

LL
 (19) 

where L1, L2 and L3 are the codebook indices. To avoid sharp resonances in the quantized LP 
synthesis filter, the coefficients il̂  are arranged such that adjacent coefficients have a minimum 
distance of J. The rearrangement routine is shown below: 

 

( )
( )

( )

end
end

2

2

 if

102for

1

11

1

          
/Jl̂l̂l̂                   

/Jl̂l̂l̂                   

Jl̂l̂          

,..., i

i–ii

i–ii–

ii–

++=

−+=

−>

=

 

This rearrangement process is done twice. First with a value of J = 0.0012, then with a value of 
J = 0.0006. After this rearrangement process, the quantized LSF coefficients )(ˆ m

iω  for the current 

frame m, are obtained from the weighted sum of previous quantizer outputs k)(m
il

−ˆ , and the current 

quantizer output (m)
il̂ . 

  ( ) ( ) 1,...,10ˆˆˆˆ1ˆ
4

1
,

4

1
, =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=ω ∑∑

=

−

=
i    lPlP

k

km
iki

m
i

k
ki

m
i  (20) 

where kip ,ˆ  are the coefficients of the switched MA predictor. Which MA predictor to use is defined 

by a separate bit L0. At start up the initial values of )(ˆ k
il  are given by 11/ˆ π= ili  for all k < 0. 

After computing iω̂ , the corresponding filter is checked for stability. This is done as follows: 

1) order the coefficient iω̂  in increasing value; 

2) if 1ω̂  < 0.005 then 1ω̂  = 0.005; 

3) if ii ω−ω + ˆˆ 1 < 0.0391 then 0391.0ˆˆ 1 +ω=ω + ii , i = 1,…,9; 

4) if 135.3ˆ then 135.3ˆ 1010 =ω>ω . 

The procedure for encoding the LSF parameters can be outlined as follows. For each of the two MA 
predictors the best approximation to the current LSF coefficients has to be found. The best 
approximation is defined as the one that minimizes the weighted mean-squared error: 

  ( )∑
=

ω−ω=
10

1

2ˆ
i

iiilsf wE  (21) 
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The weights wi are made adaptive as a function of the unquantized LSF coefficients, 

 

( )

( )

( ) otherwise
0192.0 

1192.010

0.1

otherwise
01 

1110

0.1
92for,

otherwise
0104.0 

1104.010

0.1

9
2

9
10

11
2

11

2
2

2
1

>−π+ω−

⎪⎩

⎪
⎨
⎧

+−π+ω−
=

>−ω−ω

⎪⎩

⎪
⎨
⎧

+−ω−ω
=≤≤

>−π−ω

⎪⎩

⎪
⎨
⎧

+−π−ω
=

−+

−+

if
w

if
iw

if
w

ii

ii
i  (22) 

In addition, the weights w5 and w6 are each multiplied by 1.2. 

The vector to be quantized for the current frame m is obtained from 

  ( ) ( ) 1,...,10     1
4

1

4

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−ω= ∑∑

==

− iP̂/l̂P̂l
k

k,i
k

km
ik,i

m
ii  (23) 

The first codebook L1 is searched and the entry L1 that minimizes the (unweighted) mean-squared 
error is selected. This is followed by a search of the second codebook L2, which defines the lower 
part of the second stage. For each possible candidate, the partial vector iω̂ , i = 1,...,5 is 
reconstructed using equation (20), and rearranged to guarantee a minimum distance of 0.0012. The 
weighted MSE of equation (21) is computed, and the vector L2 which results in the lowest error is 
selected. Using the selected first stage vector L1 and the lower part of the second stage L2, the 
higher part of the second stage is searched from codebook L3. Again the rearrangement procedure 
is used to guarantee a minimum distance of 0.0012. The vector L3 that minimizes the weighted 
MSE is selected. The resulting vector il̂ , i = 1,...,10 is rearranged to guarantee a minimum distance 
of 0.0006. This process is done for each of the two MA predictors defined by L0, and the MA 
predictor L0 that produces the lowest weighted MSE is selected. As was explained at the beginning 
of this clause, the resulting vector il̂  is rearranged twice and a stability check is applied to produce 
the quantized LSF coefficients iω̂ . 

3.2.5 Interpolation of the LSP coefficients 
The quantized (and unquantized) LP coefficients are used for the second subframe. For the first 
subframe, the quantized (and unquantized) LP coefficients are obtained by linear interpolation of 
the corresponding parameters in the adjacent subframes. The interpolation is done on the LSP 
coefficients in the cosine domain. Let ( )current

iq  be the LSP coefficients computed for the current 

10 ms frame, and ( )previous
iq  the LSP coefficients computed in the previous 10 ms frame. The 

(unquantized) interpolated LSP coefficients in each of the two subframes are given by: 

  
( ) ( )

( ) 1,...,102 
1,...,1050501 

)2(

)1(

==
=+=

iqq:Subframe
iq.q.q:Subframe

current
ii

current
i

previous
ii  (24) 
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The same interpolation procedure is used for the interpolation of the quantized LSP coefficients by 
substituting qi by iq̂  in equation (24). 

3.2.6 LSP to LP conversion 
Once the LSP coefficients are quantized and interpolated, they are converted back to the LP 
coefficients ai. This conversion is done as follows: The coefficients of F1(z) and F2(z) are found by 
expanding equations (13) and (14) knowing the quantized and interpolated LSP coefficients. The 
coefficients f1(i), i = 1,...,5 are computed from qi using the recursive relation: 

 
( )

end
end          

)2()1(2)(                   

1 down to 1–for           
)2(2)1(2)(          

5  to1for 

1]–[i
1

1]–[i
112

1]–[i
1

[i]
1

11121

−+−−=

=
−+−−=

=

−

−

jfjfqjfjf

ij
ififqif

i

i

i

 

with initial values f1(0) = 1 and f1(–1) = 0. The coefficients f2(i) are computed similarly by replacing 
q2i–1 by q2i. 

Once the coefficients f1(i) and f2(i) are found, F1(z) and F2(z) are multiplied by 1 + z–1 and 1 – z–1, 
respectively, to obtain )(1 zF ′  and )(2 zF ′ ; that is: 

  
( ) ( ) ( )
( ) ( ) ( ) 5,...,11

5,...,11

222

111

=−−=′
=−+=′

iififif
iififif

 (25) 

Finally the LP coefficients are computed from f ′1(i) and f ′2(i) by: 

  
( ) ( )
( ) ( )⎩

⎨
⎧

=−′−−′
=′+′

=
6,...,1011501150
1,...,5                   5050

21

21

iif.if.
iif.if.

ai  (26) 

This is directly derived from the relation ( ) 2/)()()( 21 zFzFzA ′+′= , and because )(1 zF ′  and )(2 zF ′  
are symmetric and antisymmetric polynomials, respectively. 

3.3 Perceptual weighting 
The perceptual weighting filter is based on the unquantized LP filter coefficients ai, and is given by: 

  ( ) ( )
( )

∑

∑

=

−

=

−

γ+

γ+
=

γ
γ= 10

1
2

10

1
1

2

1

1

1

/
/

i

i
i

i

i

i
i

i

za

za

zA
zAzW  (27) 

The values of γ1 and γ2 determine the frequency response of the filter W(z). By proper adjustment of 
these variables it is possible to make the weighting more effective. This is done by making γ1 and γ2 
a function of the spectral shape of the input signal. This adaptation is done once per 10 ms frame, 
but an interpolation procedure for each first subframe is used to smooth this adaptation process. The 
spectral shape is obtained from a 2nd order linear prediction filter, obtained as a by-product from 
the Levinson-Durbin recursion (see clause 3.2.2). The reflection coefficients ki are converted to log 
area ratio (LAR) coefficients oi by: 

  ( )
( ) 21,     

01
01 =

−
+= i

k.
k.logo

i

i
i  (28) 
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The LAR coefficients corresponding to the current 10 ms frame are used for the second subframe. 
The LAR coefficients for the first subframe are obtained through linear interpolation with the LAR 
parameters from the previous frame. The interpolated LAR coefficients in each of the two 
subframes are given by: 

  
( ) ( ) ( )
( ) ( ) 21,2 

21,50501 
2

1

==
=+=

ioo:Subframe
io.o.o:Subframe

current
ii

current
i

previous
ii  (29) 

The spectral envelope is characterized as being either flat (flat = 1) or tilted (flat = 0). For each 
subframe this characterization is obtained by applying a threshold function to the LAR coefficients. 
To avoid rapid changes, a hysteresis is used by taking into account the value of flat in the previous 
subframe m – 1, 

  ( )

( ) ( ) ( )

( ) ( )( ) ( )

( )    
   

 otherwise     

0 and 430or  521 if                  1

1 and 650 and 741 if                  0

1

1
21

1
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⎪
⎪
⎩

⎪⎪
⎨

⎧

=<−>

=>−<

=
−

−

−

m

mmm

mmm

m

flat

flat.o.o

flat.o.o

flat  (30) 

If the interpolated spectrum for a subframe is classified as flat (flat(m) = 1), the weight factors are set 
to γ1 = 0.94 and γ2 = 0.6. If the spectrum is classified as tilted (flat(m) = 0), the value of γ1 is set 
to 0.98, and the value of γ2 is adapted to the strength of the resonances in the LP synthesis filter, but 
is bounded between 0.4 and 0.7. If a strong resonance is present, the value of γ2 is set closer to the 
upper bound. This adaptation is achieved by a criterion based on the minimum distance between 
two successive LSP coefficients for the current subframe. The minimum distance is given by: 

  [ ] 1,...,9     1 =ω−ω= + imind iimin  (31) 

The value of γ2 is computed using the linear relationship: 

  70 0.4 by bounded     0106 22 ..d. min ≤γ≤+−=γ  (32) 

The weighted speech signal in a subframe is given by: 

  ( ) ( ) ( ) ( )∑∑
==

=−γ−−γ+=
10

1
2

10

1
1 390

i

i
i

i

i
i ,...,ninswainsansnsw  (33) 

The weighted speech signal sw(n) is used to find an estimation of the pitch delay in the speech 
frame. 

3.4 Open-loop pitch analysis 
To reduce the complexity of the search for the best adaptive-codebook delay, the search range is 
limited around a candidate delay Top, obtained from an open-loop pitch analysis. This open-loop 
pitch analysis is done once per frame (10 ms). The open-loop pitch estimation uses the weighted 
speech signal sw(n) of equation (33), and is done as follows: In the first step, three maxima of the 
correlation: 

  ( ) ( ) ( )∑
=

−=
79

0n
knswnswkR  (34) 

are found in the following three ranges: 

39,...,20:3
79,...,40:2

143,...,80:1

  i
  i
  i

=
=
=
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The retained maxima R(ti), i = 1,...,3, are normalized through: 

  ( ) ( )
( )

3,...,1     
2

=
−

=′
∑

i
tnsw

tRtR
in

i
i  (35) 

The winner among the three normalized correlations is selected by favouring the delays with the 
values in the lower range. This is done by weighting the normalized correlations corresponding to 
the longer delays. The best open-loop delay Top is determined as follows: 
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This procedure of dividing the delay range into three sections and favouring the smaller values is 
used to avoid choosing pitch multiples. 

3.5 Computation of the impulse response 
The impulse response h(n) of the weighted synthesis filter W(z)/Â(z) is needed for the search of 
adaptive and fixed codebooks. The impulse response h(n) is computed for each subframe by 
filtering a signal consisting of the coefficients of the filter A(z/γ1) extended by zeros through the two 
filters 1/Â(z) and 1/A(z/γ2). 

3.6 Computation of the target signal 
The target signal x(n) for the adaptive-codebook search is usually computed by subtracting the 
zero-input response of the weighted synthesis filter W(z)/Â(z) = A(z/γ1)/[Â(z)A(z/γ2)] from the 
weighted speech signal sw(n) of equation (33). This is done on a subframe basis. 

An equivalent procedure for computing the target signal, which is used in this Recommendation, is 
the filtering of the LP residual signal r(n) through the combination of synthesis filter 1/Â(z) and the 
weighting filter A(z/γ1)/A(z/γ2). After determining the excitation for the subframe, the initial states 
of these filters are updated by filtering the difference between the residual and excitation signals. 
The memory update of these filters is explained in clause 3.10. 

The residual signal r(n), which is needed for finding the target vector is also used in the 
adaptive-codebook search to extend the past excitation buffer. This simplifies the adaptive-
codebook search procedure for delays less than the subframe size of 40 as will be explained in the 
next clause. The LP residual is given by: 

  ( ) ( ) ( ) 0,...,39     
10

1
=−+= ∑

=
ninsânsnr

i
i  (36) 
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3.7 Adaptive-codebook search 
The adaptive-codebook parameters (or pitch parameters) are the delay and gain. In the 
adaptive-codebook approach for implementing the pitch filter, the excitation is repeated for delays 
less than the subframe length. In the search stage, the excitation is extended by the LP residual to 
simplify the closed-loop search. The adaptive-codebook search is done every (5 ms) subframe. In 
the first subframe, a fractional pitch delay T1 is used with a resolution of 1/3 in the range of 

⎥⎦
⎤

⎢⎣
⎡

3
284,

3
119  and integers only in the range [85, 143]. For the second subframe, a delay T2 with a 

resolution of 1/3 is always used in the range ( )
3
251 −Tint , ( )

3
24int 1 +T , where int(T1) is the integer 

part of the fractional pitch delay T1 of the first subframe. This range is adapted for the cases where 
T1 straddles the boundaries of the delay range. 

For each subframe, the optimal delay is determined using closed-loop analysis that minimizes the 
weighted mean-squared error. In the first subframe the delay T1 is found by searching a small range 
(six samples) of delay values around the open-loop delay Top (see clause 3.4). The search 
boundaries tmin and tmax are defined by: 
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For the second subframe, closed-loop pitch analysis is done around the pitch selected in the first 

subframe to find the optimal delay T2. The search boundaries are between 
3
2−mint  and 

3
2+maxt  

where tmin and tmax are derived from T1 as follows: 
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The closed-loop pitch search minimizes the mean-squared weighted error between the original and 
reconstructed speech. This is achieved by maximizing the term: 

  ( )
( ) ( )

( ) ( )∑
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where x(n) is the target signal and yk(n) is the past filtered excitation at delay k [past excitation 
convolved with h(n)]. Note that the search range is limited around a preselected value, which is the 
open-loop pitch Top for the first subframe, and T1 for the second subframe. 

The convolution yk(n) is computed for the delay tmin. For the other integer delays in the search range 
k = tmin + 1,...,tmax, it is updated using the recursive relation: 

  ( ) ( ) ( ) ( ) 39,...,011 =−+−= − n     nhkunyny kk  (38) 

where u(n), n = –143,...,39, is the excitation buffer, and yk–1 (–1) = 0. Note that in the search stage, 
the samples u(n), n = 0,...,39 are not known, and they are needed for pitch delays less than 40. To 
simplify the search, the LP residual is copied to u(n) to make the relation in equation (38) valid for 
all delays. 

For the determination of T2, and T1, if the optimum integer closed-loop delay is less than 85, the 
fractions around the optimum integer delay have to be tested. The fractional pitch search is done by 
interpolating the normalized correlation in equation (37) and searching for its maximum. The 
interpolation is done using a FIR filter b12 based on a Hamming windowed sinc function with the 
sinc truncated at ±11 and padded with zeros at ±12 (b12(12) = 0). The filter has its cut-off frequency 
(–3 dB) at 3600 Hz in the oversampled domain. The interpolated values of R(k) for the fractions 

3
2− , 

3
1− , 0, 

3
1  and 

3
2  are obtained using the interpolation formula: 
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ii
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where t = 0, 1, 2 corresponds to the fractions 0, 
3
1  and 

3
2 , respectively. Note that it is necessary to 

compute the correlation terms in equation (37) using a range tmin – 4, tmax + 4, to allow for the 
proper interpolation. 

3.7.1 Generation of the adaptive-codebook vector 
Once the pitch delay has been determined, the adaptive-codebook vector v(n) is computed by 
interpolating the past excitation signal u(n) at the given integer delay k and fraction t: 

     ( ) ( ) ( ) ( ) ( )∑∑
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==+−++−+++−=
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30 21,0,    0,...,39    3313

ii
tnitbiknuitbiknunv  (40) 

The interpolation filter b30 is based on a Hamming windowed sinc functions truncated at ±29 and 
padded with zeros at ±30 [b30(30) = 0]. The filter has a cut-off frequency (–3 dB) at 3600 Hz in the 
oversampled domain. 

3.7.2 Codeword computation for adaptive-codebook delays 

The pitch delay T1 is encoded with 8 bits in the first subframe and the relative delay in the second 
subframe is encoded with 5 bits. A fractional delay T is represented by its integer part int(T), and a 
fractional part frac/3, frac = –1, 0, 1. The pitch index P1 is now encoded as: 

  
( )( ) [ ] [ ]
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=
             0 14386 if             19785

1 0, ,1 8519 if     1193
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frac,,...,TTint
frac,,...,TfracTint

P  (41) 

The value of the pitch delay T2 is encoded relative to the value of T1. Using the same interpretation 
as before, the fractional delay T2 represented by its integer part int(T2), and a fractional part 
frac/3, frac = –1, 0, 1, is encoded as: 

  ( )( ) 232 2 ++−= fractTintP min  (42) 
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where tmin is derived from T1 as in clause 3.7. 

To make the coder more robust against random bit errors, a parity bit P0 is computed on the delay 
index P1 of the first subframe. The parity bit is generated through an XOR operation on the six 
most significant bits of P1. At the decoder this parity bit is recomputed and if the recomputed value 
does not agree with the transmitted value, an error concealment procedure is applied. 

3.7.3 Computation of the adaptive-codebook gain 
Once the adaptive-codebook delay is determined, the adaptive-codebook gain gp is computed as: 

  
( ) ( )

( ) ( )
210by  bounded     39

0

39

0 .g
nyny

nynx
g p

n

n
p ≤≤=

∑

∑

=

=  (43) 

where x(n) is the target signal and y(n) is the filtered adaptive-codebook vector [zero-state response 
of W(z)/Â(z) to v(n)]. This vector is obtained by convolving v(n) with h(n): 

  ( ) ( ) ( ) 0,...,39
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n     inhivny
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i
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3.8 Fixed codebook – Structure and search 
The fixed codebook is based on an algebraic codebook structure using an interleaved single-pulse 
permutation (ISPP) design. In this codebook, each codebook vector contains four non-zero pulses. 
Each pulse can have either the amplitudes +1 or –1, and can assume the positions given in Table 7. 

Table 7 – Structure of fixed codebook C 

Pulse Sign Positions 

i0 s0:  ±1 m0: 0, 5, 10, 15, 20, 25, 30, 35 
i1 s1:  ±1 m1: 1, 6, 11, 16, 21, 26, 31, 36 
i2 s2:   ±1 m2: 2, 7, 12, 17, 22, 27, 32, 37 
i3 s3:  ±1 m3: 3, 8, 13, 18, 23, 28, 33, 38 

  4, 9, 14, 19, 24, 29, 34, 39 

The codebook vector c(n) is constructed by taking a zero vector of dimension 40, and putting the 
four unit pulses at the found locations, multiplied with their corresponding sign: 

  ( ) ( ) ( ) ( ) ( ) 0,...,3933221100 =−δ+−δ+−δ+−δ= n     mnsmnsmnsmnsnc  (45) 

where δ(0) is a unit pulse. A special feature incorporated in the codebook is that the selected 
codebook vector is filtered through an adaptive pre-filter P(z) that enhances harmonic components 
to improve the quality of the reconstructed speech. Here the filter: 

  ( ) ( )TzzP −β−= 1/1  (46) 

is used, where T is the integer component of the pitch delay of the current subframe, and β is a pitch 
gain. The value of β is made adaptive by using the quantized adaptive-codebook gain from the 
previous subframe, that is: 

  ( ) 8.00.2by  boundedˆ 1 ≤β≤=β −      g m
p  (47) 
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For delays less than 40, the codebook c(n) of equation (45) is modified according to: 
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This modification is incorporated in the fixed-codebook search by modifying the impulse response 
h(n) according to: 
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3.8.1 Fixed-codebook search procedure 
The fixed codebook is searched by minimizing the mean-squared error between the weighted input 
speech sw(n) of equation (33) and the weighted reconstructed speech. The target signal used in the 
closed-loop pitch search is updated by subtracting the adaptive-codebook contribution. That is: 

  ( ) ( ) ( ) 0,...,39=−=′ n     nygnxnx p  (50) 

where y(n) is the filtered adaptive-codebook vector of equation (44) and gp the adaptive-codebook 
gain of equation (43). 

The matrix H is defined as the lower triangular Toepliz convolution matrix with diagonal h(0) and 
lower diagonal h(1),...,h(39). The matrix Ф = HtH contains the correlations of h(n), and the 
elements of this symmetric matrix are given by: 
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The correlation signal d(n) is obtained from the target signal x'(n) and the impulse response h(n) by: 
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If ck is the kth fixed-codebook vector, then the codebook is searched by maximizing the term: 
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where t denotes transpose. 

The signal d(n) and the matrix Ф are computed before the codebook search. Note that only the 
elements actually needed are computed and an efficient storage procedure has been designed to 
speed up the search procedure. 

The algebraic structure of the codebook C allows for a fast search procedure since the codebook 
vector ck contains only four non-zero pulses. The correlation in the numerator of equation (53) for a 
given vector ck is given by: 

  ( )∑
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=
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0i
ii mdsC  (54) 
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where mi is the position of the ith pulse and si is its amplitude. The energy in the denominator of 
equation (53) is given by: 

  ( ) ( )∑ ∑∑
= +==
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i
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To simplify the search procedure, the pulse amplitudes are predetermined by quantizing the signal 
d(n). This is done by setting the amplitude of a pulse at a certain position equal to the sign of d(n) at 
the position. Before the codebook search, the following steps are done. First, the signal d(n) is 
decomposed into two parts: its absolute value |d(n)| and its sign sign [d(n)]. Second, the matrix Ф is 
modified by including the sign information; that is: 

  ( ) ( )[ ] ( )[ ] ( ) 1,...,39     0,...,39     +==φ=φ′ ijij,ijdsignidsignj,i  (56) 

The main-diagonal elements of Ф are scaled to remove the factor 2 in equation (55) 

  ( ) ( ) 0,...,39     50 =φ′=φ′ ii,i.i,i  (57) 

The correlation in equation (54) is now given by: 

  ( ) ( ) ( ) ( )3210 mdmdmdmdC +++=  (58) 

and the energy in equation (55) is given by: 
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A focused search approach is used to further simplify the search procedure. In this approach, a 
precomputed threshold is tested before entering the last loop, and the loop is entered only if this 
threshold is exceeded. The maximum number of times the loop can be entered is fixed so that a low 
percentage of the codebook is searched. The threshold is computed based on the correlation C. The 
maximum absolute correlation and the average correlation due to the contribution of the first three 
pulses, max3 and av3, are found before the codebook search. The threshold is given by: 

  ( )33333 avmaxKavthr −+=  (60) 

The fourth loop is entered only if the absolute correlation (due to three pulses) exceeds thr3, where 
0 ≤ K3 < 1. The value of K3 controls the percentage of codebook search, and it is set here to 0.4. 
Note that this results in a variable search time. To further control the search, the number of times 
the last loop is entered (for the two subframes) cannot exceed a certain maximum, which is set here 
to 180 (the average worst case per subframe is 90 times). 

3.8.2 Codeword computation of the fixed codebook 

The pulse positions of the pulses i0, i1 and i2, are encoded with 3 bits each, while the position of i3 is 
encoded with 4 bits. Each pulse amplitude is encoded with 1 bit. This gives a total of 17 bits for the 
4 pulses. By defining s = 1 if the sign is positive and s = 0 if the sign is negative, the sign codeword 
is obtained from: 

  3210 842 ssssS +++=  (61) 

and the fixed-codebook codeword is obtained from: 

  ( ) ( ) ( ) ( )( )jxmmmmC ++++= 5/25125/645/85/ 3210  (62) 

where jx = 0 if m3 = 3, 8,...,38, and jx = 1 if m3 = 4, 9,...,39. 
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3.9 Quantization of the gains 
The adaptive-codebook gain (pitch gain) and the fixed-codebook gain are vector quantized using 
7 bits. The gain codebook search is done by minimizing the mean-squared weighted error between 
original and reconstructed speech which is given by: 

  zyzxyxzzyyxx t
cp
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t
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t
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t
p

t ggggggE 22222 +−−++=  (63) 

where x is the target vector (see clause 3.6), y is the filtered adaptive-codebook vector of 
equation (44), and z is the fixed-codebook vector convolved with h(n), 
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3.9.1 Gain prediction 
The fixed-codebook gain gc can be expressed as: 

  cc gg ′γ=  (65) 

where gc′ is a predicted gain based on previous fixed-codebook energies, and γ is a correction factor. 

The mean energy of the fixed-codebook contribution is given by: 
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After scaling the vector c(n) with the fixed-codebook gain gc, the energy of the scaled fixed 
codebook is given by 20 log gc + E. Let E(m) be the mean-removed energy (in dB) of the (scaled) 
fixed-codebook contribution at the subframe m, given by: 

  ( ) EEg  E c
m −+= log20  (67) 

where dB30=E  is the mean energy of the fixed-codebook excitation. The gain gc can be 
expressed as a function of E(m), E and E– by: 

  
( )( ) 20/10 EEE
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g −+=  (68) 

The predicted gain gc′ is found by predicting the log-energy of the current fixed-codebook 
contribution from the log-energy of previous fixed-codebook contributions. The 4th order MA 
prediction is done as follows. The predicted energy is given by: 
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where [b1 b2 b3 b4] = [0.68 0.58 0.34 0.19] are the MA prediction coefficients, and Û(m) is the 
quantized version of the prediction error U(m) at subframe m, defined by: 

  ( ) ( ) ( )mmm EEU ~−=  (70) 

The predicted gain gc′ is found by replacing E(m) by its predicted value in equation (68). 
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The correction factor γ is related to the gain-prediction error by: 

  ( ) ( ) ( ) ( )γ=−=   EEU mmm log20~  (72) 
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3.9.2 Codebook search for gain quantization 
The adaptive-codebook gain, gp, and the factor γ are vector quantized using a two-stage conjugate 
structured codebook. The first stage consists of a 3 bit two-dimensional codebook GA, and the 
second stage consists of a 4 bit two-dimensional codebook GB. The first element in each codebook 
represents the quantized adaptive-codebook gain pĝ  , and the second element represents the 
quantized fixed-codebook gain correction factor γ̂ . Given codebook indices GA and GB for GA 
and GB, respectively, the quantized adaptive-codebook gain is given by: 

  )()( 11 GBGAĝ p GBGA +=  (73) 

and the quantized fixed-codebook gain by: 

  ( ))()( 22c GBGAgˆgĝ cc GBGA +′=γ′=  (74) 

This conjugate structure simplifies the codebook search by applying a preselection process. The 
optimum pitch gain gp, and fixed-codebook gain gc, are derived from equation (63), and are used for 
the preselection. The codebook GA contains eight entries in which the second element 
(corresponding to gc) has, in general, larger values than the first element (corresponding to gp). This 
bias allows a preselection using the value of gc. In this preselection process, a cluster of four vectors 
whose second elements are close to gc are selected. Similarly, the codebook GB contains 16 entries 
in which each has a bias towards the first element (corresponding to gp). A cluster of eight vectors 
whose first elements are close to gp are selected. Hence for each codebook the best 50% candidate 
vectors are selected. This is followed by an exhaustive search over the remaining 
4 × 8 = 32 possibilities, such that the combination of the two indices minimizes the weighted 
mean-squared error of equation (63). 

3.9.3 Codeword computation for gain quantizer 
The codewords GA and GB for the gain quantizer are obtained from the indices corresponding to 
the best choice. To reduce the impact of single bit errors the codebook indices are mapped. 

3.10 Memory update 
An update of the states of the synthesis and weighting filters is needed to compute the target signal 
in the next subframe. After the two gains are quantized, the excitation signal, u(n), in the present 
subframe is obtained using: 

  ( ) ( ) ( ) 0,...,39ˆˆ =+= n     ncgnvgnu cp  (75) 

where gp^  and gc^  are the quantized adaptive and fixed-codebook gains, respectively, v(n) is the 
adaptive-codebook vector (interpolated past excitation), and c(n) is the fixed-codebook vector 
including harmonic enhancement. The states of the filters can be updated by filtering the signal 
r(n) – u(n) (difference between residual and excitation) through the filters 1/Â(z) and A(z/γ1)/A(z/γ2) 
for the 40 sample subframe and saving the states of the filters. This would require three filter 
operations. A simpler approach, which requires only one filter operation, is as follows. The locally 
reconstructed speech ŝ(n) is computed by filtering the excitation signal through 1/Â(z). The output 
of the filter due to the input r(n) – u(n) is equivalent to e(n) = s(n) – ŝ(n). So the states of the 
synthesis filter 1/Â(z) are given by e(n), n = 30,...,39. Updating the states of the filter A(z/γ1)/A(z/γ2) 
can be done by filtering the error signal e(n) through this filter to find the perceptually weighted 
error ew(n). However, the signal ew(n) can be equivalently found by: 

  ( ) ( ) ( ) ( )nzgnygnxnew cp ˆˆ −−=  (76) 

Since the signals x(n), y(n) and z(n) are available, the states of the weighting filter are updated by 
computing ew(n) as in equation (76) for n = 30,...,39. This saves two filter operations. 
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4 Functional description of the decoder 
The principle of the decoder was shown in clause 2 (Figure 3). First, the parameters are decoded 
(LP coefficients, adaptive-codebook vector, fixed-codebook vector and gains). The transmitted 
parameters are listed in Table 8. These decoded parameters are used to compute the reconstructed 
speech signal as will be described in clause 4.1. This reconstructed signal is enhanced by a post-
processing operation consisting of a postfilter, a high-pass filter and an upscaling (see clause 4.2). 
Clause 4.4 describes the error concealment procedure used when either a parity error has occurred, 
or when the frame erasure flag has been set. A detailed signal flow diagram of the decoder is shown 
in Figure 6. 

Table 8 – Description of transmitted parameters indices 

Symbol Description Bits 

L0 Switched MA predictor of LSP quantizer 1 
L1 First stage vector of quantizer 7 
L2 Second stage lower vector of LSP quantizer 5 
L3 Second stage higher vector of LSP quantizer 5 
P1 Pitch delay first subframe 8 
P0 Parity bit for pitch delay 1 
C1 Fixed codebook first subframe 13 
S1 Signs of fixed-codebook pulses 1st subframe 4 
GA1 Gain codebook (stage 1) 1st subframe 3 
GB1 Gain codebook (stage 2) 1st subframe 4 
P2 Pitch delay second subframe 5 
C2 Fixed codebook 2nd subframe 13 
S2 Signs of fixed-codebook pulses 2nd subframe 4 
GA2 Gain codebook (stage 1) 2nd subframe 3 
GB2 Gain codebook (stage 2) 2nd subframe 4 
NOTE – The bit stream ordering is reflected by the order in the table. For each parameter, 
the most significant bit (MSB) is transmitted first. 

4.1 Parameter decoding procedure 

The decoding process is done in the following order. 

4.1.1 Decoding of LP filter parameters 

The received indices L0, L1, L2 and L3 of the LSP quantizer are used to reconstruct the quantized 
LSP coefficients using the procedure described in clause 3.2.4. The interpolation procedure 
described in clause 3.2.5 is used to obtain two sets of interpolated LSP coefficients (corresponding 
to two subframes). For each subframe, the interpolated LSP coefficients are converted to LP filter 
coefficients ai, which are used for synthesizing the reconstructed speech in the subframe. 

The following steps are repeated for each subframe: 
1) decoding of the adaptive-codebook vector; 
2) decoding of the fixed-codebook vector; 
3) decoding of the adaptive and fixed-codebook gains; and 
4) computation of the reconstructed speech. 
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Figure 6 – Signal flow at the CS-ACELP decoder 

4.1.2 Computation of the parity bit 
Before the excitation is reconstructed, the parity bit is recomputed from the adaptive-codebook 
delay index P1 (see clause 3.7.2). If this bit is not identical to the transmitted parity bit P0, it is 
likely that bit errors occurred during transmission. 

If a parity error occurs on P1, the delay value T1 is set to the integer part of the delay value T2 of the 
previous frame. The value T2 is derived with the procedure outlined in clause 4.1.3, using this new 
value of T1. 
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4.1.3 Decoding of the adaptive-codebook vector 
If no parity error has occurred, the received adaptive-codebook index P1 is used to find the integer 
and fractional parts of the pitch delay T1. The integer part int(T1) and fractional part frac of T1 are 
obtained from P1 as follows: 
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The integer and fractional part of T2 are obtained from P2 and tmin, where tmin is derived from T1 as 
follows: 
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Now T2 is decoded using: 
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The adaptive-codebook vector v(n) is found by interpolating the past excitation u(n) (at the pitch 
delay) using equation (40). 

4.1.4 Decoding of the fixed-codebook vector 
The received fixed-codebook index C is used to extract the positions of the excitation pulses. The 
pulse signs are obtained from S. This is done by reversing the process described in clause 3.8.2. 
Once the pulse positions and signs are decoded, the fixed-codebook vector c(n) is constructed using 
equation (45). If the integer part of the pitch delay T is less than the subframe size 40, c(n) is 
modified according to equation (48). 

4.1.5 Decoding of the adaptive and fixed-codebook gains 

The received gain-codebook index gives the adaptive-codebook gain pĝ  and the fixed-codebook 
gain correction factor γ̂ . This procedure is described in detail in clause 3.9. The estimated fixed-
codebook gain cg′  is found using equation (71). The fixed-codebook vector is obtained from the 
product of the quantized gain correction factor with this predicted gain equation (74). The 
adaptive-codebook gain is reconstructed using equation (73). 
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4.1.6 Computing the reconstructed speech 
The excitation u(n) [see equation (75)] is input to the LP synthesis filter. The reconstructed speech 
for the subframe is given by: 

  ( ) ( ) ( ) 0,...,39ˆˆˆ
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=
n     insanuns

i
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where âi are the interpolated LP filter coefficients for the current subframe. The reconstructed 
speech ŝ(n) is then processed by the post-processor described in the next clause. 

4.2 Post-processing 

Post-processing consists of three functions: adaptive postfiltering, high-pass filtering and signal 
upscaling. The adaptive postfilter is the cascade of three filters: a long-term postfilter Hp(z), a 
short-term postfilter Hf (z) and a tilt compensation filter Ht(z), followed by an adaptive gain control 
procedure. The postfilter coefficients are updated every 5 ms subframe. The postfiltering process is 
organized as follows. First, the reconstructed speech ( )nŝ  is inverse filtered through Â(z /γn) to 
produce the residual signal ( )nr̂ . This signal is used to compute the delay T and gain gt of the 
long-term postfilter Hp(z). The signal ( )nr̂  is then filtered through the long-term postfilter Hp(z) and 
the synthesis filter 1/[gf Â(z /γd)]. Finally, the output signal of the synthesis filter 1/[gf Â(z /γd)] is 
passed through the tilt compensation filter Ht(z) to generate the postfiltered reconstructed speech 
signal sf(n). Adaptive gain control is then applied to sf(n) to match the energy of ŝ(n). The resulting 
signal sf ' (n) is high-pass filtered and scaled to produce the output signal of the decoder. 

4.2.1 Long-term postfilter 
The long-term postfilter is given by: 

  ( ) ( )T
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where T is the pitch delay, and gl is the gain coefficient. Note that gl is bounded by 1, and it is set to 
zero if the long-term prediction gain is less than 3 dB. The factor γp controls the amount of 
long-term postfiltering and has the value of γp = 0.5. The long-term delay and gain are computed 
from the residual signal ( )nr̂  obtained by filtering the speech ŝ(n) through Â(z/γn), which is the 
numerator of the short-term postfilter (see clause 4.2.2). 
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The long-term delay is computed using a two-pass procedure. The first pass selects the best integer 
T0 in the range [int(T1) – 1, int(T1) +1], where int(T1) is the integer part of the (transmitted) pitch 
delay T1 in the first subframe. The best integer delay is the one that maximizes the correlation. 
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The second pass chooses the best fractional delay T with resolution 1/8 around T0. This is done by 
finding the delay with the highest pseudo-normalized correlation. 
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where ( )nr̂k  is the residual signal at delay k. Once the optimal delay T is found, the corresponding 
correlation R'(T) is normalized with the square-root of the energy of ( )nr̂ . The squared value of this 
normalized correlation is used to determine if the long-term postfilter should be disabled. This is 
done by setting gl = 0 if: 
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Otherwise the value of gl is computed from: 
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The non-integer delayed signal )(nr̂k  is first computed using an interpolation filter of length 33. 
After the selection of T, )(nr̂k  is recomputed with a longer interpolation filter of length 129. The 
new signal replaces the previous one only if the longer filter increases the value of R'(T). 

4.2.2 Short-term postfilter 
The short-term postfilter is given by: 
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where Â(z) is the received quantized LP inverse filter (LP analysis is not done at the decoder) and 
the factors γn and γd control the amount of short-term postfiltering, and are set to γn = 0.55, and 
γd = 0.7. The gain term gf is calculated on the truncated impulse response hf (n) of the filter 
Â(z /γn)/Â(z /γd) and is given by: 
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4.2.3 Tilt compensation 
The filter Ht(z) compensates for the tilt in the short-term postfilter Hf (z) and is given by: 
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where 1kt ′γ  is a tilt factor 1k′  being the first reflection coefficient calculated from hf (n) with: 
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The gain term gt = 1 – | 1kt ′γ | compensates for the decreasing effect of gf in Hf(z). Furthermore, it has 
been shown that the product filter Hf (z)Ht(z) has generally no gain. Two values for γt are used 
depending on the sign of 1k′ . If 1k′  is negative, γt = 0.9, and if 1k′  is positive, γt = 0.2. 

4.2.4 Adaptive gain control 
Adaptive gain control is used to compensate for gain differences between the reconstructed speech 
signal ŝ(n) and the postfiltered signal sf(n). The gain scaling factor G for the present subframe is 
computed by: 
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The gain-scaled postfiltered signal sf'(n) is given by: 

  ( ) ( ) ( ) 0,...,39==′ n     nsfgnfs n  (89) 

where g(n) is updated on a sample-by-sample basis and given by: 

  ( ) ( ) 0,...,39n     150850 1 =+= − G.g.g nn  (90) 

The initial value of g(–1) = 1.0 is used. Then for each new subframe, g(–1) is set equal to g(39) of the 
previous subframe. 

4.2.5 High-pass filtering and upscaling 
A high-pass filter with a cut-off frequency of 100 Hz is applied to the reconstructed postfiltered 
speech sf'(n). The filter is given by: 
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The filtered signal is multiplied by a factor 2 to restore the input signal level. 

4.3 Encoder and decoder initialization 

All static encoder and decoder variables should be initialized to zero, except the variables listed in 
Table 9. 

Table 9 – Description of parameters with non-zero initialization 

Variable Reference Initial value 

β 3.8 0.8 
g(–1) 4.2.4 1.0 

lî 3.2.4 iπ/11 
qi 3.2.4 arccos(iπ/11) 

Û(k) 3.9.1 –14 
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4.4 Concealment of frame erasures 
An error concealment procedure has been incorporated in the decoder to reduce the degradation in 
the reconstructed speech because of frame erasures in the bits tream. This error concealment 
process is functional when the frame of coder parameters (corresponding to a 10 ms frame) has 
been identified as being erased. The mechanism for detecting frame erasures is not defined in this 
Recommendation, and will depend on the application. 

The concealment strategy has to reconstruct the current frame, based on previously received 
information. The method replaces the missing excitation signal with one of similar characteristics, 
while gradually decaying its energy. This is done by using a voicing classifier based on the 
long-term prediction gain, which is computed as part of the long-term postfilter analysis. The 
long-term postfilter (see clause 4.2.1) finds the long-term predictor for which the prediction gain is 
more than 3 dB. This is done by setting a threshold of 0.5 on the squared normalized correlation of 
equation (82). For the error concealment process, a 10 ms frame is declared periodic if at least one 
5 ms subframe has a long-term prediction gain of more than 3 dB. Otherwise the frame is declared 
non-periodic. An erased frame inherits its class from the preceding (reconstructed) speech frame. 
Note that the voicing classification is continuously updated based on this reconstructed speech 
signal. 

The specific steps taken for an erased frame are: 
1) repetition of the synthesis filter parameters; 
2) attenuation of adaptive and fixed-codebook gains; 
3) attenuation of the memory of the gain predictor; and 
4) generation of the replacement excitation. 

4.4.1 Repetition of synthesis filter parameters 

The synthesis filter in an erased frame uses the LP parameters of the last good frame. The memory 
of the MA LSF predictor contains the values of the received codewords l̂i. Since the codeword is 
not available for the current frame m, it is computed from the repeated LSF parameters ω̂ 

i and the 
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where the MA predictor coefficients p̂i, k  are those of the last received good frame. 

4.4.2 Attenuation of adaptive and fixed-codebook gains 

The fixed-codebook gain is based on an attenuated version of the previous fixed-codebook gain and 
is given by: 

  ( ) ( )198.0 −= m
c

m
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where m is the subframe index. The adaptive-codebook gain is based on an attenuated version of the 
previous adaptive-codebook gain and is given by: 
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4.4.3 Attenuation of the memory of the gain predictor 
As was described in clause 3.9 the gain predictor uses the energy of previously selected fixed-
codebook vectors c(n). To avoid transitional effects at the decoder, once good frames are received, 
the memory of the gain predictor is updated with an attenuated version of the codebook energy. The 
value of Û(m) for the current subframe m is set to the averaged quantized gain prediction-error, 
attenuated by 4 dB: 
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4.4.4 Generation of the replacement excitation 
The excitation used depends on the periodicity classification. If the last reconstructed frame was 
classified as periodic, the current frame is considered to be periodic as well. In that case, only the 
adaptive codebook is used, and the fixed-codebook contribution is set to zero. The pitch delay is 
based on the integer part of the pitch delay in the previous frame, and is repeated for each 
successive frame. To avoid excessive periodicity the delay is increased by one for each next 
subframe but bounded by 143. The adaptive-codebook gain is based on an attenuated value 
according to equation (94). 

If the last reconstructed frame was classified as non-periodic, the current frame is considered to be 
non-periodic as well, and the adaptive-codebook contribution is set to zero. The fixed-codebook 
contribution is generated by randomly selecting a codebook index and sign index. The random 
generator is based on the function: 

  1384931821 +=  seedseed  (96) 

with the initial seed value of 21845. The fixed-codebook index is derived from the 13 least 
significant bits of the next random number. The fixed-codebook sign is derived from the 4 least 
significant bits of the next random number. The fixed-codebook gain is attenuated according to 
equation (93). 

5 Bit-exact description of the CS-ACELP coder 
ANSI C code simulating the CS-ACELP coder in 16 bit fixed-point is available from ITU-T. As of 
the approval of this version of this Recommendation, the current version of this ANSI C code is 
Version 3.3 of December 1995. More recent versions may become available through corrigenda or 
amendments to this Recommendation. Please ensure to use the latest available version from the 
ITU-T website. The following clauses summarize the use of this simulation code, and how the 
software is organized. 

5.1 Use of the simulation software 
The C code consists of two main programs, coder.c, which simulates the encoder, and decoder.c, 
which simulates the decoder. The encoder is run as follows: 

 coder inputfile bitstreamfile 
The input file and output file are sampled data files containing 16-bit PCM signals. The decoder is 
run as follows: 

 decoder bitstreamfile outputfile 
The mapping table of the encoded bit stream is contained in the simulation software. 
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5.2 Organization of the simulation software 
In the fixed-point ANSI C simulation, only two types of fixed-point data are used as is shown in 
Table 10. To facilitate the implementation of the simulation code, loop indices, Boolean values and 
flags use the type Flag, which would be either 16 bits or 32 bits depending on the target platform. 

Table 10 – Data types used in ANSI C simulation 

Type Maximal value Minimal value Description 

Word16 0x7fff 0x8000 Signed 2's complement 16-bit word 
Word32 0x7fffffffL 0x80000000L Signed 2's complement 32-bit word 

All the computations are done using a predefined set of basic operators. The description of these 
operators is given in Table 11. The tables used by the simulation coder are summarized in Table 12. 
These main programs use a library of routines that are summarized in Tables 13, 14 and 15. 
 

Table 11 – Basic operations used in ANSI C simulation 

Operation Description 

Word16 sature(Word32 L_var1) Limit to 16 bits 
Word16 add(Word16 var1, Word16 var2) Short addition 
Word16 sub(Word16 var1, Word16 var2) Short subtraction 
Word16 abs_s(Word16 var1) Short absolute value 
Word16 sh1(Word16 var1, Word16 var2) Short shift left 
Word16 shr(Word16 var1, Word16 var2) Short shift right 
Word16 mult(Word16 var1, Word16 var2) Short multiplication 
Word32 L_mult(Word16 var1, Word16 var2) Long multiplication 
Word16 negate(Word16 var1) Short negate 
Word16 extract_h(Word32 L_var1) Extract high 
Word16 extract_1(Word32 L_var1) Extract low 
Word16 round(Word32 L_var1) Round 
Word32 L_mac(Word32 L_var3, Word16 var1, Word16 var2) Multiply and accumulate 
Word32 L_msu(Word32 L_var3, Word16 var1, Word16 var2) Multiply and subtract 
Word32 L_add(Word32 L_var1, Word32 L_var2) Long addition 
Word32 L_sub(Word32 L_var1, Word32 L_var2) Long subtraction 
Word32 L_negate(Word32 L_var1) Long negate 
Word16 mult_r(Word16 var1, Word16 var2) Multiplication with rounding 
Word32 L_sh1(Word32 L_var1, Word16 var2) Long shift left 
Word32 L_shr(Word32 L_var1, Word16 var2) Long shift right 
Word16 shr_r(Word16 var1, Word16 var2) Shift right with rounding 
Word16 mac_r(Word32 L_var3, Word16 var1, Word16 var2) Mac with rounding 
Word16 msu_r(Word32 L_var3, Word16 var1, Word16 var2) Msu with rounding 
Word32 L_deposit_h(Word16 var1) 16-bit var1 into MSB part 
Word32 L_deposit_l(Word16 var1) 16-bit var1 into LSB part 
Word32 L_shr_r(Word32 L_var1, Word16 var2) Long shift right with round 
Word32 L_abs(Word32 L_var1) Long absolute value 
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Table 11 – Basic operations used in ANSI C simulation 

Operation Description 

Word16 norm_s(Word16 var1) Short norm 
Word16 div_s(Word16 var1, Word16 var2) Short division 
Word16 norm_1(Word32 L_var1) Long norm 

Table 12 – Summary of tables found in tab_ld8.c 

Table name  Size Description 

tab_hup_s 28 Upsampling filter for postfilter 
tab_hup_1 112 Upsampling filter for postfilter 
inter_3 13 FIR filter for interpolating the correlation 
inter_3 31 FIR filter for interpolating past excitation 
lspcb1 128 × 10 LSP quantizer (first stage) 
lspcb2 32 × 10 LSP quantizer (second stage) 
fg 2 × 4 × 10 MA predictors in LSP VQ 
fg_sum 2 × 10 Used in LSP VQ 
fg_sum_inv 2 × 10 Used in LSP VQ 
gbk1 8 × 2 Codebook GA in gain VQ 
gbk2 16 × 2 Codebook GB in gain VQ 
map1 8 Used in gain VQ 
imap1 8 Used in gain VQ 
map2 16 Used in gain VQ 
ima21 16 Used in gain VQ 
window 240 LP analysis window 
lag_h 10 Lag window for bandwidth expansion (high part) 
lag_1 10 Lag window for bandwidth expansion (low part) 
grid 61 Grid points in LP to LSP conversion 
tabsqr 49 Lookup table in inverse square root computation 
tablog 33 Lookup table in base 2 logarithm computation 
table 65 Lookup table in LSF to LSP conversion and vice versa 
slope 64 Line slopes in LSP to LSF conversion 
tabpow 33 Lookup table in 2x computation 
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Table 13 – Summary of encoder-specific routines 

Filename Description 

acelp_co.c Search fixed codebook 
cod_1d8k.c Encoder routine 
lpc.c LP analysis 
pitch.c Pitch search 
pre_proc.c Preprocessing (HP filtering and scaling) 
pwf.c Computation of perceptual weighting coefficients 
qua_gain.c Gain quantizer 
qua_1sp.c LSP quantizer 

Table 14 – Summary of decoder-specific routines 

Filename Description 

de_acelp.c Decode algebraic codebook 
dec_gain.c Decode gains 
dec_lag3.c Decode adaptive-codebook index 
dec_ld8k.c Decoder routine 
lspdec.c LSP decoding routing 
post_pro.c Post-processing (HP filtering and scaling) 
pst.c Postfilter routines 

Table 15 – Summary of general routines 

Filename Description 

basicop2.c Basic operators 
oper_32b.c Extended basic operators 
bits.c Bit manipulation routines 
dspfunc.c Mathematical functions 
filter.c Filter functions 
gainpred.c Gain predictor 
lpcfunc.c Miscellaneous routines related to LP filter 
lspgetq.c LSP quantizer 
p_parity.c Compute pitch parity 
pred_lt3.c Generation of adaptive codebook 
util.c Utility functions 
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Annex A 
 

Reduced complexity 8 kbit/s CS-ACELP speech codec 
(This annex forms an integral part of this Recommendation) 

Summary 
This annex describes the reduced complexity version of the G.729 speech codec. This version is 
bit-stream interoperable with the full version. 

This annex includes an electronic attachment containing reference C code and test vectors for 
fixed-point implementation of reduced complexity CS-ACELP at 8 kbit/s. 

A.1 Introduction 
This annex provides the high level description of a reduced complexity version of the G.729 speech 
codec. This version is bit stream-interoperable with the full version, i.e., a reduced complexity 
encoder may be used with a full implementation of the decoder, and vice versa. However, 
implementers of the codec defined in this annex should be aware that the performance of this codec 
may not be as good as the full implementation of the main body of G.729 in certain circumstances. 

The reduced complexity version of the codec has been developed for multimedia simultaneous 
voice and data applications, although the use of the codec is not limited to these applications. 

The description of the codec is similar to that of the full implementation of the main body of G.729. 
This annex describes the changes to the full implementation which have been made in order to 
reduce the codec algorithmic complexity. For those parts of the algorithm which have not been 
changed, this annex refers to the appropriate clause of the main Recommendation. 

A.2 General description of the codec 
The general description of the coding/decoding algorithm is similar to that of the full version. The 
bit allocation is the same as that given in Table 1. It also has the same delay (speech frame of 10 ms 
and look-ahead of 5 ms). The major algorithmic changes to the full version of G.729 are 
summarized below: 
– The perceptual weighting filter uses the quantized LP filter parameters and it is given by 

W(z) = Â(z)/Â(z/γ) with a fixed value of γ = 0.75. 
– Open-loop pitch analysis is simplified by using decimation while computing the 

correlations of the weighted speech. 
– Computation of the impulse response of the weighted synthesis filter W(z)/Â(z), 

computation of the target signal, and updating the filter states are simplified since W(z)/Â(z) 
is reduced to 1/Â(z/γ). 

– The search of the adaptive codebook is simplified. The search maximizes the correlation 
between the past excitation and the backward filtered target signal (the energy of filtered 
past excitation is not considered). 

– The search of the fixed algebraic codebook is simplified. Instead of the nested-loop focused 
search, an iterative depth-first tree search approach is used. 

– At the decoder, the harmonic postfilter is simplified by using only integer delays. 

These changes are described in more detail in clauses A.3 and A.4. 
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Table A.1 – Summary of the principle routines which have been changed 

G.729 routine name G.729A routine name 

Coder_ld8k ( ) Coder_ld8a ( ) 
Decod_ld8k ( ) Decod_ld8a ( ) 
Pitch_o1 ( ) Pitch_o1_fast ( ) 
Pitch_fr3 ( ) Pitch_fr3_fast ( ) 
ACELP_Codebook ( ) ACELP_Code_A ( ) 
Post ( ) Post-Filter ( ) 

A.2.1 Speech codec definition 
The description of the reduced complexity speech codec is made in terms of bit-exact, fixed-point 
mathematical operations. The ANSI-C code indicated in clause A.5, which constitutes an integral 
part of this annex, reflects this bit-exact, fixed-point descriptive approach. The mathematical 
description of the encoder (see clause A.3) and the decoder (see clause A.4), can be implemented in 
several other fashions, possibly leading to a codec implementation not complying with this annex. 
Therefore, the algorithm description of the ANSI-C code of clause A.5 shall take precedence over 
the mathematical descriptions of clauses A.3 and A.4 whenever discrepancies are found. A 
non-exhaustive set of test signals, which can be used with the ANSI-C code, are available 
from ITU. 

As of the approval of this Recommendation, the current version of this ANSI C code is Version 1.1 
of September 1996. More recent versions may become available through corrigenda or amendments 
to this Recommendation. Please ensure to use the latest available version from the ITU-T website. 

A.2.2 Notational conventions 
Notational conventions are the same as those given in clause 2.5. 

A.3 Functional description of the encoder 
In this clause the different functions of the encoder represented in the blocks of Figure 4 are 
described. The main body of this Recommendation is referred to in most of this clause except the 
parts where algorithmic simplifications have been carried out. 

A.3.1 Preprocessing 

Same as clause 3.1. 

A.3.2 Linear prediction analysis and quantization 

A.3.2.1 Windowing and autocorrelation computation 
Same as clause 3.2.1. 

A.3.2.2 Levinson-Durbin algorithm 
Same as clause 3.2.2. 

A.3.2.3 LP to LSP conversion 
Same as clause 3.2.3 with some simplifications. The number of points at which the polynomials 
F1(z) and F2(z) are evaluated is reduced to 50 (instead of 60), and the sign change interval is divided 
two times instead of four times for tracking the root of the polynomial. 

A.3.2.4 Quantization of the LSP coefficients 
Same as clause 3.2.4. 
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A.3.2.5 Interpolation of the LSP coefficients 
Same as clause 3.2.5, but only the quantized LP coefficients are interpolated since the weighting 
filter uses the quantized parameters for simplicity. 

A.3.2.6 LSP to LP conversion 
Same as clause 3.2.6. 

A.3.3 Perceptual weighting 
Unlike clause 3.3, the perceptual weighting filter is based on the quantized LP filter coefficients âi, 
and is given by: 

  ( ) ( )
( )γ

=
/zÂ
zÂzW  (A.1) 

with γ = 0.75. This simplifies the combination of synthesis and weighting filters to 
W(z)/Â(z) = 1/Â(z/γ), which reduces the number of filtering operations while computing the impulse 
response and the target signal and while updating the filter states. Note that the value of γ is fixed 
to 0.75 and the procedure for the adaptation of the factors of the perceptual weighting filter 
described in clause 3.3 is not used in this reduced complexity version. 

The weighted speech signal is not used for computing the target signal since an alternative approach 
is used (see clause A.3.6). However, the weighted speech signal (low-pass filtered) is used to 
compute the open-loop pitch estimate. The low-pass filtered weighted speech is found by filtering 
the speech signal s(n) through the filter Â(z)/[Â(z/γ)(l – 0.7z–1)]. First, the coefficients of the filter 
A'(z) = Â(z/γ)(l – 0.7z–1) are computed, then the low-pass filtered weighted speech in a subframe is 
computed by: 
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where r(n) is the LP residual signal given by: 
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The signal sw(n) is used to find an estimation of the pitch delay in the speech frame. 

A.3.4 Open-loop pitch analysis 
To reduce the complexity of the search for the best adaptive-codebook delay, the search range is 
limited around a candidate delay Top, obtained from an open-loop pitch analysis. This open-loop 
pitch analysis is done once per frame (10 ms). The open-loop pitch estimation uses the low-pass 
filtered weighted speech signal sw(n) of equation (A.2), and is done as follows: in the first step, 
3 maxima of the correlation: 
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are found in the following three ranges: 
 i = 1: 20,...,39 
 i = 2: 40,...,79 
 i = 3: 80,...,143 
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The retained maxima R(ti), i = 1,...,3, are normalized through: 
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The winner among the three normalized correlations is selected by favouring the delays with the 
values in the lower range. This is done by augmenting the normalized correlations corresponding to 
the lower delay range if their delays are submultiples of the delays in the higher delay range. 

Note that in computing the correlations in equation (A.4) only the even samples are used. Further, 
in the third delay region [80, 143] only the correlations at the even delays are computed in the first 
pass, then the delays at ±l of the selected even delay are tested. 

A.3.5 Computation of the impulse response 
The impulse response h(n) of the weighted synthesis filter W(z)/Â(z) is needed for the search of 
adaptive and fixed codebooks. The impulse response h(n) is computed for each subframe by 
filtering a signal consisting of a unit sample extended by zeros through the filter 1/Â(z/γ). 

A.3.6 Computation of the target signal 

The target signal x(n) for the adaptive-codebook search is computed by filtering of the LP residual 
signal r(n) through the weighted synthesis filter 1/Â (z/γ). After determining the excitation for the 
subframe, the initial states of this filter are updated as explained in clause A.3.10. 

The residual signal r(n), which is needed for finding the target vector, is also used in the 
adaptive-codebook search to extend the past excitation buffer. The computation of the LP residual 
is given in equation (A.3). 

A.3.7 Adaptive-codebook search 
The adaptive-codebook structure is the same as in clause 3.7. In the first subframe, a fractional pitch 

delay T1 is used with a resolution of 1/3 in the range ⎥⎦
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119  and integers only in the range 

[85, 143]. For the second subframe, a delay T2 with a resolution of 1/3 is always used in the range 
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25 11 Tint,Tint , where int(T1) is the integer part of the fractional pitch delay T1 of the 

first subframe. This range is adapted for the cases where T1 straddles the boundaries of the delay 
range. 

The search boundaries tmin and tmax for both subframes are determined in the same way as in 
clause 3.7. 

Closed-loop pitch search is usually performed by maximizing the term: 
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where x(n) is the target signal and yk(n) is the past filtered excitation at delay k [past excitation 
convolved with h(n)]. In order to simplify the search in this reduced complexity version, only the 
numerator in equation (A.6) is maximized. That is, the term: 

  ( ) ( ) ( ) ( ) ( )nunxnynxkR k
n n

bkN ∑ ∑
= =

==
39

0

39

0
 (A.7) 

is maximized, where xb(n) is the backward filtered target signal (correlation between x(n) and the 
impulse response h(n)) and uk(n) is the past excitation at delay k (u(n – k)). Note that the search 
range is limited around a preselected value, which is the open-loop pitch Top for the first subframe, 
and T1 for the second subframe. 

Note that in the search stage, the samples u(n), n = 0,...,39 are not known, and they are needed for 
pitch delays less than 40. To simplify the search, the LP residual is copied to u(n). 

For the determination of T2 and T1 if the optimum integer delay is less than 85, the fractions around 
the optimum integer delay have to be tested. The fractional pitch search is done by interpolating the 

past excitation at fractions 
3
1– , 0 and 

3
1 , and selecting the fraction which maximizes the 

correlation in equation (A.7). The interpolation of the past excitation is performed using the same 
FIR filter, b30, which is defined in clause 3.7. The interpolated past excitation at a given integer 
delay k and fraction t is given by: 
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A.3.7.1 Generation of the adaptive-codebook vector 
Same as clause 3.7.1. 

A.3.7.2 Codeword computation for adaptive-codebook delays 
Same as clause 3.7.2. 

A.3.7.3 Computation of the adaptive-codebook gain 
Same as clause 3.7.3. 

A.3.8 Fixed codebook – Structure and search 
The structure of the 17-bit algebraic codebook is the same as clause 3.8. 

A.3.8.1 Fixed-codebook search procedure 
The signs of the pulses are found using the same approach explained in clause 3.8.1. However, the 
pulse positions are found using a more efficient approach. Instead of the nested-loop search 
approach, an iterative depth-first, tree search approach is used. In this new approach a smaller 
number of pulse position combinations is tested and it has fixed complexity. 

A.3.8.2 Codeword computation of the fixed codebook 
Same as clause 3.8.2. 

A.3.9 Quantization of the gains 
Same as clause 3.9. 
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A.3.10 Memory update 
An update of the states of the weighted synthesis filter is needed for computing the target signal in 
the next subframe. After the two gains are quantized, the excitation signal, u(n), in the present 
subframe is obtained using: 

  ( ) ( ) ( ) 0,...,39,ˆˆ =+= n    ncgnvgnu cp  (A.9) 

where $gp and $gc , are the quantized adaptive and fixed-codebook gains, respectively, v(n) is the 
adaptive-codebook vector (interpolated past excitation), and c(n) is the fixed-codebook vector 
including harmonic enhancement. The states of the weighted synthesis filter can be updated by 
filtering the signal r(n) – u(n) (difference between residual and excitation) through the filter 1/Â(z/γ) 
for the 40 sample subframe and saving the states of the filter. A simpler approach, which requires 
no filter operations, is as follows. The output of the filter due to the input r(n) – u(n) is the weighted 
error signal ew(n) which can be found by: 

  ( ) ( ) ( ) ( )nzgnygnxne cpw ˆˆ −−=  (A.10) 

where x(n) is the target signal, y(n) is the filtered adaptive-codebook vector and z(n) is the filtered 
fixed-codebook vector. Since the signals x(n), y(n), and z(n) are available, the states of the weighted 
synthesis filter are updated by computing ew(n) as in equation (A.10) for n = 30,...,39. 

A.4 Functional description of the decoder 
The principle of the decoder is shown in Figure 3. The transmitted parameters are the same as listed 
in Table 8. The decoded parameters are used to compute the reconstructed speech signal. This 
reconstructed signal is enhanced by a post-processing operation consisting of a postfilter, a high-
pass filter and an upscaling (see clause A.4.2). The detailed signal flow diagram of the decoder is 
the same one shown in Figure 6. 
The only change in the decoder is in the postfilter which is described in clause A.4.2. 

A.4.1 Parameter decoding procedure 

Same as clause 4.1. 

A.4.2 Post-processing 
The post-processing is the same as in clause 4.2 except for some simplification in the adaptive 
postfilter. 

The adaptive postfilter is the cascade of three filters: a long-term postfilter Hp(z), a short-term 
postfilter Hf(z) and a tilt compensation filter Ht(z), followed by an adaptive gain control procedure. 
The long-term postfilter is simplified by using only integer delays. In the short-term postfilter and 
the tilt compensation filter, the gain terms gf and gt are not used. 

The postfiltering process is similar to that described in the main body of this Recommendation with 
the exception that the compensation filtering is performed before synthesis filtering 
through 1/Â(z/γd). 

A.4.2.1 Long-term postfilter 
The long-term postfilter is given by: 
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The only difference from clause 4.2.1 is that the long-term delay T is always an integer delay and it 
is computed by searching the range [Tcl – 3, Tcl + 3], where Tcl is the integer part of the (transmitted) 
pitch delay in the current subframe bounded by Tcl ≤ 140. 
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A.4.2.2 Short-term postfilter 
The short-term postfilter is given by: 
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where Â(z) is the received quantized LP inverse filter (LP analysis is not done at the decoder), and 
the factors γn and γd control the amount of short-term postfiltering, and are set to γn = 0.55 and 
γd = 0.7. 

The only difference from clause 4.2.2 is that the gain factor gf is eliminated. 

A.4.2.3 Tilt compensation 

The filter Ht(z) compensates for the tilt in the short-term postfilter Hf(z) and is given by: 

  ( ) 1
11 −′γ+= zkzH tt  (A.13) 

where 1kt ′γ  is a tilt factor, 1k ′  being the first reflection coefficient calculated by: 
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where hf(n) is the truncated impulse response of the filter ( ) ( )dn zAzA γγ /ˆ//ˆ . The value of γt = 0.8 
is used if 01 <′k  and γt is set to zero if 01 ≥′k . The gain factor gt which is used in clause 4.2.3 is 
eliminated. 

A.4.2.4 Adaptive gain control 
Same as clause 4.2.4. The only difference is that the gain scaling factor G for the present subframe 
is computed by: 
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and g(n) is given by: 

  0,...,39   1090 1)()( =+= − n,G.g.g nn  

A.4.2.5 High-pass filtering and upscaling 
Same as clause 4.2.5. 

A.4.3 Encoder and decoder initialization 
Same as clause 4.3. 

A.4.4 Concealment of frame erasures 
Same as clause 4.4 with the difference that no voicing detection is used. The excitation is always 
the addition of both adaptive and fixed codebook contributions. 
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A.5 Bit-exact description of the reduced complexity CS-ACELP codec 
The reduced complexity CS-ACELP codec is simulated in 16-bit fixed-point ANSI-C code using 
the same set of fixed-point basic operators defined in Table 11. 

A.5.1 Use of the simulation software 
Same as clause 5.1. 

A.5.2 Organization of the simulation software 
Same as clause 5.2. 

The tables used by the simulation codec are found in the file tab_ld8a.c which replaces the file 
tab_ld8k.c of the full Recommendation. The difference between these two files is that the tables 
tab_hup_s, tab_hup_1, and inter_3 found in the file tab_ld8k.c are removed from the file 
tab_ld8a.c. Also, the table grid has been modified. 

The main programs use a library of routines that are provided in the fixed-point ANSI-C simulation. 
Most of the routines are the same as those of the full Recommendation. The principal routines that 
have been changed are summarized in Table A.1. Refer to the read.me file provided with the 
software for more details. 
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Annex B 
 

A silence compression scheme for G.729 optimized for terminals conforming 
to ITU-T Recommendation V.70 

(This annex forms an integral part of this Recommendation) 

Summary 
This annex  defines a voice activity detector and comfort noise generator for use with G.729 or 
Annex A optimized for V.70 DSVD applications. 

This annex includes an electronic attachment containing reference C code and test vectors for 
fixed-point implementation of CS-ACELP at 8 kbit/s with DTX functionality. 

B.1 Introduction 
This annex provides a high level description of the voice activity detection (VAD), discontinuous 
transmission (DTX) and comfort noise generator (CNG) algorithms. These algorithms are used to 
reduce the transmission rate during silence periods of speech. They are designed and optimized to 
work in conjunction with [ITU-T V.70]. [ITU-T V.70] mandates the use of Annex A speech coding 
methods. However, when it is desirable, the full version of G.729 can also be used to improve the 
quality of the speech. The algorithms are adapted to operate with both the full version of G.729 and 
Annex A. This description is for the full version of G.729, the only difference for Annex A is 
indicated in clause B.3.1.1. A block diagram of a silence compression speech communication 
system is depicted in Figure B.1. 

 

Figure B.1 – Speech communication system with VAD 

B.2 General description of the VAD/DTX/CNG algorithms 

The VAD algorithm makes a voice activity decision every 10 ms in accordance with the frame size 
of the G.729 speech coder. A set of difference parameters is extracted and used for an initial 
decision. The parameters are the full-band energy, the low-band energy, the zero-crossing rate and a 
spectral measure. The long-term averages of the parameters during non-active voice segments 
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follow the changing nature of the background noise. A set of differential parameters is obtained at 
each frame. These are a difference measure between each parameter and its respective long-term 
average. The initial voice activity decision is obtained using a piecewise linear decision boundary 
between each pair of differential parameters. A final voice activity decision is obtained by 
smoothing the initial decision. 

The output of the VAD module is either 1 or 0, indicating the presence or absence of voice activity 
respectively. If the VAD output is 1, the G.729 speech codec is invoked to code/decode the active 
voice frames. However, if the VAD output is 0, the DTX/CNG algorithms described herein are used 
to code/decode the non-active voice frames. Traditional speech coders and decoders use comfort 
noise to simulate the background noise in the non-active voice frames. If the background noise is 
not stationary, a mere comfort noise insertion does not provide the naturalness of the original 
background noise. Therefore it is desirable to intermittently send some information about the 
background noise in order to obtain a better quality when non-active voice frames are detected. The 
coding efficiency of the non-active voice frames can be achieved by coding the energy of the frame 
and its spectrum with as few as fifteen bits. These bits are not automatically transmitted whenever 
there is a non-active voice detection. Rather, the bits are transmitted only when an appreciable 
change has been detected with respect to the last transmitted non-active voice frame. 

At the decoder side, the received bit stream is decoded. If the VAD output is 1, the G.729 decoder is 
invoked to synthesize the reconstructed active voice frames. If the VAD output is 0, the CNG 
module is called to reproduce the non-active voice frames. 

B.3 Detailed description of the VAD algorithm 
A flowchart of the VAD operation is given in Figure B.2. The VAD operates on frames of digitized 
speech. The frames are processed in time order and are consecutively numbered from the beginning 
of each conversation/recording. 

At the first stage, four parametric features are extracted from the input signal. Extraction of the 
parameters is shared with the active voice encoder module and the non-active voice encoder for 
computational efficiency. The parameters are the full- and low-band frame energies, the set of line 
spectral frequencies (LSF) and the frame zero crossing rate. 

If the frame number is less than Ni, an initialization stage of the long-term averages takes place, and 
the voice activity decision is forced to 1 if the frame energy from the LPC analysis is above 15 dB 
(see equation (B.1)). Otherwise, the voice activity decision is forced to 0. If the frame number is 
equal to Ni, an initialization stage for the characteristic energies of the background noise occurs. 

At the next stage, a set of difference parameters are calculated. This set is generated as a difference 
measure between the current frame parameters and running averages of the background noise 
characteristics. Four difference measures are calculated: 
– a spectral distortion; 
– an energy difference; 
– a low-band energy difference; and 
– a zero-crossing difference. 

The initial voice activity decision is made at the next stage, using multi-boundary decision regions 
in the space of the four difference measures. The active voice decision is given as the union of the 
decision regions and the non-active voice decision is its complementary logical decision. Energy 
considerations, together with neighbouring past frames decisions, are used for decision smoothing. 

The running averages have to be updated only in the presence of background noise, and not in the 
presence of speech. An adaptive threshold is tested, and the update takes place only if the threshold 
criterion is met. 
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Figure B.2 – VAD flowchart 
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B.3.1 Parameter extraction 
For each frame, a set of parameters is extracted from the speech signal. The parameters extraction 
module can be shared between the VAD, the active voice encoder and the non-active voice encoder. 
The basic set of parameters is the set of autocorrelation coefficients, which is derived similarly to 
the full version of G.729 (see clause 3.2.1). The set of autocorrelation coefficients will be denoted 
by: 

  { } 12where)( 0 == q,iR q
i  

B.3.1.1 Line spectral frequencies (LSF) 

A set of linear prediction coefficients is derived from the autocorrelation and a set of { }p
iiLSF 1= , 

where p = 10, is derived from the set of linear prediction coefficients, as described in clauses 3.2.3 
or A.3.2.3. 

B.3.1.2 Full-band energy 

The full-band energy Ef is the logarithm of the normalized first autocorrelation coefficient R( )0 : 
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where N = 240 is the LPC analysis window size in speech samples. 

B.3.1.3 Low-band energy 
The low-band energy El measured on 0 to Fl Hz band, is computed as follows: 
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where h is the impulse response of an FIR filter with cut-off frequency at Fl Hz, R  is the Toeplitz 
autocorrelation matrix with the autocorrelation coefficients on each diagonal. 

B.3.1.4 Zero-crossing rate 
Normalized zero-crossing rate ZC  for each frame is calculated by: 
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where { ( )}x i  is the preprocessed input signal (see clause 3.1) and M = 80 . 

B.3.2 Initialization of the running averages of the background noise characteristics 

For the first Ni  frames, the spectral parameters of the background noise, denoted by { }p
iiLSF 1=  are 

initialized as an average of the { }p
iiLSF 1=  of the frames. The average of the background noise 

zero-crossings, denoted by ZC  is initialized as an average of the zero-crossing rate ZC  of the 
frames. 
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The running averages of the background noise energy, denoted by fE , and the background noise 

low-band energy, denoted by lE , are initialized as follows. First, the initialization procedure uses 

En , defined as the average of the frame energy fE  over the first Ni  frames. These three averaging 

( En , ZC , and{ }p
iiLSF 1= ) include only the frames that have an energy E  greater than 15 dB. 

Second, the initialization procedure continues as follows: 
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See Table B.1 for constant values. 

B.3.3 Generating the long-term minimum energy 
A long-term minimum energy parameter, Emin, is calculated as the minimum of Ef over N0 previous 
frames. Since N0 is relatively large, Emin is calculated using stored values of the minimum of Ef over 
short segments of the past. 

B.3.4 Generating the difference parameters 
Four difference measures are generated from the current frame parameters and the running averages 
of the background noise.  

B.3.4.1 The spectral distortion ∆S 

The spectral distortion measure is generated as the sum of squares of the difference between the 

current frame { }p
iiLSF 1=  vector and the running averages of the background noise { }p

iiLSF 1= : 
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B.3.4.2 The full-band energy difference ∆Ef  

The full-band energy difference measure is generated as the difference between the current frame 
energy, Ef, and the running average of the background noise energy, fE : 

  fff EEE −=∆  (B.5) 

B.3.4.3 The low-band energy difference ∆El 
The low-band energy difference measure is generated as the difference between the current frame 
low-band energy, El, and the running average of the background noise low-band energy, lE : 

  lll EEE −=∆  (B.6) 
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B.3.4.4 The zero-crossing difference ∆ZC 
The zero-crossing difference measure is generated as the difference between the current frame 
zero-crossing rate, ZC, and the running average of the background noise zero-crossing rate, ZC : 

  ZCZCZC −=∆  (B.7) 

B.3.5 Multi-boundary initial voice activity decision 
The initial voice activity decision is denoted by IVD, and is set to 0 ("FALSE") if the vector of 
difference parameters lies within the non-active voice region. Otherwise, the initial voice activity 
decision is set to 1 ("TRUE"). The fourteen boundary decisions in the four-dimensional space are 
defined as follows: 
1) if ∆S > a1 ⋅ ∆ZC + b1     then IVD = 1 
2) if ∆S > a2 ⋅ ∆ZC + b2     then IVD = 1 
3) if ∆Ef  < a3 ⋅ ∆ZC + b3     then IVD = 1 
4) if ∆Ef  < a4 ⋅ ∆ZC + b4     then IVD = 1 
5) if ∆Ef  < b5     then IVD = 1 
6) if ∆Ef  < a6 ⋅ ∆S + b6     then IVD = 1 
7) if ∆S > b7     then IVD = 1 
8) if ∆Ef  < a8 ⋅ ∆ZC + b8     then IVD = 1 
9) if ∆Ef  < a9 ⋅ ∆ZC + b9     then IVD = 1 
10) if ∆Ef  < b10     then IVD = 1 
11) if ∆El < a11 ⋅ ∆S + b11     then IVD = 1 
12) if ∆El > a12 ⋅ ∆Ef + b12     then IVD = 1 
13) if ∆El < a13 ⋅ ∆Ef + b13     then IVD = 1 
14) if ∆El < a14 ⋅ ∆Ef + b14     then IVD = 1 

If none of the fourteen conditions is "TRUE" IVD = 0. See Table B.1 for constant values. 
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Table B.1 – Table of constants 

Name Constant Name Constant 

Ni 32 N1 4 
N0 128 N2 10 
K0 0 T1 671088640 
K1 –53687091 T2 738197504 
K2 –67108864 T3 26843546 
K3 –93952410 T4 40265318 
K4 –134217728 T5 40265318 
K5 –161061274 T6 40265318 
a1 23488 b1 28521 
a2 –30504 b2 19446 
a3 –32768 b3 –32768 
a4 26214 b4 –19661 
a5 0 b5 –30802 
a6 28160 b6 –19661 
a7 0 b7 30199 
a8 16384 b8 –22938 
a9 –19065 b9 –31576 
a10 0 b10 –17367 
a11 22400 b11 –27034 
a12 30427 b12 29959 
a13 –24576 b13 –29491 
a14 23406 b14 –28087 

B.3.6 Voice activity decision smoothing 
The initial voice activity decision is smoothed (hangover) to reflect the long-term stationarity nature 
of the speech signal. The smoothing is done in four stages.  

A flag indicating that hangover has occurred is defined as v flag_ . It is set to zero each time before 
the voice activity decision smoothing is performed. Denote the smoothed voice activity decision of 
the frame, the previous frame and frame before the previous frame by 0

VDS , SVD
−1  and SVD

−2 , 

respectively. SVD
−1  is initialized to 1, and SVD

−2  is initialized to 1. For start S IVD VD
0 = . The first 

smoothing stage is: 

( ) ( ) ( ) 1and1then3and1 and0if 01 ==+>== − flag_vSTEESI VDfVDVD  
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For the second smoothing stage define a Boolean parameter FVD
−1  and a smoothing counter Ce. 1−

VDF  
is initialized to 1 and Ce is initialized to 0. Denote the energy of the previous frame by E–1. The 
second smoothing stage is: 
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For the third smoothing stage define a noise continuity counter Cs, which is initialized to 0. If 
SVD

0 0=  then Cs is incremented. The third smoothing stage is: 
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In the fourth stage, a voice activity decision is made if the following condition is satisfied: 

( ) ( ) ( )( ) 0then0andandif 0
06 ==>+< VDff Sflag_vNcount_frmTEE  

B.3.7 Updating the running averages of the background noise characteristics 
The running averages of the background noise characteristics are updated at the last stage of the 
VAD module. At this stage, the following condition is tested and the updating takes place if the 
following condition is met: 

( ) updatethenif 6TEE ff +<  

The running averages of the background noise characteristics are updated using a first order 
auto-regressive (AR) scheme. Different AR coefficients are used for different parameters, and 
different sets of coefficients are used at the beginning of the recording/conversation or when a large 
change of the noise characteristics is detected.  
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Let 
fEβ  be the AR coefficient for the update of E f , βEl

 be the AR coefficient for the update 

of E l , βZC be the AR coefficient for the update of ZC  and βLSF be the AR coefficient for the update 

of { }LSF i i
p
=1 . The total number of frames where the update condition was satisfied is counted by 

Cn. Different set of the coefficients βE f
, βEl

, βZC and βLSF is used according to the value of Cn. 

The AR update is done according to: 
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fE and Cn are further updated according to: 
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B.4 Detailed description of the DTX/CNG algorithms 
The DTX/CNG algorithms provide continuous and smooth information about the non-active voice 
periods, while keeping a low average bit rate. 

B.4.1 Description of the DTX algorithm 
For each non-active voice frame, the DTX module decides if a set of non-active voice update 
parameters ought to be sent to the speech decoder by measuring the changes in the non-active voice 
signal. Absolute and adaptive thresholds on the frame energy and the spectral distortion measure are 
used to obtain the update decision. If an update is needed, the non-active voice encoder sends the 
information needed to generate a signal which is perceptually similar to the original non-active 
voice signal. This information is comprised of an energy level and a description of the spectral 
envelope. If no update is needed, the non-active voice signal is generated by the non-active decoder 
according to the last received energy and spectral shape information of a non-active voice frame.  

However, a minimum interval of Nmin = 2 frames is required between two consecutive SID frames 
i.e., if a spectral or level change has occurred n < Nmin frames after a SID frame, the SID emission is 
delayed. 
Situated at the transmitting end, the DTX module receives from the VAD module the 
active/non-active voice information, and from the encoder modules the autocorrelation function of 
the speech signal computed for each 80 sample frame and the past excitation sample. For each 
frame, the DTX decision Ftypt (Frame type for frame numbered t) is output as one of the three 
values, 0, 1 or 2 corresponding to untransmitted frame, active speech frame or SID frame, 
respectively, according to the following procedure: 

B.4.1.1 Store the frame autocorrelation function 
For every frame t (active or inactive), the autocorrelation coefficients of the current frame t, 
including the bandwidth expansion and noise correction (see the G.729 description) are retained in 
memory. The set of frame t autocorrelations will be denoted ′r jt ( ) , for j = 0,...,10. 
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B.4.1.2 Computation of the current frame type 
If the current frame t is an active speech frame (Vadt = 1), then the current frame type Ftypt = 1 and 
the normal speech encoder processing continues. 

In the other case, a current LPC filter A zt ( )  calculated over Ncur = 2 previous frames including the 
current one t is first evaluated: 

The Ncur autocorrelation functions are summed: 
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and At(z) is calculated by the Levinson-Durbin procedure (see the G.729 description) using Rt(j) as 
input. The coefficients of this filter will be noted at(j), j = 0,...,10. The Levinson-Durbin procedure 
also provides the residual energy Et, that will be rescaled and used as an estimate of the frame 
excitation energy. 

Then the current frame type Ftypt is determined in the following way: 

– If the current frame is the first inactive frame of the inactive zone, the frame is selected as 
the SID frame. The variable E which reflects the energy sum is taken equal to Et, and the 
number of frames involved in the summation, kE, is initialized to 1: 
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– For the other frames, the algorithm compares the preceding SID parameters to the current 
ones: if the current filter is significantly different to the preceding SID filter, or if the 
current excitation energy significantly differs from the preceding SID energy, the flag 
flag_chang is set to 1, else it does not change. 

– The counter count_fr indicating how many frames are elapsed since the previous SID frame 
is incremented. If its value is greater than Nmin, the emission of a SID frame is allowed. 
Then if flag_chang is equal to 1, a SID frame is sent. In all other cases, the current frame is 
untransmitted: 
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Otherwise: 0=tFtyp  

In case of a SID frame, the counter count_fr and the flag flag_chang are re-initialized to 0. 

LPC filters and energies are compared according to the following methods: 

B.4.1.3 Comparison of the LPC filters 
The previous SID-LPC filter will be noted Asid(z) and its coefficients asid(j), j = 0,...,10 (the 
evaluation of this filter is described in clause B.4.2.2). The current and previous SID-LPC filters are 
considered as significantly different if the Itakura distance between the two filters exceeds a given 
threshold, which is expressed by: 
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where Ra(j), j = 0,...,10 is a function derived from the autocorrelation of the coefficients of the SID 
filter, given by: 
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A value of 1.20226 is used for thr1. 

B.4.1.4 Comparison of the energies 
The sum the frame energies is calculated, kE being first incremented up to the maximum value 
Ng = 2: 
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Then E  is quantized, using the 5-bits logarithmic quantizer described in clause B.4.2.1. The 
decoded log-energy Eq is compared to the previous decoded SID log-energy Eq

sid . If the difference 
exceeds the threshold thr2=2 dB, the two energies will be considered as significantly different. 

B.4.2 SID evaluation and quantization 
The silence insertion descriptor (SID) is comprised of the quantized frame excitation energy 
(i.e., the current quantized excitation energy Q E( ) for the SID frames) and the quantized LSPs 
corresponding to the estimated SID-LPC filter. Four indices make up the SID frame. One index 
describes the energy and three indices describe the spectrum portion of the SID frame. 

B.4.2.1 Energy quantization 

The quantization of the energy E is performed as follows. First, a scaling factor αw = 0.125 is 
introduced that takes into account the effect of windowing and bandwidth expansions present in the 
subframes autocorrelation functions )(' jr . 

The value used at the input of the gain quantizer is: 
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The energy term E' is quantized with a 5-bit non-uniform quantizer in the logarithmic domain in the 
range of –12 dB to 66 dB. A uniform step size of 2 dB is used between 16 dB and 66 dB. A step 
size of 4 dB is used in the range of –4 dB to 16 dB. Below –4 dB, a single step size of 8 dB is used 
giving a quantization level of –12 dB. The quantization is straightforward and does not need the 
storage of a quantizer table. 

Notice that since the energy comparison (see clause B.4.1.4) is performed with decoded energies, 
the quantization of the energy is done for all non-active voice frames. 

B.4.2.2 SID-LPC filter estimation and quantization  
The SID-LPC filter estimation takes into account the local stationarity or non-stationarity of the 
noise at the SID frame neighbourhood. 
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First, a past average filter )(zAp  built from Np frames preceding the current SID one is calculated, 
using the following autocorrelation sum as input of the Levinson-Durbin procedure: 
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The number of frames involved in the summation has been fixed to Np = 6. 

The frame number t' varies in [ ]curNt,t −−1 , depending on the rest of the Euclidian division of the 
current frame number t by Ncur. 

The SID-LPC filter is then obtained with: 
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The threshold value thr3 is fixed to 1.12202 and the distance between the current LPC filter and the 
past average one is calculated in the same manner as in clause B.4.1.3 (see equation (B.12)). 

Then the SID-LPC filter is transformed to the LSF domain for quantization. The LSFs are quantized 
by a two-stage switched predictive vector quantization (VQ) with 5 and 4 bits each. The 
quantization of the LSF vector entails the determination of the best three indices. The first index is 
that of the predictor. The last two indices are each taken from a different vector table, as it is done 
in a two stage vector quantization. The overall quantization procedure follows the one given in 
clause 3.2.4 with the following modifications: 
1) The second 4th-order MA predictor used in the full version of G.729 is modified as a linear 

combination of the first and second MA predictors as follows: 
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 where 

  4,...,1,10,...,1 == k i  

2) The first stage VQ quantization is similar to the one used in the full version of G.729. 
However, only a portion of the first table of the quantizer is used. The relevant subset 
entries of the table are stored in an auxiliary lookup table with 32 address indices. 
Moreover, a delayed decision quantization is used by keeping few candidates as inputs to 
the second stage. 

3) The candidates from the first stage, in conjunction with those of the second stage, are used 
by the second stage VQ. The second stage VQ quantization is different from the one used in 
the full version of G.729. A full VQ is used as compared to the split VQ of the full version 
of G.729. Only a portion of the second stage tables is used as well. The relevant subset 
entries are stored in another lookup table with two 16-address entries. The combination of 
the predictor, a vector from the first stage and a vector from the second stage, leading to the 
minimum distortion in the weighted mean squared error sense, is chosen as the LSF 
descriptor. 

B.4.3 SID bit stream description 
The bit stream related to the transmission of a SID frame is described in Table B.2. The bit stream 
related to the transmission of an active frame is defined in Table 8. The bit stream ordering is 
reflected by the order in the table. For each parameter the most significant bit (MSB) is transmitted 
first. 
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Table B.2 – SID frame bit stream definition 

Parameter description Bits 

Switched predictor index of LSF quantizer 1 
First stage vector of LSF quantizer 5 
Second stage vector of LSF quantizer 4 
Gain (energy) 5 

B.4.4 Non-active encoder/decoder (CNG) description 
At the decoder part, the comfort noise is generated by introducing a pseudo-white excitation signal 
of controlled level into interpolated LPC filters in the same manner than the decoder produces 
active speech by filtering the decoded excitation. The excitation level and LPC filters are obtained 
from the previous SID information. The subframes interpolated LPC filters are obtained by using 
the SID-LSPs as current LSPs and performing the interpolation with the previous frame LSPs as 
done for active frames in the full version of G.729.  

The pseudo-white excitation ex(n) is a mixture between an excitation of the same type as the active 
speech one ex1(n) and a white Gaussian excitation ex2(n). 
The G.729 excitation ex1(n) is composed of an adaptive excitation with a small gain and an ACELP 
fixed excitation, which improves the transition between active and non-active voice frames. The 
addition of a Gaussian excitation ex2(n) allows the generation of a whiter signal. 

Since the encoder and decoder need to keep synchronized during non-active voice periods, the 
excitation generation is performed on both sides, for SID frames and for untransmitted frames. 

First, let us define the target excitation gain ~Gt  as the square root of the average energy that must 
be obtained for the current frame t synthetic excitation. ~Gt  is calculated using the following 
smoothing procedure, where sidG~  is the SID gain derived for the decoded SID gain: 
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The 80 samples of the frame are divided into 2 subframes of 40 samples. For each subframe, the 
CNG excitation samples are synthesized using the following algorithm. 

A pitch lag is randomly chosen in the interval [40,103]. 
Next, the fixed codebook vector of the subframe is built by random selection of the grid and the 
signs and positions of the pulses according to the G.729 ACELP code structure. 

An adaptive excitation signal of unity gain is then calculated, noted ea(n), n = 0,...,39. The selected 
subframe fixed excitation will be noted ef(n), n = 0,...,39. 

The adaptive and fixed gains Ga and Gf are then computed in order to yield a subframe average 
energy equal to ~Gt

2 , which is expressed by: 

  ( ) ( )( )∑
=

=×+×
39

0

22 ~
40
1

n
tfa GneGfneGa  (B.20) 

Notice that Gf can take a negative value. 
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Due to the ACELP excitation structure ( )∑
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If we fix randomly the adaptive gain Ga, then equation (B.19) becomes a second order equation on 
the fixed gain Gf: 
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A constraint may be imposed on Ga to be sure that this equation has a solution. Furthermore it is 
desirable to forbid the use of large adaptive gains. For this, the adaptive gain Ga will be randomly 
chosen in: 
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The root of equation (B.20) that has the lowest absolute value is selected for Gf. 

Finally the G.729 excitation is built, using: 
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The method of deriving the composite excitation signal ex(n) is as follows: 

Let E1 be the energy of ex1(n), E2 be the energy of ex2(n). ex2(n) has a unit variance and a zero 
mean. Let E3 be the cross-energy between ex1(n) and ex2(n). 
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where the summation is over the subframe size. 

Let α and β be the scale proportion of ex1(n) and ex2(n) used in the mixture excitation respectively. 
α is set to be 0.6. β is found as the solution to the following quadratic equation: 
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If no solution is found for β, it is set to 0 and α to 1. 

The CNG excitation ex(n) becomes: 

  ( ) ( ) ( )nexnexnex 211 β+α=  (B.26) 

B.4.5 Frame erasure concealment with regards to the CNG 
When a frame erasure is detected by the decoder, the erased frame type depends on the preceding 
frame type: 
– if the preceding frame was active, then the current frame is considered as active; 
– else if the preceding frame was either a SID frame or an untransmitted frame, the current 

erased frame is considered as untransmitted: 
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If an untransmitted frame has been erased, no error is then introduced. 
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If a SID frame is erased, there are two possibilities: 
– If it is not the first SID frame of the current inactive period, then the previous SID 

parameters are kept. 
– If it is the first SID frame of an inactive period, a special protection has been taken. 

Notice first that this case is detected by the fact that Ftypt–1 = 1 and Ftypt = 0. 

This combination of events does not imply that the preceding frame was a good active frame: 
several frames up to the preceding one may have been erased. What is certain is that the last good 
frame was an active frame, that the present frame was not erased, and that the SID frame supposed 
to provide information for the current untransmitted frame is lost. 

To recover the SID information, the CNG module uses parameters provided by the G.729 decoder 
main part: 
– the LSPs of the last valid active frame are used for the SID-LPC filter; 
– an energy term is calculated on the excitation signal by the decoder during the processing of 

all valid active voice frames. To recover the missing SID gain ~Gsid , the energy term of the 
last valid active frame is quantized with the SID gain quantizer and decoded. 

Finally to avoid desynchronization of the random generator used to compute the excitation, the 
pseudo-random sequence reset is performed at each active frame, both at the encoder and decoder 
parts. 

B.5 Bit-exact description of the silence compression scheme 
The silence compression scheme is simulated in 16-bit fixed-point ANSI-C code using the same set 
of fixed-point basic operators defined in Table 11. The ANSI-C code constitutes an integral part of 
this Recommendation reflecting the bit-exact fixed-point description of the silence compression 
scheme. In the event of any discrepancy between the printed text of this Recommendation and the C 
source, the C source code is presumed to be correct. As of the approval of this text, the current 
version of this ANSI C code is Version 1.5 of October 2006. More recent versions may become 
available through corrigenda or amendments to G.729. Please ensure to use the latest available 
version from the ITU-T website. 

B.5.1 Organization of the simulation software 
Same as clause 5.2. 

The Annex B ANSI-C software modules are listed in Table B.3. Refer to the read.me file provided 
with the software for more details. 
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Table B.3 – List of G.729 Annex B software files  

G.729 Annex B ANSI-C module names Description 

Vad.c VAD 
Dtx.c DTX decision 
Qsidgain.c SID gain quantization 
QsidLSF.c SID-LSF quantization 
Calcexc.c CNG excitation calculation 
Dec_sid.c Decode SID information 
Miscel.c Miscellaneous calculations 
G.729 Annex B ANSI-C.h file names Description 
Vad.h Prototype and constants 
Dtx.h Prototype and constants 
Sid.h Prototype and constants 
Miscel.h Prototype and constants 
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Annex C 
 

Reference floating-point implementation for G.729 
CS-ACELP 8 kbit/s speech coding 

(This annex forms an integral part of this Recommendation) 

Summary 
This annex describes an alternative implementation of G.729 Annex A based on floating-point 
arithmetic. Subjective quality tests have been performed by NTT (Japan) and CNET (France) to 
assess the quality of these floating-point versions under various conditions (input level, error, 
background noise, tandeming). Different interoperability configurations with the fixed-point version 
of the algorithm have also been tested. These tests proved full interoperability of this floating-point 
implementation to both the full version of G.729 and Annex A. 

This annex includes an electronic attachment containing reference C codes for floating-point 
implementation of CS-ACELP at 8 kbit/s full version and reduced complexity. The design of a set 
of test vectors remains for further study.  

C.1 Scope 
This annex provides a description of an alternative implementation in floating-point arithmetic for 
the full version of G.729 and Annex A. The development of an interoperable floating-point 
specification for voice activity detection (VAD), discontinuous transmission (DTX) and comfort 
noise generation (CNG) with similar properties as the fixed-point specification in Annex B is for 
further study. 

C.2 Normative references 
This annex refers to materials defined in the main body and Annex A of this Recommendation. 

C.3 Overview 
The full version of G.729 provides bit-exact fixed-point specification of an algorithm for the coding 
of speech signals at 8 kbit/s. Annex A is a reduced complexity version interoperable with the full 
version of G.729. Exact details of these specifications are given in bit-exact fixed-point C code 
available from ITU-T. This annex describes and defines an alternative implementation of the full 
version of G.729 and Annex A based on floating-point arithmetic. 

C.4 Algorithmic description 
This floating-point version of the full version of G.729 (respectively Annex A) has the same 
algorithm steps as the fixed-point version. Similarly, the bit stream is identical to that of G.729 
(respectively to that of Annex A). For algorithmic details, see the full version of G.729 (respectively 
Annex A). 

C.5 ANSI C code 
ANSI C code simulating the floating-point version of the full version of G.729 (respectively 
Annex A) defined in this annex has been developed and is available as an attachment to this annex. 
The ANSI C code represents the normative specification of this annex. The algorithmic description 
given by the C code shall take precedence over the texts contained in the main body of the full 
version of G.729, Annex A or this annex. As of the approval of this text, the current version of this 
ANSI C code is Version 1.01 of 15 September 1998. More recent versions may become available 
through corrigenda or amendments to G.729. Please ensure to use the latest available version from 
the ITU-T website. The structure of these floating-point source codes is related to the corresponding 
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fixed-point source code. As for Annex B to [ITU-T G.723.1], the typedef.h file contains a statement 
enabling the definition of all floating-point variables and constants as type either double or single. A 
file called version.h is available to select whether the C code will operate according to the full 
version of G.729 or Annex A. Tables C.1 to C.3 give the list of the software files names with a brief 
description. Note that the fixed-point files basic_op.c, oper_32b.c, dspfunc.c and basic_op.h, 
oper_32b.h are not needed for floating-point arithmetic. A float to short conversion routine has been 
added to the file util.c. 

Table C.1 – List of software files specific to G.729 floating-point source code 

File name Description 

coder.c Main program for G.729 encoder 
cod_ld8k.c G.729 encoder routine 
acelp_co.c G.729 fixed codebook search 
lpc.c G.729 LP analysis 
lpcfunc.c Miscellaneous routines related to LP filter 
pitch.c G.729 pitch search 
pwf.c G.729 computation of perceptual weighting coefficients 
decoder.c Main program for G.729 decoder 
dec_ld8k.c G.729 decoder routine 
postfil.c G.729 postfilter 
tab_ld8k.c G.729 constants tables 
ld8k.h G.729 prototypes and constant declarations 
tab_ld8k.h G.729 declaration of constants tables 
version.h Used to select the G.729 (main body) mode 

Table C.2 – List of software files specific to G.729 Annex A  
floating-point source code 

File name Description 

coder.c Main program for G.729 Annex A encoder 
acelp_ca.c G.729 Annex A fixed codebook search 
cod_ld8a.c G.729 Annex A encoder routine 
lpc.c G.729 Annex A LP analysis 
lpcfunc.c Miscellaneous routines related to LP filter 
pitch_a.c G.729 Annex A pitch search 
decoder.c Main program for G.729 Annex A decoder 
dec_ld8a.c G.729 Annex A decoder routine 
postfila.c G.729 Annex A postfilter 
tab_ld8a.c G.729 Annex A tables of constants 
ld8a.h G.729 Annex A prototypes and constant declarations 
tab_ld8a.h Declaration of G.729 Annex A constants tables 
version.h Used to select the G.729 Annex A mode 
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Table C.3 – List of software files common to G.729 
and G.729 Annex A floating-point source code 

File name Description 

bits.c Bit manipulation routines 
qua_lsp.c LSP quantizer 
qua_gain.c Gain quantizer 
cor_func.c Miscellaneous routines related to excitation computation 
de_acelp.c Algebraic codebook decoder 
dec_gain.c Gain decoder 
dec_lag3.c Adaptive-codebook index decoder 
filter.c Filter functions 
gainpred.c Gain predictor 
lspdec.c LSP decoding routine 
lspgetq.c LSP quantizer 
p_parity.c Pitch parity computation 
post_pro.c Post-processing (HP filtering) 
pre_proc.c Preprocessing (HP filtering) 
pred_lt3.c Generation of adaptive codebook 
taming.c Pitch taming functions 
util.c Utility function 
typedef.h Data type definition (machine-dependent) 
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Annex C+ 
 

Reference floating-point implementation for integrating G.729 CS-ACELP 
speech coding main body with Annexes B, D and E 

(This annex forms an integral part of this Recommendation) 

Summary 
This annex, dubbed "Annex C+", extends the functionalities of Annex C. 

Previous Annex C contains G.729 main body and G.729 Annex A and B floating-point 
implementation. Annex C+ defines the integration of G.729 main body with Annexes B, D and E in 
floating-point arithmetic. 

This annex includes an electronic attachment containing reference C code for floating point 
implementation of CS-ACELP at 6.4 kbit/s, 8 kbit/s and 11.8 kbit/s with DTX functionality. 

C+.1 Scope 
This annex provides a description of integrating the G.729 main body with Annexes B, D and E in 
floating-point arithmetic. It presents a standard way of performing this integration and expansion of 
the functionality, hereby guiding the industry and ensuring a standard speech quality and 
compatibility worldwide. The integration has been performed with focus on several constraints in 
order to satisfy the need of the industry: 
1) Bit-exactness with the main body in floating point (Annex C). 
2) Minimum additional program code, memory and complexity usage. 
3) Stringent quality requirements to new functionality, in line with quality and application 

areas of the according standard annexes. 

C+.2 Normative references 

This annex refers to materials defined in the G.729 main body and Annexes B, C, D and E. 

C+.3 Overview 
G.729 main body and Annexes B, D and E provide a bit-exact fixed-point specification of a 
CS-ACELP coder at 8 kbit/s, with DTX functionality, lower and higher bit extension capability at 
6.4 and 11.8 kbit/s. Exact details of these specifications are given in bit-exact fixed-point C code in 
an electronic attachment to this annex. Annex C describes and defines an alternative 
implementation of G.729 main body. Annex C+ describes and defines the integration of the G.729 
main body with Annexes B, D and E in floating-point arithmetic. It can be considered as an 
extension of Annex C. 

C+.4 New functionality 
This clause presents a brief overview of the modifications/additions to the algorithms in order to 
facilitate the integration of the main body and Annexes B, D and E. Also certain additions have 
been found necessary in order to accommodate the application area of the different modules. 

C+.4.1 Annex B DTX operation with Annex D 
Integrating Annexes B and D functionality in order to provide DTX operation with Annex D is 
straightforward. The voice activity detection (VAD), silence insertion description (SID) coding and 
comfort noise generation (CNG) of Annex B are reused without any modifications. Care is taken to 
update the parameters for the phase dispersion for the postfilter in Annex D during discontinued 
transmission (see clause C+.5.2). 
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C+.4.2 Annex B DTX operation with Annex E 
Integrating Annexes B and E functionality in order to provide DTX operation with Annex E is 
slightly more involved. Since the DTX operation of Annex B is based on the 10th order LPC 
analysis, the VAD function of Annex B is performed after the 10th order forward adaptive LPC 
analysis and before the backward adaptive LPC analysis of Annex E. In case the VAD function 
detects "non-speech", the LPC mode of Annex E is forced to forward adaptive LPC and the 
backward adaptive LPC analysis is skipped. Furthermore, it has been found necessary to add a 
correctional module after the VAD in order to detect music and accommodate the somewhat 
expanded application area of Annex E – one of the purposes of Annex E is to provide transmission 
capability of music with a certain quality. Accordingly, during the development of Annex E there 
were strict requirements to the performance with music signals. On the other hand, for the main 
body and Annexes B and D there were no strict requirements to the performance with music 
signals. In order to guarantee the quality with music signals of Annex E during Annex B DTX 
operation, the music detection function forces the VAD to "speech" during music segments, hereby 
ensuring that the music segments are coded with the 11.8 kbit/s of Annex E. The SID coding and 
the CNG of Annex B are reused without any modifications. Furthermore, care is taken to 
appropriately update the parameters of the LPC mode selection algorithm of Annex E during 
discontinued transmission (see clause C+.5.3). 

C+.5 Algorithm description 
This clause presents the algorithm description of the necessary additions to the algorithms of the 
individual annexes in order to facilitate the integration. All remaining modules originate from the 
main body, Annex B, D or E. 

C+.5.1 Music detection 
The music detection is a new function. It is performed immediately following the VAD and forces 
the VAD to "speech" during music segments. It is active only during Annex E operation, though its 
parameters are updated continuously independently of bit-rate mode during DTX operation of the 
integrated G.729. 

The music detection algorithm corrects the decision from the voice activity detection (VAD) in the 
presence of music signals. It is used in conjunction with Annex E during Annex B DTX operation, 
i.e., in discontinuous transmission mode. The music detection is based on the following parameters: 
– Vad_deci: VAD decision of the current frame. 
– PVad_dec: VAD decision of the previous frame. 
– Lpc_mod: Flag indicator of either forward or backward adaptive LPC of the previous 

frame. 
– Rc: Reflection coefficients from LPC analysis. 
– Lag_buf: Buffer of corrected open-loop pitch lags of last 5 frames. 
– Pgain_buf: Buffer of closed-loop pitch gain of last 5 subframes. 
– Energy: First autocorrelation coefficient )0(R from LPC analysis. 

– LLenergy: Normalized log energy from VAD module. 
– Frm_count: Counter of the number of processed signal frames. 
– Rate: Selection of speech coder. 

The algorithm has two main parts: 
1) Computation of relevant parameters. 
2) Classification based on parameters. 
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C+.5.1.1 Computation of relevant parameters 
This clause describes the computation of the parameters used by the decision module. 

Partial normalized residual energy 
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Spectral difference and running mean of partial normalized residual energy of background 
noise 

A spectral difference measure between the current frame reflection coefficients Rc and the running 
mean reflection coefficients of the background noise mRc is given by: 
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The running means mrc  and mLenergy are updated as follows using the VAD decision Vad_deci 
that was generated by the VAD module. 
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Open-loop pitch lag correction for pitch lag buffer update 
The open-loop pitch lag Top is corrected to prevent pitch doubling or tripling as follows: 
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It should be noted that the open loop pitch lag Top is not modified and is the same as derived by the 
open-loop analysis. 

Pitch lag standard deviation 

4
Varstd =  
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where: 
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Running mean of pitch gain 
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The pitch gain buffer Pgain_buf is updated after the subframe processing with a pitch gain value 
of 0.5 if Vad_deci = NOISE and otherwise with the quantized pitch gain. 

Pitch lag smoothness and voicing strength indicator 
A pitch lag smoothness and voicing strength indicator Pflag is generated using the following logical 
steps: 

First, two intermediary logical flags Pflag1 and Pflag2 are obtained as: 
 if (std < 1.3 and mPgain > 0.45) set Pflag1 = 1 else 0 
 if (mPgain > Thres) set Pflag2 = 1 else 0, 

 where Thres = 0.73 if Rate = G729D, otherwise Thres = 0.63 

Finally, Pflag is determined from the following: 

  
0 else 1set 
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========
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PflagPflagPflagVOICEdec_PVad
 

Stationarity counters 
A set of counters are defined and updated as follows: 
a) count_consc_rflag tracks the number of consecutive frames where the 2nd reflection 

coefficient and the running mean of the pitch gain satisfy the following condition: 
 if (Rc(2) < 0.45 and Rc(2) > and mPgain < 0.5) 
  count_consc_rflag = count_consc_rflag + 1 
 else 
  count_consc_rflag = 0 
b) count_music tracks the number of frames where the previous frame uses backward adaptive 

LPC and the current frame is "speech" (according to the VAD) within a window of 
64 frames. 

 if (Lpc_mod == 1 and Vad_deci == VOICE)  
  count_music = count_music + 1 

 Every 64 frames, a running mean of count_music, mcount_music is updated and reset to 
zero as described below: 

 if ((Frm_count mod 64) == 0){ 
  if (Frm_count == 64) 
   mcount_music = count_music 
 else 
  mcount_music = 0.9 mcount_music + 0.1count_music 
 } 
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c) count_consc tracks the number of consecutive frames where the count_music remains zero: 
 if (count_music == 0) 
  count_consc = count_consc + 1 
 else 
  count_consc = 0 
  if (count_consc > 500 or count_consc_rflag > 150) set mcount_music = 0 
 count_music in b) is reset to zero every 64 frames after the update of the relevant counters. 
 The logic in c) is used to reset the running mean of musiccount _ . 

d) count_pflag tracks the number of frames where Pflag = 1, within a window of 64 frames. 
 if (Pflag == 1) 
  count_pflag = count_pflag + 1 

 Every 64 frames, a running mean of pflagcount _ , pflagmcount _ , is updated and reset to 
zero as described below: 

 if ((Frm_count mod 64) == 0){ 
   if (Frm_count == 64) 
  mcount_pflag = count_ pflag 
 else{ 
   if (count_ pflag > 25) 
  mcount_pflag = 0.98mcount_pflag + 0.02count_pflag 
   else (count_pflag > 20) 
  mcount_pflag = 0.95mcount_pflag + 0.05count_pflag 
   else 
  mcount_pflag = 0.9mcount_pflag + 0.1count_pflag 
   } 
 } 
e) count_consc_pflag tracks the number of consecutive frames satisfying the following 

condition. 
 if (count_pflag == 0) 
   count_consc_pflag = count_consc_pflag + 1 
 else 
   count_consc_pflag = 0 
 if (count_consc_pflag > )100 or count_consc_rflag > 150) set mcount_pflag = 0 

 count_pflag is reset to zero every 64 frames. The logic in e) is used to reset the running 
mean of count_ pflag. 

C+.5.1.2 Classification 
Based on the estimation of the above parameters, the VAD decision Vad_deci from the VAD 
module is reverted if the following conditions are satisfied: 
 if (Rate = G729E){ 
   if (SD > 0.15 and (Lenergy – mLenergy) > 4 and LLenergy > 50) 
  Vad_deci = VOICE 
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   else if ((SD > 0.38 or (Lenergy – mLenergy) > 4) and LLenergy > 50) 
  Vad_deci = VOICE 
   else if ((mcount_pflag >= 10 or mcount_music >= 5 or Frm_count < 64) 
   and LLenergy > 7) 
  Vad_deci = VOICE 
 } 

Note that the music detection function is called all the time regardless of the operational coding 
mode in order to keep the memories current. However, the VAD decision Vad_deci is altered only 
if the integrated G.729 is operating at 11.8 kbit/s (Annex E). It should be noted that the music 
detection only has the capability to change the decision from "non-speech" to "speech" and not vice 
versa. 

C+.5.2 Update of state variables specific to Annex D during discontinued transmission 
The only state variables specific to Annex D are the state variables of the phase dispersion module 
(see clause D.6.2) at the decoder. In case of inactive frames, the same update procedure as in case of 
nominal bit rate (8 kbit/s) is followed using as adaptive and ACELP gain estimations the gain 
values computed by the comfort noise excitation generator (see clause B.4.4). Note also that the 
update for the higher rate is identical to the update for the nominal bit rate. 

C+.5.3 Update of state variables specific to Annex E during discontinued transmission 

C+.5.3.1 Update of encoder state variables specific to Annex E 
At the encoder in case of inactive frames, the update of state variables is identical to the update 
performed in Annex E in case of switch to the nominal bit rate 8 kbit/s. The update procedure is the 
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high 
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly 
switch from LP forward filter to backward LP filter is reset to its maximum value (see 
clause E.3.2.7.1). Note that this update is also performed in case of switch to the lower bit rate 
6.4 kbit/s. 

C+.5.3.2 Update of decoder state variables specific to Annex E during discontinued 
transmission 

At the decoder in case of inactive frames, the update of state variables is almost identical to the 
update performed in Annex E in case of switch to the forward mode only rates (8 kbit/s and 
6.4 kbit/s) except that the pitch delay stationary indicator is reset to 0 instead of being computed by 
the pitch tracking procedure (see clause E.4.4.5). 

C+.6 Description of C source code 

The Annex C+ integrating the G.729 main body, Annexes B, D and E functionality is simulated in 
floating point arithmetic ANSI-C code. As for Annex C, the typedef.h file contains a statement 
enabling the definition of all floating-point variables and constants as type either double or single. 
The ANSI-C code represents the normative specification of this annex. The algorithmic description 
given by the C code shall take precedence over the texts contained in the main body of G.729 and in 
Annexes B, C, D, E and C+. As of the approval of this text, the current version of this ANSI C code 
is Version 2.2 of October 2006. More recent versions may become available through corrigenda or 
amendments to G.729. Please ensure to use the latest available version from the ITU-T website. 
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C+.6.1 Use of the simulation software 
The C code consists of two main programs codercp.c and decodercp.c, which simulate encoder 
and decoder, respectively. The encoder is executed as follows: 

 codercp inputfile bitstreamfile dtx_option rate_option 
The decoder is executed as follows: 

 decodercp bitstreamfile outputfile 
The input file and output file are 8 kHz sampled data files containing 16-bit PCM signals. The bit 
stream file is a binary file containing the bit stream; the mapping table of the encoded bit stream is 
contained in the simulation software. The two options for the encoder are: dtx_option and 
rate_option where: 
dtx_option  = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled). 
rate_option  = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main G.729 (8 kbit/s); = 2 to 

select the higher rate (11.8 kbit/s) or a file_rate_name: a binary file of 16-bit word 
containing either 0, 1, 2 to select the rate on a frame-by-frame basis; the default 
is 1 (8 kbit/s). 

C+.6.2 Organization of the simulation software 
Table C+.1 gives the list of the software files names with a brief description, and it is also indicated 
what annex the file has been derived from (identical or similar to Annex C file or fixed to 
floating-point transcription of the files). Note that the fixed-point files basic_op.c, oper_32b.c, 
dspfunc.c, basic_op.h and oper_32b.h are not needed for floating-point arithmetic. As for Annex C, 
a float to short conversion routine has been added to the file utilities file utilcp.c. 
 

Table C+.1 – List of software files of integrated G.729 in floating point 

File name Description Link 

Gainpred.c Gain predictor C 
Lpfunccp.c Miscellaneous routines related to LP filter C + E 
Cor_func.c Miscellaneous routines related to excitation computation C 
Pre_proc.c Preprocessing (HP filtering and scaling) C 
P_parity.c Compute pitch parity C 
Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) C 
Pred_lt3.c Generation of adaptive codebook C 
Post_pro.c Post-processing (HP filtering and scaling) C 
Tab_ld8k.c ROM tables C 
Ld8k.h Function prototypes C 
Tab_ld8k.h Extern ROM table declarations C 
Typedef.h Data type definition (machine-dependent) C 
Taming.c Pitch instability control C 
Qsidgain.c SID gain quantization B 
QsidLSF.c SID-LSF quantization B 
Tab_dtx.c ROM tables B 
Sid.h Prototype and constants B 
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Table C+.1 – List of software files of integrated G.729 in floating point 

File name Description Link 

Octet.h Octet transmission mode definition B 
Tab_dtx.h Extern ROM table declarations B 
Pwfe.c Computation of perceptual weighting coefficients (11.8 kbit/s) E 
Vad.c VAD B 
Dtx.c DTX decision B 
Vad.h Prototype and constants B 
Dtx.h Prototype and constants B 
Calcexc.c CNG excitation calculation B 
Dec_sid.c Decode SID information B 
Utilcp.c Utility functions C + B 
Phdisp.c Phase dispersion D 
Bwfw.c Backward/forward switch selection E 
Bwfwfunc.c Miscellaneous routines related to backward/forward switch E 
Filtere.c Filter functions C + E 
Lpccp.c LP analysis C + E 
Lspcdece.c LSP decoding routines C + E 
Lspgetqe.c LSP quantizer C + E 
Qua_lspe.c LSP quantizer C + E 
Track_pi.c Pitch tracking E 
Codercp.c Main encoder routine C + B + D + E 
Codld8cp.c Encoder routine C + B + D + E 
Decodcp.c Main decoder routine C + B + D + E 
Decld8cp.c Decoder routine C + B + D + E 
Acelp_cp.c search ACELP fixed codebook (6.4, 8, 11.8 kbit/s) C + D + E 
Dacelpcp.c Decode algebraic codebook (6.4, 8, 11.8 kbit/s) C + D + E 
Pitchcp.c Pitch search C + D + E 
Declagcp.c Decode adaptive-codebook index C + D + E 
Q_gaincp.c Gain quantizer C + D + E 
Degaincp.c Decode gain C + D + E 
Pstpcp.c Postfilter routines C + B + E 
Bitscp.c Bit manipulation routines C + B + D + E 
Tabld8cp.c ROM tables for G.729 at 6.4 and 11.8 kbit/s D + E 
Tabld8cp.h Extern ROM declarations for G.729 at 6.4 and 11.8 kbit/s D + E 
Ld8cp.h Constant and function prototypes for G.729 at 6.4 and 11.8 kbit/s D + E 
Mus_dtct.c Music detection module New 
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Annex D 
 

+CS-ACELP speech coding algorithm at 6.4 kbit/s 
(This annex forms an integral part of this Recommendation) 

Summary 
This annex provides the lower bit-rate extension designed to achieve a quality somewhat below the 
one achieved with the full version of G.729.  

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s and 8 kbit/s. 

D.1 Scope 
This annex is intended as a lower rate extension to the algorithm in the full version of G.729, and is 
specified to increase the flexibility of the algorithm in the full version of G.729, e.g., to handle 
overload conditions. It does not provide the same level of quality as does the algorithm in the main 
body of G.729, but for most conditions it provides significantly higher quality than G.726 at 
24 kbit/s. However, for high levels of car noise, the algorithm could have some performance 
limitations. The differences to the main body of G.729 are described in this annex. 

D.2 Normative references 
This annex refers to materials defined in the main body of this Recommendation. 

D.3 General coder description for the 6.4 kbit/s extension 
The coder is similar to that of the full version of G.729 with a few exceptions. The modifications 
are summarized below, and described in more detail in the following clauses. 
1) The ACELP codebook of G.729 has been changed to a new ACELP codebook which is 

using two signed pulses in two overlapping tracks of different lengths (16 and 32 positions 
respectively). 

2) The conjugate-structured codebook for the gains has been replaced with a new 
conjugate-structured codebook with 6 bits. 

3) A modified coding of the pitch delay in the second subframe is used. The number of bits 
are reduced to 4 bits. The delta lag range is maintained, using an uneven distribution of 
fractional delta values. 

4) An additional postfiltering technique is applied to reduce the effects of the sparser algebraic 
codebook. 

5) The pitch-delay parity bit has been removed. 

The new coder uses 6.4 kbit/s or 64 bits per frame instead of the 8.0 kbit/s or 80 bits per frame used 
in the full version of G.729. 
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D.4 Bit allocation 

Table D.1 – Bit allocation for 6.4 kbit/s of G.729 

Parameter Number of bits per frame  
(10 ms) 

LP parameters 18 
Adaptive codebook 8 + 4 
Fixed codebook 2 * 11 
Gain quantizer 2 * 6 
Total 64 
NOTE – Bold figures represent changes compared to those in the 
full version of G.729. 

D.5 Functional description of the encoder 

D.5.1 Preprocessing 
Same as that in the full version of G.729. 

D.5.2 Linear prediction analysis and quantization 
Same as that in the full version of G.729. 

D.5.3 Perceptual weighting 
Same as that in the full version of G.729. 

D.5.4 Open-loop pitch analysis 
Same as that in the full version of G.729. 

D.5.5 Computation of the impulse response 
Same as that in the full version of G.729. 

D.5.6  Computation of the target signal 
Same as that in the full version of G.729. 

D.5.7 Adaptive codebook search 
The LTP coding for the absolute coded subframes (first subframe) are the same as that in the main 
body of G.729. The number of LTP lags in the second subframe has been reduced from 32 to 16. 
Integer delta lag values are used for the ranges int(T1) – 5 to int(T1) – 2 and int(T1) + 1 to 
int(T1) + 4, where T1 is the LTP lag of the previous subframe. Fractional lags with a resolution 
of 1/3 are used in the range int(T1) – 1 2/3 to int(T1) + 2/3. 

D.5.8 Fixed codebook structure and search 
The original four-pulse codebook is exchanged for an ACELP codebook with 2 signed pulses in 
two overlapping tracks. The track table is given in Table D.2. The signs of the pulses are preset as 
in the main body of G.729. The search of pulse positions is an exhaustive yet computationally 
efficient search over all 512 vectors.  
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Table D.2 – ACELP track table 

Pulse Sign Positions 

i0 +1/−1 1, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, 31, 33, 36, 38 

i1 +1/−1 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 
31, 32, 34, 35, 36, 37, 39 

D.5.9 Quantization of the gains 
The conjugate-structured gain codebook is redesigned. Six bits per subframe are allocated to the 
gain codebook. The codebook is trained with the condition of 0.1% bit error rate with a random 
distribution. This codebook requires 32 words of memory. 

D.5.10 Memory update 
Same as that in the full version of G.729. 

D.6 Functional description of decoder 

D.6.1 Parameter decoding procedure 
Similar to that in the full version of G.729. The number of parameters is smaller. Less fixed 
excitation codebook parameters are used. 

D.6.2 Fixed codebook post-processing 
An additional post-processing filter is applied in the decoder in order to reduce the perceptually 
adverse effects of the sparse excitation. The filter alters the innovation signal such that a new 
innovation is created which has the energy more spread over the subframe. The filter alters mainly 
the phase of the innovation through a "semi-random" impulse response. The filtering is performed 
by circular convolution, using one of the three stored impulse responses. The filter selection is 
controlled by a voicing decision, based on the filtered received LTP gain. The three impulse 
responses correspond to different amounts of spreading. Maximum spreading is applied in 
noise-like segments, when the filtered LTP gain is low. Medium spreading is applied for 
intermediate LTP gains, and no spreading is applied in voiced speech, when the filtered LTP gain is 
high. Additionally, strong increase in codebook gain is detected, to avoid spreading of onsets. 

D.6.3 Post filtering and post-processing 
Same as that in the full version of G.729. 

D.6.4 Concealment of frame-erasures 
Same as that in the full version of G.729. 

D.7 ANSI C code 
ANSI C code specifying the G.729 lower bit rate extension is available as an attachment to this 
annex. As of the approval of this text, the current version of this ANSI C code is Version 1.3 of 
February 2000. More recent versions may become available through corrigenda or amendments to 
G.729. Please ensure to use the latest available version from the ITU-T website. The ANSI C code 
represents the normative specification of this annex. The algorithmic description given by the C 
code shall take precedence over the texts contained in the main body of G.729 and in Annex D. 
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Tables D.3 to D.6 contain lists of the ANSI C code files grouped by function. 

Table D.3 – List of software files specific to G.729 
lower bit-rate extension encoder 

File name Description 

acelpcod.c 
codld8kd.c 
coderd.c 
pitchd.c 
qua_g6k.c 

Search fixed codebook 
Encoder routine 
Encoder 
Pitch search 
Gain quantizer 

Table D.4 – List of software files specific to G.729 
lower bit-rate extension decoder 

File name Description 

declag3d.c 
decld8kd.c 
decoderd.c 
deacelpd.c 
dec_g6k.c 

Decode adaptive-codebook index 
Decoder routine 
Decoder 
Decode algebraic codebook 
Decode gain 

Table D.5 – List of software files specific to G.729 
lower bit-rate extension routines common 

to encoder and decoder 

File name  Description 

bitsd.c 
filterd.c 
ld8kd.h 
tabld8kd.c 
tabld8kd.h 

Bit manipulation routines 
Filter functions 
Switching variables 
Tables 
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Table D.6 – List of software files specific to G.729 
lower bit-rate extension routines common 

to G.729 and Annex D 

File name  Description 

basic_op.h 
ld8k.h 
oper_32b.h 
tab_ld8k.h 
typedef.h 
basic_op.c 
de_acelp.c 
dec_gain.c 
dspfunc.c 
gainpred.c 
lpc.c 
lpcfunc.c 
lspdec.c 
lspgetq.c 
oper_32b.c 
p_parity.c 
post_pro.c 
pre_proc.c 
pred_lt3.c 
pst.c 
pwf.c 
qua_gain.c 
qua_lsp.c 
tab_ld8k.c 
util.c 

Common to G.729 main body 
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Annex E 
 

CS-ACELP speech coding algorithm at 11.8 kbit/s 
(This annex forms an integral part of this Recommendation) 

Summary 
This annex provides the high level description of the higher bit-rate extensions of this 
Recommendation designed to accommodate a wide range of input signals, such as speech, with 
background noise and even music.  

This annex includes an electronic attachment containing reference C code and test vectors for 
fixed-point implementation of CS-ACELP at 8 kbit/s and 11.8 kbit/s. 

E.1 Introduction 
This annex provides the high-level description of the higher bit-rate extension of G.729 designed to 
accommodate a wide range of input signals, such as speech, with background noise and even music. 

E.2 General description of the speech codec 

The extension algorithm has been designed to limit as much as possible the modifications and 
additions brought to the original G.729 algorithm. The only actual additions to G.729 concern the 
LP part with the introduction of a backward LP analysis suited for music signals and stationary 
background noises and the design of two new algebraic excitation codebooks to extend the bit rate 
up to 11.8 kbit/s: one codebook is used in forward mode, the other one, larger, in backward mode. 
All the remaining procedures are strictly the same as in G.729 except some minor modifications to 
the postfiltering and perceptual weighting procedures. Error concealment has also been modified to 
be adapted to the backward/forward LP structure. 

Two LP analyses are performed at the frame rate: one backward on the synthesis signal and one 
forward on the input signal. An adaptive decision procedure chooses the best filter and performs the 
switch if needed. The LP forward part of the algorithm is the same as the G.729 one with the same 
LSP quantization scheme. The backward LP analysis has an order of 30 and is performed both in 
the coder and in the decoder. Since the LP coefficients are not transmitted, the spare bit rate is used 
to increase the size of the algebraic excitation codebooks. One information bit is needed to indicate 
the LP mode and is protected by a parity bit. In the proposed extension, all the additional bit rate 
from 8 kbit/s to 11.8 kbit/s, except two bits (LP indication mode + parity bit), is used to increase the 
size of the algebraic codebooks. The bit allocation of the coder parameters is shown in Table E.1. 

The backward/forward decision criterion enables to operate a real discrimination between speech 
(mainly coded in forward mode) and music (mainly coded in backward mode). The 
backward/forward procedure has also been designed to reduce the number of switches and to 
perform, when necessary, smooth switching between filters with no artefacts. The LP mode and the 
related information is used to better adapt postfiltering and perceptual weighting to either music or 
speech. This is also used for the error concealment. 

In the following clauses, a high-level description of the 11.8 kbit/s extension of G.729 is provided. 
Only the modifications or additions to the G.729 algorithm will be described. 
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Table E.1 – Bit allocation of the 11.8 kbit/s CS-ACELP algorithm 
(10 ms frame) 

 Extension at 11.8 kbit/s 
LP mode indication bit 1 + 1 (parity) 
 Forward Backward 
LP filter 18 0 
LTP delay (1st/2nd sub-fr.) 8 + 1 (parity)/5 8 + 1 (parity)/5 
EXC codes (1st/2nd sub-fr.) 
Gains (LTP + EXC) (1st/2nd sub-fr.) 

35/35 
7/7 

44/44 
7/7 

Total 118 118 
NOTE – The numbers of bits corresponding to modified parts of the structure 
(compared to G.729) are typed in bold. 

E.2.1 Encoder 
In order to obtain this high quality with music while keeping a good robustness to transmission 
errors and avoiding degradation of less stationary signals and especially speech (compared with a 
pure forward structure used in G.729), a new technique called mixed backward/forward LP 
structure has been introduced. A criterion enables to choose the most suitable LP analysis given the 
stationarity of the input signal and the backward and forward filters' prediction gains. 

For music signals, generally very stationary, the LP backward mode is mainly used: the LP analysis 
is performed on the synthesis signal with no transmission of the coefficients, with two benefits: 
• The LP order is increased up to 30 coefficients which is far more suited for the complex 

spectrum of music signals (the 10 coefficients LP filter of LP forward codecs like G.729 is 
not sufficient for music). 

• The bit rate is better allocated: no bit rate is wasted on successive very similar LP filters. 
All the spare bit rates are used to extend the size of the excitation codebook. An algebraic 
codebook with 44 bits is used for the fixed codebook excitation. 

The weak points of pure backward LP analysis mainly concern the non-stationary signals with sharp 
spectrum transitions and the sensitivity to transmission errors. With the mixed LP 
backward/forward structure, if a spectrum transition occurs, the forward mode is selected and the 
10 LP coefficients are coded and transmitted. Besides, even if backward mode is dominant, the 
transmission of forward LP filters clearly improves the robustness when compared with a pure 
backward structure. 

In forward mode, the encoder is almost identical to G.729 with more bits allocated to the excitation 
codebooks. An algebraic codebook with 35 bits is used for the fixed codebook excitation. 

E.2.2 Decoder 
First, the parameter's indices are extracted from the received bit stream. These indices are decoded 
to obtain the coder parameters corresponding to a 10 ms speech frame. The first parameter decoded 
is the LP mode information and its parity bit. According to this information, the frame is classified 
either as forward, backward or erased. In forward mode, the parameters are the LSP coefficients, 
the two fractional pitch delays, the two forward fixed-codebook vectors, and the two sets of 
adaptive- and fixed-codebook gains. In backward mode, the parameters are the two fractional pitch 
delays, the two backward fixed-codebook vectors, and the two sets of adaptive- and fixed-codebook 
gains. First, the LP backward analysis is performed. Then, if the frame is in forward mode, the LSP 
coefficients are interpolated and converted to LP filter coefficients for each subframe. Except for 
the construction of fixed-codebook excitation, the decoding procedure is very similar to the G.729 
decoding procedure. 
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Then, for each 5 ms subframe the following steps are done: 
– the excitation is constructed by adding the adaptive- and fixed-codebook vectors scaled by 

their respective gains; 
– the speech is reconstructed by filtering the excitation through the LP synthesis filter (either 

forward or backward); and 
– the reconstructed speech signal is passed through a post-processing stage, which includes 

an adaptive postfilter based on the long-term and short-term synthesis filters, followed by a 
high-pass filter and scaling operation. Compared with G.729, the weighting factors of the 
postfilter have been made adaptive. 

E.2.3 Delay 
The same as clause 2.3. 

E.2.4 Speech coder description 
The description of the speech coding algorithm of this Recommendation is made in terms of 
bit-exact fixed-point mathematical operations. The ANSI C code indicated in clause E.5, which 
constitutes an integral part of this Recommendation, reflects this bit-exact fixed-point descriptive 
approach. The mathematical descriptions of the encoder (clause E.3), and decoder (clause E.4), can 
be implemented in several other fashions, possibly leading to a codec implementation not 
complying with this Recommendation. Therefore, the algorithm description of the ANSI C code of 
clause E.5 shall take precedence over the mathematical descriptions of clauses E.3 and E.4 
whenever discrepancies are found. A non-exhaustive set of test signals, which can be used with 
ANSI C code, is available from ITU. 

E.3 Functional description of the encoder 

In this clause, the different functions of the encoder are described. The main body of this 
Recommendation is referred to in most of this clause, except the parts where algorithmic 
modifications or additions have been carried out. 

E.3.1 Preprocessing 
The same as clause 3.1. 

E.3.2 Linear prediction analysis and quantization 

Two LP analyses are performed simultaneously at the 10 ms frame rate: one forward analysis on the 
input signal which is strictly the same as G.729 with also the same quantization scheme, and one 
backward analysis performed on the past synthesized signal. 

E.3.2.1 Windowing and autocorrelation computation 
– Forward LP analysis 
 The same as clause 3.2.1. 
– Backward LP analysis 
 A hybrid recursive windowing scheme the same as in G.728 is used. 
 Let sample 1 be the more recent sample of the more recent synthesized frame, and let the 

indices i represent past samples ordered so that oldest samples have highest indices. 
Samples i = 1 to 35 are windowed with the non-recursive part of the window: 

( ) ( ) 0477830where351 .c,...,i,cisiniw lpbwdlpbwdlpbwd ==×=  

 The recursive part of the window is given by the function (samples > 35): 

( ) 35)36( >×= − i,abiw i
lpbwdlpbwdlpbwd  
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with 910.99283374 =lpbwda  and ( )lpbwdlpbwd csinb ×= 36  

 The recursive calculation of the autocorrelation coefficients is performed as described in 
[ITU-T G.728]. 

 The same white noise correction factor as for forward LP analysis is applied to the first 
autocorrelation coefficient (1.0001), but the bandwidth expansion applied to the 
coefficients is reduced from 60 Hz (in G.729) to 5 Hz. A small additional spectral flattening 
is applied by a weighting function with γlpbwd = 0.98 on the LP coefficients (calculated in 
clause E.3.2.2). 

E.3.2.2 Levinson-Durbin algorithm 
The algorithm used is the same for forward and backward analysis. Compared to the G.729 
algorithm, the size of some arrays has been extended to cope with the higher LP order. 

E.3.2.3 LP to LSP conversion 
For forward LP filter, the same as clause 3.2.3. For backward LP filter, no LSP calculation is 
needed. 

E.3.2.4 Quantization of LSP coefficients 
The same as clause 3.2.4 for forward LSP coefficients. For backward LP filter, no LSP quantization 
is needed. 

E.3.2.5 Interpolation of LP coefficients 
• For the forward LP analysis 
 As in clause 3.2.5, the quantized (and unquantized) LP coefficients are used for the second 

subframe. For the first subframe, the forward quantized (and unquantized) LSP coefficients 
are interpolated as in clause 3.2.5 when the previous frame is in forward mode. When the 
previous frame is in backward mode, no interpolation is performed, the second subframe 
quantized (and unquantized) LP filter is also used for the first subframe. 

• For the backward LP analysis 
 For the second subframe, either the current backward LP filter Abwd computed in 

clause E.3.2.2 or a transition filter, as will be described in clause E.3.2.7.1, is used. 
 For the first subframe, the LP filter coefficients are directly interpolated with the same 

interpolation factors (0.5, 0.5) as G.729 between the second subframe backward LP filter 
and the previous frame filter. 

E.3.2.6 LSP to LP conversion 
For forward LP filter, the same as clause 3.2.6. For backward LP filter, no conversion is needed. 

E.3.2.7 Backward/forward decision and switch procedure 

E.3.2.7.1 Switching procedure 
This clause describes how the switch is performed from a previous frame using a forward 
(respectively backward) filter to the current one where the backward (respectively forward) filter is 
chosen in order to avoid artefacts in the synthesized signal. 
– From forward LP filter to backward LP filter 
 This generally occurs when the signal is stationary. It is consequently important to avoid 

any filter transition which would bring an audible artificial spectrum transition in the 
synthesized signal. To achieve this, the following interpolation is performed both at the 
encoder and at the decoder: 
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 If switch is decided at frame n: 
 Let Afwd(n − 1) be the forward LP filter at frame n − 1. 
 Let Abwd (n) be the backward LP filter at current frame n computed in clause E.3.2.2. 
 The LP filter A  used at frame n + i is given by: 
 A(n + i) = 0.1 × i × Abwd (n + i) + (1.–0.1 × i) × A(n + i– 1),  0 ≤ i ≤ 9 
 A(n + i) = Abwd (n + i)       i ≥ 10 
 with A(n – 1) = Afwd (n – 1) 
 After 10 transition frames, the filter used is exactly the backward filter. 
– From backward filter to forward filter 
 This occurs when a spectrum transition exists in the input signal. No smoothing is then 

performed: 
 If switch is decided at frame n: A(n) = Afwd(n) 

E.3.2.7.2 The global stationarity indicator and high stationarity indicator 
The global stationarity indicator at frame n (called Stat(n)) characterizes the global stationarity of 
the input signal. Calculated at frame n after the backward/forward decision has been taken, it will be 
used for the next frame (n + 1) backward/forward decision calculated frame-by-frame to reduce the 
number of switches between filters. The principle is to progressively favour one mode according to 
the stationarity of the input signal and to reduce the number of switches to the other mode. 

The computation of this indicator is based on the history of the backward/forward decisions and on 
the backward and forward filters prediction gains. It varies from a value representing a high 
stationarity of the input signal (value 32 000) to a value representing a low stationarity (value 0). 

This indicator has slow frame-by-frame variations (with the given numerical values, it takes at least 
80 frames to vary from min. to max.). 

The adaptation depicted below is only performed for frames the energy of which is greater than 
40 dB. For other frames that are considered as silence frames, Stat(n) is equal to Stat(n − 1) 
bounded by 13 000. 
– The first step of the adaptation is based on the preceding switch decisions: 
 Let n be the index of the current frame. 
 Let Nbwd (n) be the number of consecutive backward frames measured at frame n. 
 If frame n is a forward frame, then Nbwd (n) is equal to 0. 
 Let the value Stat1(n) represent the output of the first step stationarity evaluation. 
 If frame n is a backward to forward transition frame (i.e., frame n − 1 is backward and n is 

forward) and if less than 20 consecutive backward frames have occurred: 
 Stat1(n) = Stat(n − 1) − (5000 − 250 × Nbwd (n − 1)) 
 else: 
 if (Nbwd(n) > 20) Stat1(n) = Stat(n − 1) + 500 
 else: 
 if (Nbwd(n) = 20) Stat1(n) = Stat(n − 1) + 2500 
 else: Stat1(n) = Stat(n − 1) 
– The second step of the adaptation is based on the prediction gains: 
 Let x be the difference between the backward LP filter prediction gain and the forward LP 

filter prediction gain: x = Gpredb − Gpredf (in dB). 
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 Stat(n) = Stat1(n) + ∆(x) with: 
 If Stat1(n) < 13 000, 
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 A high stationarity state is also determined with the parameter value High_Stat set to 1. 
This high stationarity state is detected when the percentage of backward frames becomes 
significantly higher than the percentage of forward frames: 

 Let Nbwd (respectively Nfwd) represent the number of backward (respectively forward) 
frames in the previous Nf/b frames (Nf/b = Nbwd + Nfwd). For the first 100 frames, Nbwd 
(respectively Nfwd) is the actual number of backward (respectively forward) frames in the 
previous Nf/b frames. Then whenever Nf/b reaches the value 100, Nf/b, Nbwd, Nfwd are divided 
by 2. 

 If Nf/b < 10, High_Stat = 0 
 else: 
 If Nbwd > 4 × Nfwd then High_Stat = 1 
 else: High_Stat = 0 
 This procedure is only performed for frames the energy of which is greater than 40 dB. For 

silence frames, Nf/b, Nbwd, Nfwd and High_Stat are not updated. 

E.3.2.7.3 Backward/forward decision procedure 
At current frame n, the backward/forward decision is taken according to 4 criteria which apply 
sequentially. 
– 1st criterion on prediction gains 
 The prediction gains (in dB) of the backward, backward interpolated (different from 

backward only during forward-to-backward transitions) and forward LP filters are 
computed (called respectively Gpredb and Gpredint and Gpredf). 

 Let Gap be an adaptive decision threshold (in dB). 
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 The first stage decision is: 
 The backward LP filter is selected if the following condition is verified: 

 (Gpredint > Gpredf − Gap) and (Gpredb > Gpredf − Gap) and (Gpredb > 0) and (Gpredint > 0) 
 Otherwise, the forward LP filter is selected. 
 The Gap parameter is adapted according to the stationarity indicator: 

 Gap(n) = 0.0366 × (Stat(n − 1)/320) + 1.0 with Stat(n − 1) ∈[0, 32 000] (see 
clause E.3.2.7.2). 

– 2nd criterion using the global stationarity indicator 
 While the value of the global stationarity indicator Stat(n − 1) ∈[0, 32 000] remains below 

13 000, the forward LP mode is selected (second stage decision). This avoids unnecessary 
switches to backward mode with speech or other signals of low or medium stationarity. 

– 3rd criterion on LSP 
 In order to avoid any artificial transition when the short term spectrum is stationary, the 

following Euclidean distance is computed between the LSP vectors of two successive 
forward LP filters: 
 LSPn is the LSP vector of the forward LP filter calculated at current frame n. 
 LSPn−1 is the LSP vector of the forward LP filter calculated at frame n − 1. 
 dLSP(n) = ||LSPn, LSPn−1||2 is the Euclidean distance between both vectors. 

 If dLSP(n) < ThreshLSP(n), if the previous frame is in backward mode and if the prediction 
gains Gpredb and Gpredint are positive, switching from backward to forward is forbidden 
(selection of backward mode as a third stage decision in this case). 
 ThreshLSP is adapted at each frame according to the value of Stat(n − 1): 
 If Stat(n − 1) = 32 000 (max. value), ThreshLSP(n) = 0.03 
 Else ThreshLSP(n) = 0 

– 4th criterion on the energy 
 In order to increase the robustness of the algorithm to transmission errors, the forward LP 

filter is imposed for frames with energy below 40 dB. 

E.3.3 Perceptual weighting 

The perceptual weighting filter is given by: ( )
( )2

1
/
/)(
γ
γ=

zA
zAzW  

– In forward mode 
 The parameters γ1 and γ2 are computed as in clause 3.3. The LP filter A(z) is the 

unquantized forward filter Afwd(z) when High_Stat is equal to 0, and the quantized forward 
filter otherwise. 

– In backward mode 
 If no High_Stat state is detected, the LP filter A(z) used is the unquantized forward filter, 

else it is the backward calculated filter. 
 The parameters γ1 and γ2 take fixed values depending on the high stationarity indicator 

(High_Stat). 
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 In case of high stationarity of the input signal (High_Stat = 1), the noise masking effect is 
reinforced: 
 γ1bwdh = 0.98 
 γ2bwdh = 0.4 

 In case of normal stationarity (High_Stat = 0): 
 γ1bwdl = 0.9 
 γ2bwdl = 0.4 

– The weighted speech is calculated as indicated in equation (33) of clause 3.3, the filtering 
order depending on the selected weighting filter chosen (10 or 30). 

E.3.4 Open-loop pitch analysis 
The same as clause 3.4. 

E.3.5 Computation of the impulse response 
Similar to clause 3.5. (The order of the LP filters could be 30 instead of 10.) 

E.3.6 Computation of the target signals 

Similar to clause 3.6. (The order of the LP filters could be 30 instead of 10.) 

E.3.7 Adaptive-codebook search 
The adaptive-codebook search, the generation of the adaptive-codebook vector, the codeword 
computation for the delay index P1 and P2 and the computation of the adaptive-codebook gain are 
identical to the procedure described in clause 3.7. The parity bit P0 is computed on the seven 
(instead of six in G.279) most significant bits of the delay index P1 of the first subframe. 

E.3.8 Fixed-codebook structure and search 

E.3.8.1 Fixed-codebook in forward LP mode 
In the forward LP mode, an algebraic codebook with 35 bits is used as the fixed codebook. In this 
codebook, each excitation vector contains 10 non-zero pulses. The pulse amplitudes are either −1 
or +1. The 40 positions in each subframe are divided into 5 tracks where each track contains two 
pulses. In the design, the two pulses for each track may overlap resulting in a single pulse with 
amplitude +2 or −2. The allowed positions for pulses are shown in Table E.2. 

Table E.2 – Structure of fixed codebook in forward mode C fwd 

Track Pulses Signs Positions 

1 p0, p1 s0, s1: ± 1 0, 5, 10, 15, 20, 25, 30, 35 

2 p2, p3 s2, s3: ± 1 1, 6, 11, 16, 21, 26, 31, 36 

3 p4, p5 s4, s5: ± 1 2, 7, 12, 17, 22, 27, 32, 37 

4 p6, p7 s6, s7: ± 1 3, 8, 13, 18, 23, 28, 33, 38 

5 p8, p9 s8, s9: ± 1 4, 9, 14, 19, 24, 29, 34, 39 

Similar to G.729, the selected codebook vector is filtered through the pre-filter: 

( )TzzP −β−= 1/1)(  

to enhance the harmonic components. The way β is adapted is the same as in the main body 
of G.729. 
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E.3.8.1.1 Search procedure of the 35-bit codebook 
The fixed codebook is searched by minimizing the mean-squared error between the weighted input 
speech and the weighted reconstructed speech. If ck(n) is the algebraic codevector at index k, h(n) is 
the impulse response of the weighted synthesis filter, and d(n) is the correlation between the target 
vector and h(n), then the algebraic codebook is searched by maximizing the criterion: 

( )
k

k
k E

CT
2

=  

where C is the correlation between ck(n) and d(n) and E is the energy of the filtered codevector 
(ck(n) × h(n)). Since the algebraic codevector contains few non-zero pulses, the correlation can be 
written as: 
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where mi  is the position of the ith pulse, si  is its amplitude, and Np is the number of pulses 
(Np = 10), and the energy in the denominator is given by: 
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where φ(i, j) contains the correlations between h(n − i) and h(n − j). The signal d(n) and the 
correlations φ(i, j) are computed before the codebook search. 

Similar to G.729, in order to speed up the search procedure, the pulse amplitudes are preset outside 
the closed-loop search using the so-called signal-selected pulse amplitude approach. In this 
approach, the most likely amplitude of a pulse occurring at a certain position is estimated using a 
certain side information signal. In G.729, the signal d(n) is used for preselecting the pulse 
amplitudes. In this bit rate extension, a signal b(n), which is a weighted sum of the normalized d(n) 
vector and the normalized long-term prediction residual, is used. 

The signal b(n) is given by: 

  b(n)= d(n)/σd + e(n)/ σe 

where e(n) is the long-term prediction residual and σd and σe are the r.m.s. values of d(n) and e(n), 
respectively. The sign of a pulse at a certain position is set a priori equal to the sign of b(n) at that 
position. The sign information is incorporated into the signals d(n) and φ(i, j) before starting the 
search for the best pulse positions, similar to G.729. 

The optimal pulse positions are determined using a non-exhaustive analysis-by-synthesis search 
procedure. The procedure used is a special case of a general depth-first tree search method which is 
efficient for searching huge codebooks with a reasonable complexity. In this approach, the Np 
excitation pulses are partitioned into M subsets of Nm pulses. The search begins with subset 1 and 
proceeds with subsequent subsets according to a tree structure whereby subset m is searched at the 
mth level of the tree. The search is repeated by changing the order in which the pulses are assigned 
to the position tracks. In this particular codebook structure, the pulses are partitioned into 5 subsets 
of 2 pulses (the tree has 5 levels). 

The pulse positions are determined as follows: 

For each of the five tracks, the pulse positions with maximum absolute values of d(n) are found. 
From these, the two successive tracks, 

0kT  and ( ) 510 modkT + with the largest combined maxima are 
determined. This index k0 is used for the initial assignment of pulses to tracks. Then the two 
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successive tracks, 
1kT  and ( ) 511 modkT +  with the second largest combined maxima and the two 

successive tracks, 
2kT  and ( ) 512 modkT +  with the third largest combined maxima are also determined. 

In the first iteration, the pulses are assigned to the tracks as follows: the pulses in, n = 0,...,9, are 
assigned to tracks ( ) 50 modnkT + , n = 0,...,9, respectively. 

The pulses are searched in subsets of two pulses. We start by setting pulse i0 to the maximum of 
track 

0kT  and pulse i1 to the maximum of track ( ) 510 modkT + . We then proceed by searching the pulse 

pair (i2,i3) by testing all the 8 × 8 possible position combinations in tracks ( ) 520 modkT +  and 

( ) 530 modkT +  (given pulses i0 and i1 are known). The same procedure is repeated for the rest of the 

pulse pairs(i4,i5), (i6,i7) and (i8,i9) by testing the 8 × 8 possible position combinations in their 
respective tracks. At each level of the tree, the test criterion is computed based only on the available 
pulses at that level. This results in a total of 4 × 8 × 8 positions tested (since the first pulse pairs are 
set to their track maxima). 

Another two iterations are carried out by changing pulse assignment to tracks (replacing k0 by k1 for 
the second iteration and k0 by k2 for the third iteration). All 10 initial pulse positions are assigned to 
tracks ( ) 51 modnkT +  in the second iteration and to tracks ( ) 52 modnkT +  in the third iteration. The same 
search procedure described above is repeated for these other two iterations. For the three iterations, 
the total number of tested position combinations is 3 × 4 × 8 × 8 = 768. 

E.3.8.1.2 Codeword computation of the 35-bit fixed codebook 
The two pulse positions in each track are encoded with 6 bits and the sign of the first pulse in each 
track is encoded with one bit. The second pulse sign is implicitly determined based on the order of 
pulse positions. 

The two pulses in each track (2 positions and 2 signs) are encoded in 7 bits. Each pulse position 
needs 3 bits (8 possible positions) and each sign needs 1 bit. That is a total of 8 bits for each pair of 
pulses. However, 1 bit can be reduced considering the fact that about half the position combinations 
are redundant. For example, placing pulse 1 at position a and pulse 2 at position b is equivalent to 
placing pulse 1 at position b and pulse 2 at position a (when the signs are not considered). A simple 
approach of implementing the pulse encoding is to use only 1 bit for the sign information and 6 bits 
for the two positions, while ordering the positions in a way such that the other sign information can 
be easily deduced. 

To better explain this, assume that the two pulses in a track are located at positions p1 and p2 with 
sign indices s1 and s2, respectively (s = 0 if the sign is positive and s = 1 if the sign is negative). 
The index of the two pulses is given by: 

I = (p1/5) + s1 × 8 + (p2/5) × 16 

If p1 ≤ p2 then s2 = s1; otherwise, s2 is different from s1. Thus, when constructing the codeword, if 
the two signs are equal, then the smaller position is assigned to p1 and the larger position to p2; 
otherwise, the larger position is assigned to p1 and the smaller position to p2. 

This procedure is repeated for each track to obtain five 7-bit indices. 

E.3.8.2 Fixed codebook in backward LP mode 
In the backward LP mode, the 18 bits needed for the LP model are not transmitted. Thus, 9 bits are 
saved every subframe, which are used to increase the size of the fixed codebook form 35 to 44 bits. 
In this 44-bit codebook, each codebook vector contains 12 pulses. The positions in a subframe are 
divided into the same track structure described in Table E.2. However, two more pulses are placed, 
such that two consecutive tracks can contain three pulses instead of two. The two consecutive tracks 
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containing three pulses will be called triple-pulse tracks and the other three tracks containing two 
pulses will be called double-pulse tracks. 

The pulses in each double-pulse track are encoded with 7 bits (as in the 35-bit codebook) and those 
in each triple-pulse track are encoded with 10 bits. The index of the first triple-pulse track can have 
5 different values (5 tracks). This index needs an extra 3 bits. This results in a total of 44 bits 
(3 × 7 + 2 × 10 + 3). 

E.3.8.2.1 Search procedure of the 44-bit codebook 
The codebook search is very similar to that of the 35-bit codebook, with the exception that the tree 
has now 6 levels of pulse pairs. The same search procedure described in clause E.3.8.1.1 is 
followed. 

The same procedure is used for presetting the pulse signs. 

The initial tracks Tk an d Tk+1 are determined in the same manner. 

The 12 pulses in, n = 0,...,11 are assigned to tracks T(k+n) mod 5, n = 0,...,11 respectively. 

The pulses are searched in subsets of two pulses, by initially setting pulse i0 to the maximum of 
track Tk and pulse i1 to the maximum of track T(k+1) mod 5. Then it is proceeded by searching the pulse 
pair (i2, i3) by testing all the 8 × 8 possible position combinations in tracks T(k+2) mod 5 and T(k+2) mod 5 
and repeating the procedure for the rest of the pulse pairs (i4, i5), (i6, i7), (i8, i9), and (i10, i11). This 
results now in a total of 5 × 8 × 8 positions tested. 

Two more iterations are carried out similar to the 35-bit codebook resulting in a total of 
3 × 5 × 8 × 8 = 960 tested positions. 

Similar to G.729 and to the 35-bit forward codebook, the selected codebook vector is filtered 
through the pre-filter P(z) = 1/(1 − βz−T) to enhance the harmonic components. 

E.3.8.2.2 Codeword computation of the 44-bit fixed codebook 
The two pulses in each of the three double-pulse tracks are encoded using the same approach 
described in clause E.3.8.1.2. 

The three pulses in a triple-pulse track are encoded using the same philosophy by adding three bits 
for the position of the third pulse. The three positions are encoded with 3 bits each and the sign of 
the first pulse is encoded with 1 bit. The signs of the other two pulses are deduced from the pulse 
orders, similar to the double-pulse tracks. Again, we will explain this with an example. Assume that 
the three pulses in a triple-pulse track are located at positions p1, p2 and p3 with sign indices s1, s2, 
and s3, respectively. The index of the three pulses is given by: 

I = (p1/5) + s1 × 8 + (p2/5) × 16 + (p3/5) × 128 

If p1 ≤ p2 then s2 = s1; otherwise, s2 is different from s1. Similarly, if p2 ≤ p3 then s3 = s2; 
otherwise, s3 is different from s2. When constructing the codeword, the pulse positions in a track 
are assigned to p1, p2, and p3 taking this sign relationship into consideration. 

In total, 5 indices are returned, one for each track. The first index is that of the first triple-pulse 
track. This index is encoded with 13 bits; 10 for the positions and signs, as explained above, and 3 
for the track index (0 to 4). The second index is that of the second triple-pulse track and is encoded 
with 10 bits. The last three indices are those of the three double-pulse tracks and are encoded with 
7 bits each. 

E.3.9 Quantization of the gains 
The same as clause 3.9. 
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E.3.10 Memory update 
The same as clause 3.10. 

E.4 Functional description of the decoder 
First, the parameters are decoded. The transmitted parameters are listed in Table E.3. The first 
parameter decoded is the LP mode information and its parity bit. According to this information, the 
frame is classified either as forward, backward or erased. In forward mode, the decoder parameters 
are the LSP coefficients, the two fractional pitch delays, the two forward fixed-codebook vectors, 
and the two sets of adaptive- and fixed-codebook gains. In backward mode, the decoded parameters 
are the two fractional pitch delays, the two backward fixed-codebook vectors, and the two sets of 
adaptive- and fixed-codebook gains. Then, the LP backward analysis is performed on the past 
synthesized signal and the decoded parameters are used to compute the reconstructed speech signal 
as will be described in clause E.4.1. This reconstructed signal is enhanced by a post-processing 
operation consisting of a postfilter, a high-pass filter and an upscaling (see clause E.4.2). Clause 
E.4.4 describes the error concealment procedure used when either a parity error has occurred, or 
when the frame erasure flag has been set. 

Table E.3 – Description of transmitted parameters indices 

a) Parameters indices in forward mode 

Symbol Description Description 

M0 Switch LP mode 1 
M1 Parity bit for LP mode 1 
L0 Switched MA predictor of LSP quantizer 1 
L1 First stage vector of quantizer 7 
L2 Second stage lower vector of LSP quantizer 5 
L3 Second stage higher vector of LSP quantizer 5 
P1 Pitch delay first subframe 8 
P0 Parity bit for pitch delay 1 

C0_1 Track 0 fixed codebook first subframe 7 
C1_1 Track 1 fixed codebook first subframe 7 
C2_1 Track 2 fixed codebook first subframe 7 
C3_1 Track 3 fixed codebook first subframe 7 
C4_1 Track 4 fixed codebook first subframe 7 
GA1 Gain codebook (stage 1) first subframe 3 
GB1 Gain codebook (stage 2) first subframe 4 
P2 Pitch delay second subframe 5 

C0_2 Track 0 fixed codebook second subframe 7 
C1_2 Track 1 fixed codebook second subframe 7 
C2_2 Track 2 fixed codebook second subframe 7 
C3_2 Track 3 fixed codebook second subframe 7 
C4_2 Track 4 fixed codebook second subframe 7 
GA2 Gain codebook (stage 1) second subframe 3 
GB2 Gain codebook (stage 2) second subframe 4 
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Table E.3 – Description of transmitted parameters indices 

b) Parameters indices in backward mode 

M0 Switch LP mode 1 
M1 Parity bit for LP mode 1 
P1 Pitch delay first subframe 8 
P0 Parity bit for pitch delay 1 

C0_1 Fixed codebook track index + pulses 0, 5 and 10 first subframe 13 
C1_1 Fixed codebook pulses 1, 6 and 11 first subframe 10 
C2_1 Fixed codebook pulses 2 and 7 first subframe 7 
C3_1 Fixed codebook pulses 3 and 8 first subframe 7 
C4_1 Fixed codebook pulses 4 and 9 first subframe 7 
GA1 Gain codebook (stage 1) first subframe 3 
GB1 Gain codebook (stage 2) first subframe 4 
P2 Pitch delay second subframe 5 

C0_2 Fixed codebook track index + pulses 0, 5 and 10 second subframe 13 
C1_2 Fixed codebook pulses 1, 6 and 11 second subframe 10 
C2_2 Fixed codebook pulses 2 and 7 second subframe 7 
C3_2 Fixed codebook pulses 3 and 8 second subframe 7 
C4_2 Fixed codebook pulses 4 and 9 second subframe 7 
GA2 Gain codebook (stage 1) second subframe 3 
GB2 Gain codebook (stage 2) second subframe 4 

NOTE – The bit stream ordering is reflected by the order in the table. For each parameter, the most 
significant bit (MSB) is transmitted first. 

E.4.1 Parameter decoding procedure 
Similar to G.729. The number of parameters is greater (more excitation codebook parameters and 
one LP mode indication parameter). The decoding process is done in the following order. 

E.4.1.1 Backward/forward decoding procedure 
One bit is used to indicate to the decoder the LP mode: backward or forward. Then, the parity bit 
mode is compared with this LP mode bit. If these bits are not identical, the frame is considered as 
erased and the procedure described in clause E.4.4 is applied. Otherwise, according to this LP mode 
indication, the same switching procedure as described in clause E.3.2.7 is performed at the decoder 
to obtain the LP filter that will be used for the synthesis. 

The high stationarity indicator High_Stat(n) is computed once per frame as described in 
clause E.3.2.7.2. 

Another high stationarity indicator High_Stat2 that will be used by the gain attenuation procedure in 
case of erased frame is computed each subframe (see clause E.4.4.3). If the current subframe is at 
least the 30th of consecutive backward subframes, High_Stat2 is set to 1, else it is set to 0. 



 

  ITU-T Rec. G.729 (01/2007) 89 

E.4.1.2 Decoding of LP parameters 

E.4.1.2.1 Computing the LP backward filter 
In any LP mode (backward or forward) and even if the frame is erased (see clause E.4.4), one 
backward LP analysis per frame is performed, using the same procedures as those performed in the 
encoder in clause E.3.2 to obtain the encoder LP backward filter (windowing and autocorrelation 
computation, Levinson-Durbin algorithm). 

E.4.1.2.2 Forward mode 
In forward mode, the same decoding procedure of the LP parameters is applied as in G.729. The 
interpolation procedure of the LP coefficients is the same as described in clause E.3.2.5. 

E.4.1.2.3 Backward mode 
In case that one of the previous frames has been erased, the current backward filter computed in 
clause E.4.1.2.1 Abwd

(current) is not directly used but linearly interpolated with the last "correct" 
backward filter (see clause E.4.4) prior to the interpolation procedure of the LP coefficients 
described in clause E.3.2.5. 

E.4.1.3 Computation of the parity bit of the adaptive-codebook delay 
Before the excitation is reconstructed, the parity bit is recomputed from the adaptive-codebook 
delay index P1 (see clause E.3.7). If this bit is not identical to the transmitted parity bit P0, it is 
likely that bit errors occurred during transmission. If a parity error occurs on P1, the delay value T1 
is replaced by the delay value calculated in the previous subframe (see clause E.4.4.5). 

E.4.1.4 Decoding of the adaptive-codebook vector 
The same as clause 4.1.3. 

E.4.1.5 Decoding of the fixed-codebook vector 
The received codebook indices are used to extract the positions and signs of the pulses. This is done 
by reversing the process described in clauses E.3.8.1.2 and E.3.8.2.2 for the 35-bit and 44-bit 
codebooks, respectively. Once the pulse positions and signs are decoded, the fixed codebook 
vector c(n) is constructed by: 

( ) ( )∑
−

=
−δ=

1

0

pN

i
ii pnsnc  

where si are pulse signs, pi are the pulse positions, and Np is the number of pulses (10 or 12). If the 
integer part of the pitch delay is less than the subframe size 40, c(n) is modified similar to 
equation (48) in G.729. 

E.4.1.6 Decoding of the adaptive- and fixed-codebook gains 
The same as clause 4.1.5. 

E.4.1.7 Computing the reconstructed speech 
Similar to clause 4.1.6. (The order of the LP filter could be 30 instead of 10.) 

E.4.2 Post-processing 
As in G.729. The post-processing consists of three functions: adaptive postfiltering, high-pass 
filtering and signal upscaling. The adaptive postfiltering is similar to G.729 postfiltering except for 
the parameters γp, γn, and γd that have been made adaptive according to the high stationarity 
indicator High_Stat and the current frame LP mode. After 20 consecutive high stationarity 
backward frames, there is no more postfiltering. 
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E.4.2.1 Long-term postfilter 
The long-term postfiltering procedure is the same as clause 4.2.1: 

Adaptive filter: 

  ( ) ( )T
lp

lp
p zg

g
zH −γ+

γ+
= 1

1
1  

except for the value of the parameter γp that has been made adaptive according to the high 
stationarity indicator High_Stat and the current frame LP mode. 

If the high stationarity state is detected on the input signal (High_Stat = 1), the long-term perceptual 
filter is progressively flattened. 

At frame n, if (High_Stat = 1) and if the frame is in backward then: 

γp(n) = γp(n − 1) − (γpmax/20) 

if  (γp(n) < 0)  then  γp(n) = 0 

Else, the filter recovers progressively the initial value γpmax: 

γp(n) = γp(n − 1) + (γpmax/20) 

if  (γp(n) > γpmax)  then  γp(n) = γpmax 

The value of γpmax is set to 0.25. When γp(n) is equal to 0, there is no adaptive (neither harmonic, 
neither short-term) postfiltering. 

E.4.2.2 Short-term postfilter 
The only modifications brought to the G.729 algorithm concern: 
– The LP filter used to calculate the short-term perceptual weighting filter Hf(z) is the LP 

filter computed in clause E.4.1.2: either the 10 coefficients forward LP filter (computed in 
clause E.4.1.2.2) if the frame is in forward mode or the 30 coefficients backward LP filter 
(computed in clause E.4.1.2.3) if the frame is in backward mode. 
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– The values of the parameters γn and γd that are adapted according to the high stationarity 
indicator High_Stat (see clause E.4.1.1) and the LP mode of the current frame (backward or 
forward). 

If a high stationarity state is detected on the input signal (High_Stat = 1) and if the current frame is 
in backward, the short-term LP postfilter is progressively flattened down to no postfiltering at all 
(γn(n) = γd(n) = 0). 

At frame n, if (High_Stat = 1 and LP_mode = 1) then: 
γn(n) = γn(n − 1) − (γnmax/20) 
γd(n) = γd(n − 1) − (γdmax/20) 
if  (γn(n) < 0)  then  γn(n) = 0 
if  (γd(n) < 0)  then  γd(n) = 0 
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Else, the filter recovers progressively the initial values γnmax and γdmax: 
γn(n) = γn(n − 1) + (γnmax/20) 
γd(n) = γd(n − 1) + (γdmax/20) 

if  (γn(n) > γnmax)  then  γn(n) = γnmax 
if  (γd(n) > γdmax)  then  γd(n) = γdmax 

With γnmax = 0.7 and γdmax = 0.65 

E.4.2.3 Tilt compensation 
The tilt compensation filtering is the same as clause 4.2.3, except for the computation of the first 
parcor where the length of the impulse response is 32 instead of 20. 

E.4.2.4 Adaptive gain control 
The same as clause 4.2.4. 

E.4.2.5 High-pass filtering and up-scaling 
The same as clause 4.2.5. 

E.4.3 Encoder and decoder initialization 
All static encoder and decoder variables should be initialized to 0, except the variables listed in 
Tables 9 and E.4. 

Table E.4 – Description of parameters with non-zero initialization 

Variable Reference Initial value 

Stat(−1) E.3.2.7.2 10 000 

γp(−1) E.4.2.2 0.25 

γn(−1) E.4.2.2 0.7 

γd(−1) E.4.2.2 0.65 

αg
(–1) E.4.4.3 1.0 

Tsav
(–1) E.4.4.5 30 

E.4.4 Concealment of frame erasures 
Basically, the bad frame concealment procedure is similar to clause 4.4. The same voicing decision 
as in G.729 is used but some refinements in the gain attenuation procedure have been brought 
taking into account the high stationarity indicator High_Stat2 to adapt the muting factor. A special 
procedure has also been added to improve the backward filter robustness to frame erasures. 

The specific steps taken for an erased frame are: 
1) repetition of the LP mode; 
2) in forward mode, repetition of the synthesis filter parameter; in backward mode, use of the 

second step backward LP filter as described in clause E.4.4; 
3) attenuation of adaptive- and fixed-codebook gains; 
4) attenuation of the memory of the gain predictor; and 
5) generation of the replacement excitation. 
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E.4.4.1 Repetition of LP mode 
When a frame is erased, the LP mode is set to the previous frame LP mode. The initial value is set 
to 0 (forward mode). 

E.4.4.2 Computation of synthesis filter parameters 
Note that the backward LP analysis described in clause E.4.1.2.1 is always performed, even if the 
frame is erased. 

To improve the robustness of the backward filter, for each frame, a second step backward filter is 
computed. This filter is equal to the computed backward filter in error free conditions, but is 
different if an erasure has occurred at some frame before the current one: Let )(nAbwd

∗  denote the 
second step backward filter for frame n. The computed LP filter of the current frame n being 
denoted )(nAbwd , )(nAbwd

∗  is obtained by linear interpolation of )(nAbwd  and )( ebwd nA∗
 where 

ne represents the last erased frame (i.e., the last reliable second step backward filter). 

)()01()()( nA.nAnA bwdlpbwdebwdlpbwdbwd α−+α= ∗∗  

The initial value of the interpolation factor αlpbwd is 0.0. αlpbwd is updated at the end of the current 
frame to be applied for the next frame. The adaptation procedure is the following: 

Whenever an erased frame occurs, αlpbwd is fixed to the maximum value 1.0. 

For each valid frame n: 

if frame n is in forward mode, αlpbwd = 0.0. 

else (frame n is in backward mode) αlpbwd is decreased by an amount depending on the value of the 
high stationarity indicator High_Stat: If High_Stat is equal to 1, then αlpbwd is decreased by a step 
of 0.1, else it is decreased by a step of 0.5 (slow recovery for highly stationary signals, else fast 
recovery). 

The second step backward filter )(nAbwd
∗ will then be used in the frame n processing. 

If the erased frame is considered as forward, the same procedure as in clause 4.4.1 is applied. 

E.4.4.3 Attenuation of adaptive- and fixed-codebook gains 
The attenuation of the adaptive- and fixed-codebook gains depends on the number of consecutive 
erased subframes before the current subframe and the second stationary indicator High_Stat2 
computed in clause E.4.1.1. Let Nbf be the number of consecutive erased subframes before the 
current subframe indexed m. The attenuation procedure is the following: 

If less than 2 consecutive subframes have been erased (Nbf < 2), 
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The adaptation of the attenuation factor also depends on Nbf and on High_Stat2: 

If less than 2 consecutive subframes have been erased (Nbf < 2), 

)01()1()( .m
g

m
g =α=α −  

otherwise: (Nbf ≥ 2) 

If High_Stat2 is equal to 1 then: 

if (Nbf >10)  then  h
g

m
g

m
g α×α=α − )1()(  

else l
g

m
g

m
g α×α=α − )1()(  

with 98.0=αl
g  and 995.0=αh

g . When the subframe is not erased, ( )m
gα  is reset to the initial 

value ( )1−αg  equal to 1. 

E.4.4.4 Attenuation of the memory gain predictor 

The same as clause 4.4.3. 

E.4.4.5 Generation of the replacement excitation 
As in clause 4.4.4, the excitation used depends on the periodicity classification. If the last 
reconstructed frame was classified as periodic, the current frame is considered to be periodic as 
well. In that case only the adaptive-codebook is used, and the fixed-codebook contribution is set to 
zero. 

The adaptive-codevector index of an erroneous subframe m (either belonging to an erased frame or 
if the pitch delay parity bit has detected an error) uses a fractional pitch delay calculated and stored 
at the preceding subframe. Let T(m) be the fractional pitch delay of any valid or not subframe m and 
let Tsav

(m) be the fractional pitch delay stored for the next subframe error concealment. If m is a valid 
subframe, T(m) takes the valid decoded value else T(m) is taken equal to Tsav

(m–1). The computation of 
Tsav

(m) is as follows: 

Let us introduce the integer statT
(m) with values in [0,7] that indicates the stationary nature of the 

pitch delay. statT
(m) is initialized to 0. Let ( )( )mTint  denote the integer part of T(m). 

If ( )( ) ( )( ) 5intint 1 <− −mm TT   then  ( ) ( ) 11 += −m
T

m
T statstat   and  ( ) ( )mm

sav TT =  

else if there exists a multiple multT  of  ( )( ) ( )( )( )1intintmin −mm T,T  

such that  ( )( ) ( )( )( ) 5intintmax 1 <− −mm
mult T,TT :  if  0)1( >−m

Tstat   then  1)1()( −= −m
T

m
T statstat  

and  )1()( −= m
sav

m
sav TT  

otherwise 0)( =m
Tstat  and )()( mm

sav TT =  

Therefore multiples or submultiples of the pitch delay are replaced by the estimated pitch period 
during stationary voiced parts of the signal. 

The adaptive-codebook gain is based on an attenuated value computed in clause E.4.4.3. 

If the last reconstructed frame was classified as non-periodic, the current frame is considered to be 
non-periodic as well, and the adaptive-codebook contribution is set to zero. The fixed-codebook 
contribution is generated by randomly selecting the 5 codebook indices. The same random 
generator as that of G.729 is used. The fixed-codebook gain is attenuated with the procedure 
described in clause E.4.4.3. 
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E.5 Bit-exact description of the CS-ACELP coder 
ANSI C code specifying the 11.8 kbit/s CS-ACELP coder in 16-bit fixed-point is available from 
ITU-T. As of the approval of this text, the current version of this ANSI C code is Version 1.3 of 
February 2000. More recent versions may become available through corrigenda or amendments to 
G.729. Please ensure to use the latest available version from the ITU-T website. 

The following clauses summarize the use of this simulation code, and how the software is 
organized. 

E.5.1 Use of the simulation software 
The C code consists of two main programs codere.c, which simulates the encoder, and decodere.c, 
which simulates the decoder. The encoder is run as follows: 
 codere inputfile bitstreamfile rate_option 
The decoder is run as follows: 
 decodere bitstreamfile outputfile 
The input file and output file are sampled data files containing 16-bit PCM signals. The mapping 
table of the encoded bit stream is contained in the simulation software. The rate_option is either 1 to 
select the high level extension (11.8 kbit/s) or 0 to select the main body of G.729 (8 kbit/s) or a 
file_rate_name: a binary file of 16-bit word containing either 0 or 1 to select the rate on a frame-by-
frame basis; the default is 0 (8 kbit/s). 

E.5.2 Organization of the simulation software 
In the fixed-point ANSI C simulation, the types of fixed-point data and the set of basic operators 
used are the same as in the G.729 software. Some additional tables have been added that are found 
in tab_ld8e.h (see Table E.5). 

Table E.5 – Summary of tables found in tab_ld8e.h 

Table name  Size Description 

lag_h_bwd 30 Lag window for backward LP bandwidth expansion (high part) 
lag_l_bwd 30 Lag window for backward LP bandwidth expansion (low part) 

bitsno_E_fwd 18 Bit allocation in forward mode 
bitsno_E_bwd 16 Bit allocation in backward mode 

hw 145 Backward LP analysis window 
bitrates 2 Table of available bit rates 
tab_log 17 Lookup table in base 2 logarithm Q.11 

The files can be classified into four groups: 
1) Files identical to G.729 software files, part of the main body of G.729 listed in Table E.6. 
2) Files similar to G.729 software files, some minor modifications have been introduced to 

cope with Annex E listed in Table E.7. 
3) Files adapted from G.729 software files, some source code lines have been introduced to 

existing G.729 files to deal with Annex E listed in Table E.8. 
4) Files specific to Annex E (new files) listed in Table E.9. 
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Table E.6 – List of software files identical to G.729 software 

File name Description 

basic_op.c Basic operators 
oper_32b.c Extended basic operators 
dspfunc.c Mathematical functions 
gainpred.c Gain predictor 
lpcfunc.c Miscellaneous routines related to LP filter 
pred_lt3.c Generation of adaptive codebook 
pre_proc.c Preprocessing (HP filtering and scaling) 
p_parity.c Compute pitch parity 
qua_gain.c Gain quantizer 

pwf.c Computation of perceptual weighting coefficients (8 kbit/s) 
pitch.c Pitch search 
util.c Utility functions 

acelp_co.c Search fixed codebook (8 kbit/s) 
post_pro.c Post processing (HP filtering and scaling) 
de_acelp.c Decode algebraic codebook (8 kbit/s) 
dec_lag3.c Decode adaptive-codebook index 
basic_op.h Basic operators prototypes 

ld8k.h Function prototypes 
oper_32b.h Extended basic operators prototypes 
tab_ld8k.c ROM tables 
tab_ld8k.h Extern ROM table declarations 
typedef.h Data type definition (machine-dependent) 

Table E.7 – List of software files similar to G.729 software 

File name  Description 

qua_lspe.c LSP quantizer 
filtere.c Filter functions 
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Table E.8 – List of software files adapted from G.729 software 

File name Description 

codere.c Main encoder routine 
cod_ld8e.c Encoder routine 
decodere.c Main decoder routine 
dec_ld8e.c Decoder routine 
decgaine.c Decode gains 

pste.c Postfilter routines 
bitse.c Bit manipulation routines 

lspgetqe.c LSP quantizer 
lpce.c LP analysis 

lspdece.c LSP decoding routing 

Table E.9 – List of software files specific to Annex E software 

File name Description 

bwfw.c Backward/forward switch selection 
bwfwfunc.c Miscellaneous routines related to backward/forward switch selection 

ld8e.h Function prototypes for G.729, Annex E 
pwfe.c Computation of perceptual weighting coefficients (11.8 kbit/s) 

acelp_e.c Search fixed codebook (11.8 kbit/s) 
deacelpe.c Decode algebraic codebook (11.8 kbit/s) 
tab_ld8e.c ROM tables for G.729, Annex E 
tab_ld8e.h Extern ROM declarations for G.729, Annex E 
track_pi.c Pitch tracking 

E.6 Bibliography 
– ITU-T Recommendation G.728 (1992), Coding of speech at 16 kbit/s using low-delay code 

excited linear prediction. 
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Annex F 
 

Reference implementation of G.729 Annex B 
DTX functionality for Annex D 

(This annex forms an integral part of this Recommendation) 

Summary 
This annex provides the DTX functionality for the 6.4 kbit/s CS-ACELP algorithm of Annex D 
using the basic algorithm in Annex B. 

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s and 8 kbit/s with DTX functionality.  

F.1 Scope 
This annex provides a description of integrating Annexes B and D, hereby defining DTX 
functionality for Annex D. It presents a standard way of performing this integration and expansion 
of the functionality thereby guiding the industry and ensuring a standard speech quality and 
compatibility worldwide. The integration has been performed with focus on several constraints in 
order to satisfy the needs of the industry: 
1) Bit-exactness with the main body and individual annexes. 
2) Minimum additional program code, memory, and complexity usage. 
3) Stringent quality requirements to new functionality in line with quality and application 

areas of the according standard annexes. 

F.2 Normative references 
This annex refers to materials defined in the main body and Annexes B and D. 

F.3 Overview 

G.729 main body and Annexes B and D provide a bit-exact fixed-point specification of a 
CS-ACELP coder at 8 kbit/s, with DTX functionality and lower bit-rate extension capability at 
6.4 kbit/s. Exact details of these specifications are given in bit-exact fixed-point C in an electronic 
file attached to this annex. This annex describes and defines the integration of Annexes B and D. 

F.4 New functionality 
This clause presents a brief overview of the modifications/additions to the algorithms in order to 
facilitate the integration of Annexes B and D. 

F.4.1 Annex B DTX operation with Annex D 
Integrating Annexes B and D functionality in order to provide DTX operation with Annex D is 
straightforward. The voice activity detection (VAD), silence insertion description (SID) coding and 
comfort noise generation (CNG) of Annex B are reused without any modifications. Care is taken to 
update the parameters for the phase dispersion for the postfilter in Annex D during discontinued 
transmission (see clause F.5.1). 

F.5 Algorithm description 
This clause presents the algorithm description of the necessary additions to the algorithms of the 
individual annexes in order to facilitate the integration. All remaining modules originate from the 
main body, Annex B or D. 
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F.5.1 Update of state variables specific to Annex D during discontinued transmission 
The only state variables specific to Annex D are the state variables of the phase dispersion module 
(see clause D.6.2) at the decoder. In case of inactive frames, the same update procedure as in case of 
nominal bit rate (8 kbit/s) is followed using as adaptive and ACELP gain estimations the gain 
values computed by the comfort noise excitation generator (see clause B.4.4). 

F.6 Description of C source code 
Annex F, integrating Annexes B and D, is simulated in 16-bit fixed-point ANSI-C code using the 
same types of fixed-point data and the same set of fixed-point basic operators as in the G.729 
software. The ANSI-C code represents the normative specification of this annex. The algorithmic 
description given by the C code shall take precedence over the texts contained in the main body of 
this Recommendation and in Annexes B, D and F. As of the approval of this text, the current 
version of this ANSI C code is Version 1.2 of October 2006. More recent versions may become 
available through corrigenda or amendments to G.729. Please ensure to use the latest available 
version from the ITU-T website. 

The following clauses summarize the use of this simulation code, and how the software is 
organized. 

F.6.1 Use of the simulation software 
The C code consists of two main programs coderf.c and decoderf.c, which simulate encoder and 
decoder, respectively. The encoder is run as follows: 

 coderf inputfile bitstreamfile dtx_option rate_option 
The decoder is run as follows: 

 decoderf bitstreamfile outputfile 
The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The 
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream 
is contained in the simulation software. The two parameters are used for the encoder: dtx_option 
and rate_option where: 
dtx_option  = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled). 
rate_option  = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main body of G.729 

(8 kbit/s); or a file_rate_name: a binary file of 16-bit word containing either 0, 1 to 
select the rate on a frame-by-frame basis; the default is 1 (8 kbit/s). 

F.6.2 Organization of the simulation software 
The files can be classified into three groups: 
1) Files identical to software files of G.729 main body, Annex B or D are listed in Table F.1. 
2) Files adapted from software files of G.729 Annex B or D, listed in Table F.2, some minor 

modifications have been introduced to cope with the integration. 
3) Files integrating software files from G.729 main body, Annexes B and D, listed in 

Table F.3. 
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Table F.1 – List of software files identical to software files 
of G.729 main body, Annex B or D 

File name Description Identical to 

Basic_op.c Basic operators Main 
Oper_32b.c Extended basic operators Main 
Dspfunc.c Mathematical functions Main 
Gainpred.c Gain predictor Main 
Lpcfunc.c Miscellaneous routines related to LP filter Main 
Pre_proc.c Preprocessing (HP filtering and scaling) Main 
P_parity.c Compute pitch parity Main 

Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main 
Pred_lt3.c Generation of adaptive codebook Main 
Post_pro.c Post-processing (HP filtering and scaling) Main 
Typedef.h Data type definition (machine-dependent) Main 
Basic_op.h Basic operators prototypes Main 
Oper_32b.h Extended basic operators prototypes Main 

Filter.c Filter functions Main 
Lspgetq.c LSP quantizer Main 

De_acelp.c ACELP decoding Main 
Lpc.c LP analysis B 

Lspcdec.c LSP decoding routines B 
Qua_lsp.c LSP quantizer B 

Tab_ld8k.c ROM tables B 
Taming.c Pitch instability control B 

Dtx.c DTX decision B 
Dtx.h Prototype and constants B 

Qsidgain.c SID gain quantization B 
QsidLSF.c SID-LSF quantization B 
Tab_dtx.c ROM tables B 

Pst.c Postfilter routines B 
Vad.c VAD B 
ld8k.h Function prototypes B 
Vad.h Prototype and constants B 

Tab_ld8k.h Extern ROM tables declarations B 
Sid.h Prototype and Constants B 

Octet.h Octet transmission mode definition B 
Tab_dtx.h Extern ROM table declarations B 

Util.c Utility functions B 
Pitchd.c Pitch search D 
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Table F.1 – List of software files identical to software files 
of G.729 main body, Annex B or D 

File name Description Identical to 

Declag3d.c Decode adaptive-codebook index D 
Acelpcod.c ACELP codebook search D 
Deacelpd.c Decode ACELP codebook D 
Qua_g8k.c Gain quantizer D 
Dec_g8k.c Decode gain D 
Qua_g6k.c Gain quantizer D 
Dec_g6k.c Decode gain D 
Tabld8kd.c ROM tables for G.729 at 6.4 kbit/s D 
Tabld8kd.h Extern ROM declarations for G.729 at 6.4 kbit/s D 

ld8kd.h Function prototypes for G.729 Annex D D 

Table F.2 – List of software files adapted from software files 
of G.729 Annexes B and D 

File name Description Adapted from 

Calcexc.c CNG excitation calculation B 
Dec_sidf.c Decode SID information B 
Phdisp.c Phase dispersion D 

Table F.3 – List of software files integrating software files 
from G.729 main body, Annexes B and D 

File name Description Integrated from 

Coderf.c Main encoder routine Main + B + D 
Cod_ld8f.c Encoder routine Main + B + D 
Decoderf.c Main decoder routine Main + B + D 
Dec_ld8f.c Decoder routine Main + B + D 

Bitsf.c Bit manipulation routines Main + B + D 
Ld8f.h Constant and function prototypes for G.729 Annex F  Main + B + D 
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Annex G 
 

Reference implementation of Annex B 
DTX functionality for Annex E 

(This annex forms an integral part of this Recommendation) 

Summary 
This annex provides the DTX functionality for the 11.8 kbit/s CS-ACELP algorithm of G.729 
Annex E using the basic algorithm in Annex B. 

This annex includes an electronic attachment containing reference C code and test vectors fixed-
point implementation of CS-ACELP at 8 kbit/s and 11.8 kbit/s with DTX functionality.  

G.1 Scope 
This annex provides a description of integrating Annexes B and E, hereby defining DTX 
functionality for Annex E. It presents a standard way of performing this integration and expansion 
of the functionality thereby guiding the industry and ensuring a standard speech quality and 
compatibility worldwide. The integration has been performed with focus on several constraints in 
order to satisfy the needs of the industry: 
1) Bit-exactness with the main body and individual annexes. 
2) Minimum additional program code, memory, and complexity usage. 
3) Stringent quality requirements to new functionality in line with quality and application 

areas of the according standard annexes. 

G.2 Normative references 
This annex refers to materials defined in the main body and Annexes B and E. 

G.3 Overview 

G.729 main body and Annexes B and E provide a bit-exact fixed-point specification of a 
CS-ACELP coder at 8 kbit/s, with DTX functionality and higher bit-rate extension capability at 
11.8 kbit/s. Exact details of these specifications are given in bit-exact fixed-point C code in an 
electronic file attached to this annex. This annex describes and defines the integration of Annexes B 
and E. 

G.4 New functionality 

This clause presents a brief overview of the modifications/additions to the algorithms in order to 
facilitate the integration of Annexes B and E. Also certain additions have been found necessary in 
order to accommodate the application area of the different modules. 

G.4.1 Annex B DTX operation with Annex E 
Integrating Annexes B and E functionality in order to provide DTX operation with Annex E 
requires certain considerations. Since the DTX operation of Annex B is based on the 10th order 
LPC analysis, the VAD function of Annex B is performed after the 10th order forward adaptive 
LPC analysis and before the backward adaptive LPC analysis of Annex E. In case the VAD 
function detects "non-speech" the LPC mode of Annex E is forced to forward adaptive LPC and the 
backward adaptive LPC analysis is skipped. Furthermore, it has been found necessary to add a 
correctional module after the VAD in order to detect music and accommodate the somewhat 
expanded application area of Annex E – one of the purposes of Annex E is to provide transmission 
capability of music with a certain quality. Accordingly, during the development of Annex E there 
were strict requirements to the performance with music signals. On the other hand, for the main 
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body and Annexes B and D, there were no strict requirements to the performance with music 
signals. In order to guarantee the quality with music signals of Annex E during Annex B DTX 
operation, the music detection function forces the VAD to "speech" during music segments, hereby 
ensuring that the music segments are coded with the 11.8 kbit/s of Annex E. The SID coding and 
the CNG of Annex B are reused without any modifications. Furthermore, care is taken to 
appropriately update the parameters of the LPC mode selection algorithm of Annex E during 
discontinued transmission (see clause G.5.2). 

G.5 Algorithm description 
This clause presents the algorithm description of the necessary additions to the algorithms of the 
individual annexes in order to facilitate the integration. All remaining modules originate from the 
main body, Annex B or E. 

G.5.1 Music detection 
The music detection is a new function. It is performed immediately following the VAD and forces 
the VAD to "speech" during music segments. 

The music detection algorithm corrects the decision from the voice activity detection (VAD) in the 
presence of music signals. The music detection is based on the following parameters: 
– Vad_deci: VAD decision of the current frame. 
– PVad_dec: VAD decision of the previous frame. 
– Lpc_mod: Flag indicator of either forward or backward adaptive LPC of the previous 

frame. 
– Rc: Reflection coefficients from LPC analysis. 
– Lag_buf: Buffer of corrected open-loop pitch lags of last 5 frames. 
– Pgain_buf: Buffer of closed-loop pitch gain of last 5 subframes. 
– Energy: First autocorrelation coefficient )0(R from LPC analysis. 

– LLenergy: Normalized log energy from VAD module. 
– Frm_count: Counter of the number of processed signal frames. 
– Rate: Selection of speech coder. 

The algorithm has two main parts: 
1) Computation of relevant parameters. 
2) Classification based on parameters. 

G.5.1.1 Computation of relevant parameters 
This clause describes the computation of the parameters used by the decision module. 

Partial normalized residual energy 
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Spectral difference and running mean of partial normalized residual energy of background 
noise 

A spectral difference measure between the current frame reflection coefficients Rc and the running 
mean reflection coefficients of the background noise mRc is given by: 
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The running means mrc  and mLenergy  are updated as follows using the VAD decision Vad_deci 
that was generated by the VAD module. 
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Open-loop pitch lag correction for pitch lag buffer update 

The open-loop pitch lag Top is corrected to prevent pitch doubling or tripling as follows: 
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It should be noted that the open-loop pitch lag Top is not modified and is the same as derived by the 
open-loop analysis. 

Pitch lag standard deviation 
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Running mean of pitch gain 

θ,2.08.0 += mPgainmPgain  where ∑
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The pitch gain buffer Pgain_buf is updated after the subframe processing with a pitch gain value 
of 0.5 if Vad_deci = NOISE, and otherwise with the quantized pitch gain. 

Pitch lag smoothness and voicing strength indicator 
A pitch lag smoothness and voicing strength indicator Pflag is generated using the following logical 
steps: 

First, two intermediary logical flags Pflag1 and Pflag2 are obtained as: 

 if (std < 1.3 and mPgain > 0.45) set Pflag1 = 1 else 0 

 if (mPgain > Thres) set Pflag2 = 1 else 0, 
 where Thres = 0.63 

Finally, Pflag is determined from the following: 

 
0 else 1set 
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Stationarity counters 
A set of counters are defined and updated as follows: 
a) count_consc_rflag tracks the number of consecutive frames where the 2nd reflection 

coefficient and the running mean of the pitch gain satisfy the following condition: 
 if (Rc(2) < 0.45 and Rc(2) > 0 and mPgain < 0.5) 
  count_consc_rflag = count_consc_rflag + 1 
 else 
  count_consc_rflag = 0 
b) count_music tracks the number of frames where the previous frame uses backward adaptive 

LPC and the current frame is "speech" (according to the VAD) within a window of 64 
frames. 

 if (Lpc_mod == 1 and Vad_deci == VOICE)  
  count_music = count_music + 1 
 Every 64 frames, a running mean of count_music, mcount_music is updated and reset to 

zero as described below: 
 if ((Frm_count mod 64) == 0){ 
  if (Frm_count == 64) 
   mcount_music = count_music 
 else 
  mcount_music = 0.9 mcount_music + 0.1count_music 
 } 
c) count_consc tracks the number of consecutive frames where the count_music remains zero: 
 if (count_music == 0) 
  count_consc = count_consc + 1 
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 else 
  count_consc = 0 
  if (count_consc > 500 or count_consc_rflag > 150) set mcount_music = 0 
 count_music in b) is reset to zero every 64 frames after the update of the relevant counters. 
 The logic in c) is used to reset the running mean of count_music. 
d) count_pflag tracks the number of frames where Pflag = 1, within a window of 64 frames. 
 if (Pflag == 1) 
  count_pflag = count_pflag + 1 
 Every 64 frames, a running mean of count_pflag, mcount_pflag, is updated and reset to zero 

as described below: 
 if ((Frm_count mod 64) == 0){ 
   if (Frm_count == 64) 
  mcount_pflag = count_ pflag 
 else{ 
   if (count_ pflag > 25) 
  mcount_pflag = 0.98mcount_pflag + 0.02count_pflag 
   else (count_pflag > 20) 
  mcount_pflag = 0.95mcount_pflag + 0.05count_pflag 
   else 
  mcount_pflag = 0.9mcount_pflag + 0.1count_pflag 
   } 
 } 
e) count_consc_pflag tracks the number of consecutive frames satisfying the following 

condition: 
 if (count_pflag == 0) 
   count_consc_pflag = count_consc_pflag + 1 
 else 
   count_consc_pflag = 0 
 if (count_consc_pflag > 100 or count_consc_rflag > 150) set mcount_pflag = 0 
 count_pflag is reset to zero every 64 frames. The logic in e) is used to reset the running 

mean of count_pflag. 

G.5.1.2 Classification 

Based on the estimation of the above parameters, the VAD decision Vad_deci from the VAD 
module is reverted if the following conditions are satisfied: 
 if (Rate = G729E){ 
   if (SD > 0.15 and (Lenergy – mLenergy) > 4 and LLenergy > 50) 
  Vad_deci = VOICE 
   else if ((SD > 0.38 or (Lenergy – mLenergy) > 4) and LLenergy > 50)) 
  Vad_deci = VOICE 
   else if ((mcount_pflag >= 10 or mcount_music >= 1.0938 or Frm_count < 64) 
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   and LLenergy > 7) 
  Vad_deci = VOICE 
 } 

Note that the music detection function is called all the time regardless of the operational coding 
mode in order to keep the memories current. However, the VAD decision Vad_deci is altered only 
if Annex G is operating at 11.8 kbit/s (Annex E). It should be noted that the music detection only 
has the capability to change the decision from "non-speech" to "speech" and not vice versa. 

G.5.2 Update of state variables specific to Annex E during discontinued transmission 

G.5.2.1 Update of encoder state variables specific to Annex E 
At the encoder in case of inactive frames, the update of state variables is identical to the update 
performed in Annex E in case of switch to the nominal 8 kbit/s bit rate. The update procedure is the 
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high 
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly 
switch from LP forward filter to backward LP filter is reset to its maximum value (see 
clause E.3.2.7.1). 

G.5.2.2 Update of decoder state variables specific to Annex E during discontinued 
transmission 

At the decoder in case of inactive frames, the update of state variables is almost identical to the 
update performed in Annex E in case of switch to the forward mode only rates (8 kbit/s) except that 
the pitch delay stationary indicator is reset to 0 instead of being computed by the pitch tracking 
procedure (see clause E.4.4.5). 

G.6 Description of C source code 
This annex, integrating Annexes B and E, is simulated in 16-bit fixed-point ANSI-C code using the 
same types of fixed-point data and the same set of fixed-point basic operators as in the G.729 
software. The ANSI-C code represents the normative specification of this annex. The algorithmic 
description given by the C code shall take precedence over the texts contained in the main body of 
G.729 and in Annexes B, E and G. As of the approval of this text, the current version of this 
ANSI C code is Version 1.2 of October 2006. More recent versions may become available through 
corrigenda or amendments to G.729. Please ensure to use the latest available version from the 
ITU-T website. 

The following clauses summarize the use of this simulation code, and how the software is 
organized.  

G.6.1 Use of the simulation software  
The C code consists of two main programs coderg.c and decoderg.c, which simulate encoder and 
decoder, respectively. The encoder is run as follows: 

 coderg inputfile bitstreamfile dtx_option rate_option 
The decoder is run as follows: 

 decoderg bitstreamfile outputfile 

The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The 
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream 
is contained in the simulation software. The two parameters are used for the encoder: dtx_option 
and rate_option where: 
dtx_option  = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled). 
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rate_option  = 1 to select the main G.729 (8 kbit/s); = 2 is to select the higher rate (11.8 kbit/s) or 
a file_rate_name: a binary file of 16-bit word containing either 1, 2 to select the 
rate on a frame-by-frame basis; the default is 1 (8 kbit/s). 

G.6.2 Organization of the simulation software 
The files can be classified into four groups: 
1) Files identical to software files of G.729 main body, Annex B or E listed in Table G.1. 
2) Files adapted from software files of G.729 Annex B or E, listed in Table G.2, some minor 

modifications have been introduced to cope with the integration. 
3) Files integrating G.729 software files of G.729 main body, Annexes B and E, listed in 

Table G.3. 
4) New files specific to integrated Annexes B and E, listed in Table G.4. 

Table G.1 – List of software files identical to software files 
of G.729 main body and Annex B or E 

File name Description Identical to 

Basic_op.c Basic operators Main 
Oper_32b.c Extended basic operators Main 
Dspfunc.c Mathematical functions Main 
Gainpred.c Gain predictor Main 
Lpcfunc.c Miscellaneous routines related to LP filter Main 
Pre_proc.c Preprocessing (HP filtering and scaling) Main 
P_parity.c Compute pitch parity Main 

Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main 
Pred_lt3.c Generation of adaptive codebook Main 
Post_pro.c Post-processing (HP filtering and scaling) Main 

Pitch.c Pitch search Main 
Dec_lag3.c Decode adaptive-codebook index Main 
Typedef.h Data type definition (machine dependent) Main 
Basic_op.h Basic operators prototypes Main 
Oper_32b.h Extended basic operators prototypes Main 
Acelp_co.c ACELP codebook search Main 
De_acelp.c Decode ACELP codebook Main 
Qua_gain.c Gain quantizer Main 
De_acelp.c ACELP decoding Main 
Tab_ld8k.c ROM tables B 
Taming.c Pitch instability control B 

Qsidgain.c SID gain quantization B 
QsidLSF.c SID-LSF quantization B 
Tab_dtx.c ROM tables B 
Calcexc.c CNG excitation calculation B 

Util.c Utility functions B 
Ld8k.h Function prototypes B 
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Table G.1 – List of software files identical to software files 
of G.729 main body and Annex B or E 

File name Description Identical to 

Tab_ld8k.h Extern ROM tables declarations B 
Dtx.h Prototype and constants B 
Sid.h Prototype and constants B 

Octet.h Octet transmission mode definition B 
Tab_dtx.h Extern ROM table declarations B 

Vad.h Prototype and constants B 
Pwfe.c Computation of perceptual weighting coefficients E 

Filtere.c Filter functions E 
Lspgetqe.c LSP quantizer E 
Lspdece.c LSP decoding routing E 
Qua_lspe.c LSP quantizer E 
Bwfwfunc.c Miscellaneous routines related to backward/forward switch selection E 

Ld8e.h Function prototypes for G.729, Annex E E 
Acelp_e.c Search fixed codebook (11.8 kbit/s) E 
Deacelpe.c Decode algebraic codebook (11.8 kbit/s) E 
Decgaine.c Decode gains E 
Tab_ld8e.c ROM tables for G.729 at 11.8 kbit/s E 
Tab_ld8e.h Extern ROM declarations for G.729 at 11.8 kbit/s E 
Track_pi.c Pitch tracking E 

Table G.2 – List of software files adapted from software files 
of G.729 main body, Annexes B and E 

File name Description Adapted from 

Dtxg.c DTX decision B 
Vadg.c VAD B 

Dec_sidf.c Decode SID information B 
Bwfwg.c Backward/forward switch selection E 
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Table G.3 – List of software files integrating software files 
from G.729 main body, Annexes B and E 

File name Description Integrated from 

Coderg.c Main encoder routine B + E 
Cod_ld8g.c Encoder routine B + E 
Decoderg.c Main decoder routine B + E 
Dec_ld8g.c Decoder routine B + E 

Bitsg.c Bit manipulation routines B + E 
Lpcg.c LP analysis B + E 
Pstg.c Postfilter routines B + E 
Ld8g.h Constant and function prototypes for G.729, Annex G  B + E 

Table G.4 – List of software files specific to integrated G.729 
Annexes B and E 

File name Description 

Mus_dtct.c Music detection module 
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Annex H 
 

Reference implementation of switching procedure between Annexes D and E 
(This annex forms an integral part of this Recommendation) 

Summary 
This annex defines the necessary mechanisms for switching operation between 6.4 kbit/s Annex D 
and 11.8 kbit/s Annex E. Previously, only one switching from 8 kbit/s G.729 was specified. 

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s, 8 kbit/s and 11.8 kbit/s without DTX 
functionality. 

H.1 Scope 
This annex provides a description of the integration of Annexes D and E, hereby defining switching 
procedure between Annexes D and E. It presents a standard way of performing this integration and 
expansion of the functionality thereby guiding the industry and ensuring a standard speech quality 
and compatibility worldwide. The integration has been performed with focus on several constraints 
in order to satisfy the needs of the industry: 
1) Bit-exactness with the main body and individual annexes. 
2) Minimum additional program code, memory, and complexity usage. 
3) Stringent quality requirements to new functionality in line with quality and application 

areas of the according standard annexes. 

H.2 Normative references 

This annex refers to materials defined in the main body and Annexes D and E. 

H.3 Overview 

G.729 main body and Annexes D and E provide a bit-exact fixed-point specification of a 
CS-ACELP coder at 8 kbit/s, lower and higher bit-rate extension capability at 6.4 and 11.8 kbit/s. 
Exact details of these specifications are given in bit-exact fixed-point C code in an electronic file 
attached to this annex. This annex describes and defines the integration of Annexes D and E. 

H.4 Algorithm description 
This clause presents the algorithm description of the necessary additions to the algorithms of the 
individual annexes in order to facilitate the integration. All remaining modules originate from the 
main body, Annex D or E. 

H.4.1 Update of state variables specific to Annex D during Annex E frames 
The only state variables specific to Annex D are the state variables of the phase dispersion module 
(see clause D.6.2) at the decoder. In case of 11.8 kbit/s frames, the same update procedure as in case 
of nominal bit rate (8 kbit/s) is followed. 

H.4.2 Update of state variables specific to Annex E during Annex D frames 

H.4.2.1 Update of encoder state variables specific to Annex E 

At the encoder in case of 6.4 kbit/s frames, the update of state variables is identical to the update 
performed in Annex E in case of switch to the nominal bit rate 8 kbit/s. The update procedure is the 
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high 
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly 
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switch from LP forward filter to backward LP filter is reset to its maximum value (see 
clause E.3.2.7.1). 

H.4.2.2 Update of decoder state variables specific to Annex E during Annex D frames 
At the decoder in case of 6.4 kbit/s frames, the update of state variables is identical to the update 
performed in Annex E in case of switch to the nominal bit-rate (8 kbit/s) mode. 

H.5 Description of C source code 
This annex, integrating Annexes D and E, is simulated in 16-bit fixed-point ANSI-C code using the 
same types of fixed-point data and the same set of fixed-point basic operators as in the G.729 
software. The ANSI-C code represents the normative specification of this annex. The algorithmic 
description given by the C code shall take precedence over the texts contained in the main body 
of G.729 and in Annexes D, E and H. As of the approval of this text, the current version of this 
ANSI C code is Version 1.2 of October 2006. More recent versions may become available through 
corrigenda or amendments to G.729. Please ensure to use the latest available version from the 
ITU-T website. 

The following clauses summarize the use of this simulation code, and how the software is 
organized. 

H.5.1 Use of the simulation software 
The C code consists of two main programs coderh.c and decoderh.c, which simulate encoder and 
decoder, respectively. The encoder is run as follows: 

 coderh inputfile bitstreamfile rate_option 
The decoder is run as follows: 

 decoderh bitstreamfile outputfile 

The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The 
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream 
is contained in the simulation software. The parameter used for the encoder is: rate_option where: 
rate_option  = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main G.729 (8 kbit/s); = 2 is 

to select the higher rate (11.8 kbit/s) or a file_rate_name: a binary file of 16-bit 
word containing either 0, 1, 2 to select the rate on a frame-by-frame basis; the 
default is 1 (8 kbit/s). 

H.5.2 Organization of the simulation software 
The files can be classified into three groups: 
1) Files identical to software files of G.729 main body, Annex D or E, listed in Table H.1. 
2) Files adapted from software files of G.729 main body and Annexes D and E, listed in 

Table H.2, some minor modifications have been introduced to cope with the integration of 
Annexes D and E. Most modifications come from the integration of annexes routines 
prototypes declaration files in one file (ld8cp.h) or to the integration of extern ROM 
declaration annexes files into one file (tabld8cp.h). Some were introduced to deal with the 
update of the annexes state variables. 

3) Files integrating G.729 software files of Annex D or E, listed in Table H.3. 
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Table H.1 – List of software files identical to software files 
of G.729 main body, Annex D or E 

File name Description Identical to 

Basic_op.c Basic operators Main 
Oper_32b.c Extended basic operators Main 
Dspfunc.c Mathematical functions Main 
Gainpred.c Gain predictor Main 
Lpcfunc.c Miscellaneous routines related to LP filter Main 
Pre_proc.c Preprocessing (HP filtering and scaling) Main 
P_parity.c Compute pitch parity Main 

Pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main 
Pred_lt3.c Generation of adaptive codebook Main 
Post_pro.c Post-processing (HP filtering and scaling) Main 
Tab_ld8k.c ROM tables Main 
Basic_op.h Basic operators prototypes Main 

Ld8k.h Function prototypes Main 
Oper_32b.h Extended basic operators prototypes Main 
Tab_ld8k.h Extern ROM table declarations Main 
Typedef.h Data type definition (machine-dependent) Main 
Taming.c Pitch instability control B 

Qua_g8k.c Gain quantizer D 
Qua_g6k.c Gain quantizer D 
Tabld8kd.c ROM tables for G.729 at 6.4 kbit/s D 
Tabld8kd.h Extern ROM declarations for G.729 at 6.4 kbit/s D 

ld8kd.h Function prototypes for G.729 Annex D D 
Bwfwfunc.c Miscellaneous routines related to backward/forward switch selection E 

Filtere.c Filter functions E 
Lpce.c LP analysis E 

Lspcdece.c LSP decoding routines E 
Lspgetqe.c LSP quantizer E 
Qua_lspe.c LSP quantizer E 

Pstpe.c Postfilter routines E 
Track_pi.c Pitch tracking E 
Tab_ld8e.c ROM tables for G.729 at 11.8 kbit/s E 
Tab_ld8e.h Extern ROM declarations for G.729 at 11.8 kbit/s E 

Util.c Utility functions E 
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Table H.2 – List of software files adapted from software files 
of G.729 main body and Annexes D and E 

File name Description Adapted from 

Phdisp.c Phase dispersion D 
Bwfwh.c Backward/forward switch selection E 

Table H.3 – List of software files integrating software files 
from G.729 main body, Annex D or E 

File name Description Integrated from 

Coderh.c Main encoder routine D + E 
Cod_ld8h.c Encoder routine D + E 
Decoderh.c Main decoder routine D + E 
Dec_ld8h.c Decoder routine D + E 
Acelp_h.c Search ACELP fixed codebook (6.4, 8, 11.8 kbit/s) D + E 
Deacelph.c Decode algebraic codebook (6.4, 8, 11.8 kbit/s) D + E 

Pitchh.c Pitch search D + E 
Declagh.c Decode adaptive-codebook index D + E 

Decgainh.c Decode gain D + E 
Bitsh.c Bit manipulation routines D + E 
Ld8h.h Constant and function prototypes for G.729 Annex H D + E 
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Annex I 
 

Reference fixed-point implementation for integrating G.729 CS-ACELP speech 
coding main body with Annexes B, D and E 

(This annex forms an integral part of this Recommendation) 

Summary 
This annex describes the integration of G.729 main body with Annexes B, D and E. 

This annex includes an electronic attachment containing reference C code and test vectors for fixed-
point implementation of CS-ACELP at 6.4 kbit/s, 8 kbit/s and 11.8 kbit/s with discontinuous 
transmission (DTX) functionality. 

I.1 Scope 
This annex provides a description of integrating the G.729 main body with Annexes B, D and E, 
hereby defining the integrated C code. It presents a standard way of performing this integration and 
expansion of the functionality thereby guiding the industry and ensuring a standard speech quality 
and compatibility worldwide. The integration has been performed with focus on several constraints 
in order to satisfy the needs of the industry: 
1) Bit-exactness with the main body and individual annexes. 
2) Minimum additional program code, memory, and complexity usage. 
3) Stringent quality requirements to new functionality in line with quality and application 

areas of the according standard annexes. 

I.2 Normative references 
This annex refers to materials defined in the main body and Annexes B, D, and E. 

I.3 Overview 

G.729 main body and Annexes B, D and E provide a bit-exact fixed-point specification of a 
CS-ACELP coder at 8 kbit/s, with DTX functionality, lower and higher bit-rate extension capability 
at 6.4 kbit/s and 11.8 kbit/s. Exact details of these specifications are given in bit-exact fixed-point 
C code in an electronic attachment to this annex. This annex describes and defines the integration of 
the G.729 main body with Annexes B, D and E. 

I.4 New functionality 
This clause presents a brief overview of the modifications/additions to the algorithms in order to 
facilitate the integration of the main body and Annexes B, D and E. Also certain additions have 
been found necessary in order to accommodate the application area of the different modules. 

I.4.1 Annex B DTX operation with Annex D 
Integrating Annexes B and D functionality in order to provide DTX operation with Annex D is 
straightforward. The voice activity detection (VAD), silence insertion description (SID) coding, and 
comfort noise generation (CNG) of Annex B are reused without any modifications. Care is taken to 
update the parameters for the phase dispersion for the postfilter in Annex D during discontinued 
transmission (see clause I.5.2). 

I.4.2 Annex B DTX operation with Annex E 
Integrating Annexes B and E functionality in order to provide DTX operation with Annex E is 
slightly more involved. Since the DTX operation of Annex B is based on the 10th order LPC 
analysis, the VAD function of Annex B is performed after the 10th order forward adaptive LPC 
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analysis and before the backward adaptive LPC analysis of Annex E. In case the VAD function 
detects "non-speech", the LPC mode of Annex E is forced to forward adaptive LPC and the 
backward adaptive LPC analysis is skipped. Furthermore, it has been found necessary to add a 
correctional module after the VAD in order to detect music and accommodate the somewhat 
expanded application area of Annex E – one of the purposes of Annex E is to provide transmission 
capability of music with a certain quality. Accordingly, during the development of Annex E there 
were strict requirements for performance with music signals. On the other hand, for the main body 
and Annexes B and D there were no strict requirements for performance with music signals. In 
order to guarantee the quality with music signals of Annex E during Annex B DTX operation, the 
music detection function forces the VAD to "speech" during music segments, hereby ensuring that 
the music segments are coded with the 11.8 kbit/s of Annex E. The SID coding and the CNG of 
Annex B are reused without any modifications. Furthermore, care is taken to appropriately update 
the parameters of the LPC mode selection algorithm of Annex E during discontinued transmission 
(see clause I.5.3). 

I.5 Algorithm description 
This clause presents the algorithm description of the necessary additions to the algorithms of the 
individual annexes in order to facilitate the integration. All remaining modules originate from the 
main body, Annex B, D or E. 

I.5.1 Music detection 
The music detection is a new function. It is performed immediately following the VAD and forces 
the VAD to "speech" during music segments. It is active only during Annex E operation, though its 
parameters are updated continuously independently of bit-rate mode during DTX operation of the 
integrated G.729. 

The music detection algorithm corrects the decision from the voice activity detection (VAD) in the 
presence of music signals. It is used in conjunction with Annex E during Annex B DTX operation, 
i.e., in discontinuous transmission mode. The music detection is based on the following parameters: 
–  Vad_deci: VAD decision of the current frame. 
– PVad_dec: VAD decision of the previous frame. 
– Lpc_mod: Flag indicator of either forward or backward adaptive LPC of the previous 

frame. 
– Rc: Reflection coefficients from LPC analysis. 
– Lag_buf: Buffer of corrected open-loop pitch lags of last 5 frames. 
– Pgain_buf: Buffer of closed-loop pitch gain of last 5 subframes. 
– Energy: First autocorrelation coefficient )0(R from LPC analysis. 

– LLenergy: Normalized log energy from VAD module. 
– Frm_count: Counter of the number of processed signal frames. 
– Rate: Selection of speech coder. 

The algorithm has two main parts:  
1) Computation of relevant parameters. 
2) Classification based on parameters. 
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I.5.1.1 Computation of relevant parameters 
This clause describes the computation of the parameters used by the decision module. 

Partial normalized residual energy 
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Spectral difference and running mean of partial normalized residual energy of background 
noise 
A spectral difference measure between the current frame reflection coefficients Rc and the running 
mean reflection coefficients of the background noise mRc is given by: 
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The running means mrc  and mLenergy are updated as follows using the VAD decision Vad_deci 
that was generated by the VAD module. 
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Open-loop pitch lag correction for pitch lag buffer update 

The open-loop pitch lag opT  is corrected to prevent pitch doubling or tripling as follows: 
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It should be noted that the open loop pitch lag Top is not modified and is the same as derived by the 
open-loop analysis. 

Pitch lag standard deviation 
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where: 
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Running mean of pitch gain 
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The pitch gain buffer Pgain_buf is updated after the subframe processing with a pitch gain value of 
0.5 if Vad_deci = NOISE, and otherwise with the quantized pitch gain. 

Pitch lag smoothness and voicing strength indicator 

A pitch lag smoothness and voicing strength indicator Pflag  is generated using the following 
logical steps: 

First, two intermediary logical flags 2 and 1 PflagPflag are obtained as: 

 if (std < 1.3 and mPgain > 0.45) set Pflag1 = 1 else 0 

 if (mPgain > Thres) set Pflag2 = 1 else 0, 
 where Thres = 0.73 if Rate = G729D, otherwise Thres = 0.63 

Finally, Pflag  is determined from the following: 
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Stationarity counters 
A set of counters are defined and updated as follows: 
a) rflagconsccount __ tracks the number of consecutive frames where the 2nd reflection 

coefficient and the running mean of the pitch gain satisfy the following condition: 
 if (Rc(2) < 0.45 and Rc(2) > and mPgain < 0.5) 
  count_consc_rflag = count_consc_rflag + 1 
 else 
  count_consc_rflag = 0 
b) count_music tracks the number of frames where the previous frame uses backward adaptive 

LPC and the current frame is "speech" (according to the VAD) within a window of 
64 frames. 

 if (Lpc_mod == 1 and Vad_deci == VOICE) 
  count_music = count_music + 1 
 Every 64 frames, a running mean of count_music, mcount_music is updated and reset to 

zero as described below: 
  if ((Frm_count mod 64) == 0){ 
  if (Frm_count mod 64) 
   mcount_music = count_music 
 else 
  mcount_music = 0.9 mcount_music + 0.1count_music 
 } 
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c) count_consc tracks the number of consecutive frames where the count_music remains zero: 
  if (count_music == 0) 
  count_consc = count_consc + 1 
 else 
  count_consc = 0 
  if (count_consc > 500 or count_consc_rflag > 150) set mcount_music = 0 

 count_music in b) is reset to zero every 64 frames after the update of the relevant counters. 

 The logic in c) is used to reset the running mean of count_music. 
d) count_pflag tracks the number of frames where 1=Pflag , within a window of 64 frames. 

 if (Pflag == 1) 
  count_pflag = count_pflag + 1 
 Every 64 frames, a running mean of count_pflag, mcount_pflag, is updated and reset to zero 

as described below: 
 if ((Frm_count mod 64) == 0){ 
   if (Frm_count == 64) 
  mcount_pflag = count_ pflag 
 else{ 
   if (count_ pflag > 25) 
  mcount_pflag = 0.98mcount_pflag + 0.02count_pflag 
   else (count_pflag > 20) 
  mcount_pflag = 0.95mcount_pflag + 0.05count_pflag 
   else 
  mcount_pflag = 0.9mcount_pflag + 0.1count_pflag 
   } 
 } 
e) count_consc_pflag tracks the number of consecutive frames satisfying the following 

condition: 
 if (count_pflag == 0) 
   count_consc_pflag = count_consc_pflag + 1 
 else 
   count_consc_pflag = 0 
 if (count_consc_pflag > 100 or count_consc_rflag > 150) set mcount_pflag = 0 
 count_pflag is reset to zero every 64 frames. The logic in e) is used to reset the running 

mean of count_pflag. 

I.5.1.2 Classification 
Based on the estimation of the above parameters, the VAD decision Vad_deci from the VAD 
module is reverted if the following conditions are satisfied: 
 if (Rate = G729E){ 
   if (SD > 0.15 and (Lenergy – mLenergy) > 4 and LLenergy > 50) 
  Vad_deci = VOICE 
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   else if ((SD > 0.38 or (Lenergy – mLenergy) > 4) and LLenergy > 50) 
  Vad_deci = VOICE 
   else if ((mcount_pflag >= 10 or mcount_music >= 1.0938 or Frm_count < 64) 
   and LLenergy > 7) 
  Vad_deci = VOICE 
 } 

Note that the music detection function is called all the time regardless of the operational coding 
mode in order to keep the memories current. However, the VAD decision Vad_deci is altered only 
if the integrated G.729 is operating at 11.8 kbit/s (Annex E). It should be noted that the music 
detection only has the capability to change the decision from "non-speech" to "speech" and not vice 
versa. 

I.5.2 Update of state variables specific to Annex D during discontinued transmission 
The only state variables specific to Annex D are the state variables of the phase dispersion module 
(see clause D.6.2) at the decoder. In case of inactive frames, the same update procedure as in case of 
nominal bit rate (8 kbit/s) is followed using as adaptive and ACELP gain estimations the gain 
values computed by the comfort noise excitation generator (see clause B.4.4). Note also that the 
update for the higher rate is identical to the update for the nominal bit rate. 

I.5.3 Update of state variables specific to Annex E during discontinued transmission 

I.5.3.1 Update of encoder state variables specific to Annex E 
At the encoder in case of inactive frames, the update of state variables is identical to the update 
performed in Annex E in case of switch to the nominal bit rate 8 kbit/s. The update procedure is the 
following: the LP mode is set to 0, the global stationarity indicator is decreased and the high 
stationarity indicator is reset to 0 (see clause E.3.2.7.2), the interpolation factor used to smoothly 
switch from LP forward filter to backward LP filter is reset to its maximum value (see 
clause E.3.2.7.1). Note that this update is also performed in case of switch to the lower bit rate 
6.4 kbit/s. 

I.5.3.2 Update of decoder state variables specific to Annex E during discontinued 
transmission 

At the decoder in case of inactive frames, the update of state variables is almost identical to the 
update performed in Annex E in case of switch to the forward mode only rates (8 kbit/s and 
6.4 kbit/s) except that the pitch delay stationary indicator is reset to 0 instead of being computed by 
the pitch tracking procedure (see clause clause E.4.4.5). 

I.6 Description of C source code 

This annex, integrating the G.729 main body with Annexes B, D and E, is simulated in 16-bit fixed-
point ANSI-C code using the same types of fixed-point data and the same set of fixed-point basic 
operators as in the G.729 software. The ANSI-C code represents the normative specification of this 
annex. The algorithmic description given by the C code shall take precedence over the texts 
contained in the main body of G.729 and in Annexes B, D, E and I. As of the approval of this text, 
the current version of this ANSI C code is Version 1.2 of October 2006. More recent versions may 
become available through corrigenda or amendments to G.729. Please ensure to use the latest 
available version from the ITU-T website. 

The following clauses summarize the use of this simulation code, and how the software is 
organized. 
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I.6.1 Use of the simulation software 
The C code consists of two main programs coderi.c and decoderi.c, which simulate encoder and 
decoder, respectively. The encoder is run as follows: 
 coderi inputfile bitstreamfile dtx_option rate_option 
The decoder is run as follows: 
 decoderi bitstreamfile outputfile 
The inputfile and outputfile are 8 kHz sampled data files containing 16-bit PCM signals. The 
bitstreamfile is a binary file containing the bit stream; the mapping table of the encoded bit stream 
is contained in the simulation software. The two parameters are used for the encoder: dtx_option 
and rate_option where: 
dtx_option = 1: DTX enabled 0: DTX disabled, the default is 0 (DTX disabled). 
rate_option = 0 to select the lower rate (6.4 kbit/s); = 1 to select the main G.729 (8 kbit/s); = 2 is 

to select the higher rate (11.8 kbit/s) or a file_rate_name: a binary file of 16-bit 
word containing either 0, 1, 2 to select the rate on a frame-by-frame basis; the 
default is 1 (8 kbit/s). 

I.6.2 Organization of the simulation software 

The files can be classified into four groups: 
1) Files identical to software files of G.729 main body and Annex B, D or E, listed in 

Table I.1. 
2) Files adapted from software files of G.729 main body and Annex B, D or E, listed in 

Table I.2, some minor modifications have been introduced to cope with the integration. 
Most modifications come from the integration of annexes routine prototype declaration files 
in one file (ld8cp.h) or to the integration of extern ROM declaration annexes files into one 
file (tabld8cp.h). Some were introduced to deal with the update of the annexes state 
variables. 

3) Files integrating G.729 software files of Annex B, D or E, listed in Table I.3. 
4) Files specific (new files) to this integrated G.729 listed in Table I.4. 

Table I.1 – List of software files identical to software files 
of G.729 main body and Annex B, D or E 

File name Description Identical to 

Basic_op.c Basic operators Main 
Oper_32b.c Extended basic operators Main 
Dspfunc.c Mathematical functions Main 
Gainpred.c Gain predictor Main 
lpcfunc.c Miscellaneous routines related to LP filter Main 

Pre_proc.c Preprocessing (HP filtering and scaling) Main 
P_parity.c Compute pitch parity Main 

pwf.c Computation of perceptual weighting coefficients (8 kbit/s) Main 
Pred_lt3.c Generation of adaptive codebook Main 
Post_pro.c Post-processing (HP filtering and scaling) Main 
Tab_ld8k.c ROM tables Main 
Basic_op.h Basic operators prototypes Main 
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Table I.1 – List of software files identical to software files 
of G.729 main body and Annex B, D or E 

File name Description Identical to 

Ld8k.h Function prototypes Main 
Oper_32b.h Extended basic operators prototypes Main 
Tab_ld8k.h Extern ROM table declarations Main 
Typedef.h Data type definition (machine-dependent) Main 
Taming.c Pitch instability control B 

Qsidgain.c SID gain quantization B 
QsidLSF.c SID-LSF quantization B 
Tab_dtx.c ROM tables B 

Sid.h Prototype and constants B 
Octet.h Octet transmission mode definition B 

Tab_dtx.h Extern ROM table declarations B 
Pwfe.c Computation of perceptual weighting coefficients (11.8 kbit/s) E 

Table I.2 – List of software files adapted from software files 
of G.729 main body and Annex B, D or E 

File name Description Adapted from 

Vad.c VAD B 
Dtx.c DTX decision B 
Vad.h Prototype and constants B 
Dtx.h Prototype and constants B 

Calcexc.c CNG Excitation calculation B 
Dec_sid.c Decode SID information B 
Utilcp.c Utility functions B 
Phdisp.c Phase dispersion D 
Bwfw.c Backward/forward switch selection E 

Bwfwfunc.c Miscellaneous routines related to backward/forward switch selection E 
Filtere.c Filter functions E 
Lpccp.c LP analysis E 

Lspcdece.c LSP decoding routines E 
Lspgetqe.c LSP quantizer E 
Qua_lspe.c LSP quantizer E 
Track_pi.c Pitch tracking E 



 

122 ITU-T Rec. G.729 (01/2007) 

Table I.3 – List of software files integrating software files 
from G.729 main body and Annex B, D or E 

File name Description Integrated from 

Coderi.c Main encoder routine B + D + E 
Codld8i.c Encoder routine B + D + E 
Decodi.c Main decoder routine B + D + E 
Decld8i.c Decoder routine B + D + E 
Acelpcp.c Search ACELP fixed codebook (6.4, 8, 11.8 kbit/s) D + E 
Dacelpcp.c Decode algebraic codebook (6.4, 8, 11.8 kbit/s) D + E 
Pitchcp.c Pitch search D + E 

Declagcp.c Decode adaptive-codebook index D + E 
Q_gaincp.c Gain quantizer D + E 
Degaincp.c Decode gain D + E 

Pstpcp.c Postfilter routines B + E 
Bitscp.c Bit manipulation routines B + D + E 

Tabld8cp.c ROM tables for G.729 at 6.4 and 11.8 kbit/s D + E 
Tabld8cp.h Extern ROM declarations for G.729 at 6.4 and 11.8 kbit/s D + E 

Ld8cp.h Constant and Function prototypes for G.729 at 6.4 and 11.8 kbit/s  D + E 

Table I.4 – List of software files specific to integrated G.729 
Annexes B, D and E 

File name Description 

Mus_dtct.c Music detection module 
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Annex J 
 

An embedded variable bit-rate extension to G.729: 
An interoperable 8-32 kbit/s scalable 

wideband extension to G.729 
(This annex forms an integral part of this Recommendation) 

This annex describes an extension of G.729 for 8-32 kbit/s scalable wideband speech and audio 
coding algorithm interoperable with the main body of G.729 and its Annexes A and B. 

The details of this annex are specified and published in ITU-T Rec. G.729.1 in order to provide for 
easier maintenance and to give it better visibility.  
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Appendix I 
 

External synchronous reset performance for G.729 codecs 
in systems using external VAD/DTX/CNG 

(This appendix does not form an integral part of this Recommendation) 

Summary 
This appendix deals with external synchronous reset capability in systems using external 
VAD/DTX/CNG, e.g., circuit multiplication equipments (CME) in conjunction with G.729 main 
body and Annexes A and C. 

The use of the external synchronous reset is intended for systems using external VAD/DTX/CNG in 
conjunction with G.729 main body and Annex A or C. In this situation, the use of external 
synchronous reset is generally preferable to obtain the best possible speech quality in noisy 
scenarios where VAD is used. This is especially true when an aggressive VAD is used. When the 
external VAD has a sufficiently long hangover period (i.e., a less-aggressive VAD), the quality 
increase of external synchronous reset case compared with "no reset" case is less perceivable. 

Scope 
Although Annex B defines a "native" (or internal) VAD/DTX/CNG mechanism, some applications 
require that a different algorithm be used, because of system or complexity constraints. In these 
cases, when an external VAD/DTX/CNG algorithm (i.e., one that operates independently and does 
not exploit the internal information of the encoder) is used, there is the possibility that the state of 
the encoder and decoder will differ significantly, which will degrade quality. Hence, synchronous 
reset of the encoder and decoder can be beneficial to the overall quality when such external 
VAD/DTX/CNG algorithms are used. This appendix deals with external synchronous reset 
capability in systems using external VAD/DTX/CNG, such as CME (circuit multiplication 
equipment) in conjunction with G.729 main body and Annexes A and C. 

I.1 Introduction 
The definition of the synchronous reset is that both the encoder state variables and the decoder state 
variables are set to their respective initial values at the same frame time. 

The use of the external synchronous reset is intended for systems using an external 
VAD/DTX/CNG in conjunction with G.729 main body, Annex A or C. In this situation, the use of 
external synchronous reset is generally preferable to obtain the best possible speech quality in noisy 
scenarios where VAD is used. This is especially true when an aggressive VAD using a relatively 
short hangover period is used. When the external VAD has a sufficiently long hangover period (i.e., 
a less-aggressive VAD), the quality increase of external synchronous reset case compared to the 
"no-reset" case is less perceivable. In any case, no harm is expected on quality by applying 
synchronous reset to the G.729 encoder and decoder in systems using an external VAD/DTX/CNG. 
Conversely, in spite of the quick convergence of the G.729 algorithm after loss of synchronization, 
there is evidence that the use of synchronous reset will generally allow attainment of the best 
possible speech quality. 

I.2 Experimental design 

Some limited experiments have been performed to test the impact on quality of the introduction of 
synchronous reset in G.729 codecs into systems using external VAD/DTX/CNG, such as CME 
(circuit multiplication equipment) in conjunction with G.729 main body, Annexes A and C. The 
experience has been limited to simulation of CME operation in a pooled codec configuration using 
Annex C (and G.729 main body). In this CME operation, the "one-to-one relationship" between 
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encoders and decoders cannot be expected throughout the call, which will lead to loss of 
synchronization between encoder and decoder.  

To test the effect of the introduction of synchronous reset in G.729 codecs, some experiments have 
been run to evaluate the quality of both schemes (with synchronous reset and without synchronous 
reset). Various test conditions were used: clean speech at nominal-, high- and low-input levels, and 
speech with different types of background noise (babble noise, hall noise, vehicular noise) at 
different signal-to-noise ratio (SNR) values. For each condition, one male and one female talker 
were used. Two expert listening experiments were performed, one in North American english and 
the other in french, each experiment using its own external VAD indicator. 

To simulate CME operation with pooled codecs configuration, the input bit stream for the G.729 
decoder has been composed by interleaving two bit stream files coming from two different G.729 
encoders. The interleaving was done according to the respective VAD of the two input files (first 
active segment of file 1, first active segment of file 2, second active segment of file 1, second active 
segment of file 2, etc.). Finally, the decoder output file was decomposed into two decoded files 
according the interleaving scheme. When synchronous reset was used, both encoder and decoder 
were reset at the beginning of each active spurt, otherwise no reset was used. 

I.3 Performance observations 
To evaluate the impact on quality of both schemes, an informal expert listening test has been 
performed using pair-comparison of the active speech segments in the decoded files. The results 
depended on the external VAD and on the background noise similarities of the two interleaved files. 
When the external VAD has a sufficiently long hangover period (i.e., a less-aggressive VAD), the 
two schemes have similar performances when the two interleaved files have similar or high SNR 
background noise; no artefacts were perceived. When low SNR background noise segments were 
interleaved with high SNR background noise segments, some artefacts were heard at the beginning 
of active periods, although their duration was short thanks to the quick convergence of G.729 after 
loss of synchronization. When a more aggressive VAD was used, the synchronous reset provides a 
clear improvement. 

I.4 Conclusion 

Some limited experiments have been performed to test the impact on quality of the introduction of 
synchronous reset in G.729 codecs. The existing evidence confirms the expectation that no 
degradation in quality occurs by applying synchronous reset of the G.729 encoder and decoder in 
CME scenarios. Furthermore, it has been found that the introduction of synchronous reset was 
generally preferable to obtain the best possible speech quality in noisy scenarios where VAD is 
used. It is expected that this result can be extended to other systems using external VAD/DTX/CNG 
in conjunction with G.729. 
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Appendix II 
 

G.729 Annex B enhancements in voice-over-IP applications – Option 1 
(This appendix does not form an integral part of this Recommendation) 

II.1 Scope 
Although Annex B, defines a VAD/DTX/CNG mechanism, some applications require that a 
different VAD algorithm be used, because of specific constraints. In particular, this is the case for 
VoIP applications, where the algorithm described in Annex B shows bad performance under the 
following conditions: 
1) Undesired performance for input signals starting at levels below 15 dB. 
2) Annoying breathing-like noise in CNG phase. 
3) VAD bad performance under noisy conditions. 
4) Additionally, wrong variable initialization has been depicted in the current Annex B. 

This appendix deals with corresponding proposals to correct points 1) to 4) as described above, as 
an alternative to the current Annex B. 

II.2 Abbreviations and acronyms 
This appendix uses the following abbreviations and acronyms. 

DSVD  Digital Simultaneous Voice and Data 

DTX  Discontinuous Transmission Mode 

G.729B  Silence compression scheme defined in Annex B 

SID  Silence Insertion Descriptor 

SNR  Signal-to-Noise Ratio 

VAD  Voice Activity Detection 

II.3 Introduction 
Annex B to ITU-T Rec. G.729 ("G.729B") specifies a silence compression scheme for use with 
G.729, which was optimized for V.70 digital simultaneous voice and data (DSVD) applications. 
Despite its initial target application, G.729B has been heavily used in VoIP applications, and will 
continue to serve the industry in the future. G.729B allows G.729 (and its annexes) to operate in 
two transmission modes, voice and silence, which are classified using voice activity detection 
(VAD). The discontinuous transmission mode (DTX) is used to determine which of the silence 
frames are represented with the silence insertion descriptor (SID). During the last few years, 
problems concerning the use of G.729B in VoIP applications have been reported. 

II.4 Identified problems of G.729B in VoIP applications 
The reported problems addressed by this appendix are the following:  
1) Undesired performance for input signals starting at levels below 15 dB. 
2) Annoying breathing-like noise in silence frames. 
3) VAD performance on noise condition. 
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Problem 1: Undesired performance for input signals starting at levels below 15 dB 
If the energy of the initial 32 input frames (320 ms) is below 15 dB, G.729B detects all the 
consecutive input frames above 15 dB as voice. This defeats the purpose of using G.729B; it adds 
the extra MIPS/memory cost of running G.729B and yet results in no bandwidth savings. 

The proposed solution is to restart the initialization frame counter every 320 ms until background 
noise characteristics are properly initialized.  

Problem 2: Annoying breathing-like noise in silence frames 
When digital silence or very low level noise follows more than 129 frames (1.29 s) of tones or other 
stationary signals, the noise gain in the first SID frame is estimated at a very high level; this 
introduces high level breathing-like noise and causes speech quality degradation. This problem has 
been reported from various customers of Alcatel, Texas Instruments. The proposed solution is to 
introduce a hangover at the end of voice frames. 

Problem 3: VAD performance on noisy environments 
With SNR below 15 dB, current VAD has two problems: on one hand, it oscillates between voice 
and noise decision, thus reducing the benefits in terms of spare bandwidth due to SID updates, and 
on the other hand, noise decision is often taken during voice signal. 

This appendix results in very few modifications to the existing coder and no change to the existing 
decoder. The goal is to try to lose as little information as possible from the voice signal instead of 
having as much as possible "noise decision". 

The proposed solution reduces misclassification from voice to noise, especially for low SNR 
(≤15 dB). It consists of modifying the condition of background noise updates and the condition of 
voice activity decision smoothing.  

The three changes that have been introduced to the existing coder are the following: 
– the test that fixes NOISE, when the difference between current signal and previous noise is 

too small, is withdrawn; 
– hysteresis is introduced in the decision to switch from VOICE to NOISE when the mean 

energy of the background noise is important enough. In the proposal, at least 6 consecutive 
NOISEs have to be detected before switching from VOICE to NOISE; and 

– the required condition to update the running averages of the background noise 
characteristics is modified. 

The modified C code addressing these three problems is provided in the electronic attachment to 
this appendix. 

II.5 Experimental design 
Experiments have been performed to test the impact of the introduction of these enhancements. 

Problem 1: Undesired performance for input signals starting at levels below 15 dB 
Annex B VAD has the following running averages of the background noise characteristics: average 
full band energy fE ; average low band energy lE ; average zero crossing rate ZC ; and average 

spectral parameters { }p
iiLSF 1= . fE , lE , ZC  and { }p

iiLSF 1=  are initialized to 0 at the very beginning 
in function vad_init. In Annex B source codes, Annex B VAD makes initial update of the running 
averages of background noise characteristics using only the frames that have energy Ef greater than 
15 dB during the first 32 frames of the input signal. When the energy of all 32 beginning frames is 
below 15 dB, the running averages of the background noise characteristics are not updated. 
Practically, the initial 320 ms input occurs during the channel establishment period, so it may not 
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reflect the real background noise. If the phone is in mute mode or on-hook at the beginning of 
channel connection, the input signal level is usually less than 15 dB. In this case, the running 
averages of the background noise characteristics are set to zeros without any initial updates. It 
follows that Annex B VAD detects all the frames as voice in that channel. 

To make the initial update more robust than it is now, we proposed that frame counter should be 
restarted if energies of all the 32 frames are less than 15 dB at the beginning of call set-up. The 
proposed version of Annex B source codes is compliant with current Annex A and B provisions, 
and with Annex B test vectors. 

Problem 2: Annoying breathing-like noise in silence frames  

Different tones at different levels were tested (especially French and US ringing-back tones). 

Problem 3: VAD performance on noisy environments 

Various test conditions were used: clean speech at nominal-, high- and low-input levels, and speech 
with different types of background noise (white noise, babble noise, fan noise) at different 
signal-to-noise ratio (SNR) values. 

II.5.1 The fourth smoothing stage 
The smoothing of the voice activity decision is divided into four stages (see clause B.3.6). The 
fourth smoothing stage is: 

 if (( )614+< ff EE and (Frm_count > 128) and (v_flag = 0) and 
 (rc < 19661)) then (marker = noise) 

First, this test is the only smoothing test that does not take the previous decisions into consideration, 
whereas the aim of this smoothing function is to "reflect the long-term stationary nature of the 
speech signal". Moreover, it is assumed in this test that whatever the background noise, there will 
always be at least 614 between E and fE , if the current frame is a voiced one. In fact, when the 
energy of the background noise becomes too high, this assertion is no more true, and this test 
introduces mistakes in the VAD. 

The fourth smoothing stage has been suppressed. The Boolean v_flag, which is only used in this 
test, is removed. 

II.5.2 Hysteresis 
In a noisy environment, it is more difficult for the multi-boundary initial voice activity decision 
function to clearly make the distinction between voice and noise because the coefficients of the 
vector of difference parameters are smaller. That is why the initial VAD output is more erratic in 
this case. In order to avoid this comportment and to obtain a more coherent output signal, a 
hysteresis has been added at the beginning of the smoothing function: 
 if (marker = VOICE) then (Count_inert = 0) 
 if ((marker = NOISE) and (Count_inert < 6) and (MeanSE > 8000)) then{ 
   Count_inert; + + 
   marker = VOICE; } 

In the third smoothing stage, line 264, the equation Count_inert = 6 is added, in order to avoid 
interactions between both tests. 

II.5.3 The updating test 
According to clause B.3.7, the running averages of the background noise characteristics are updated 
if )( 6TEE ff +< . In the C source code, this condition is replaced by: (( )614+< ff EE  and 
(rc < 24576) and (∆S < 83)). 
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Let us consider the test vector called tstseq3.bin. in Annex B. 

Figure II.1 shows the input signal and the decision taken by the multi-boundary initial VAD. The 
last section of the signal, where there is only noise, is not supposed to be transmitted. Nevertheless, 
the initial VAD decision is constant and equal to one, even if the noise is maintained for a longer 
time. This is due to the fact that the update condition described above is always wrong, because of 
the too high ∆S value. Figure II.2 shows ∆S with the current test (solid red curve) and without the 
(SD < 83) condition (dotted blue curve). 
NOTE – ∆S, the spectral distortion, is called SD in the C source code. 

 

Figure II.1 – G.729 + VAD simulation (Code ITU version 1.3) 
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Figure II.2 – Comparison of SD values 

Without this condition, the running averages are correctly updated, and the ∆S value is much 
smaller as it is supposed to be in a noisy environment. The decision taken by the VAD algorithm is 
correct again (see Figure II.3). 
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Figure II.3 – G.729 + VAD simulation (Code ITU version 1.3, modified) 

II.6 Electronic attachments 
Two sets of electronic attachments are provided with this appendix. 

The first one is the modified file vad.c, which implements modifications in the VAD algorithm of 
Annex B according to the descriptions in this appendix. 

The second electronic attachment is a set of test files that were used to test the algorithm in this 
appendix. 
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Appendix III 
 

Annex B enhancements in voice-over-IP applications – Option 2 
(This appendix does not form an integral part of this Recommendation) 

III.1 Scope 
Annex B provides a silence compression scheme for G.729 implementations that are optimized for 
terminals conforming to [ITU-T V.70]. The silence compression scheme includes voice activity 
detection (VAD), discontinuous transmission (DTX), silence insertion description (SID), and 
comfort noise generation (CNG). The application of this Recommendation has expanded beyond 
V.70 devices and is commonly utilized in voice packet networks (e.g., VoIP), which also require 
voice activity detection and discontinuous transmission algorithms for bandwidth-efficient 
communication. Several issues were reported with respect to the operation of Annex B for voice 
packet networks. This Appendix describes a solution to the problems reported in Annex B, 
providing improved voice quality while maintaining high bandwidth efficiency, suitable for voice 
packet-network applications. 

This appendix addresses in particular the following issues noted for Annex B: 
1) Initialization of background noise statistics at the beginning of the call and updates of 

background noise statistics when the background noise characteristics change. 
2) Early estimation of SID parameters which generate breathing-like noise in sharp-edge 

energy offsets. 
3) Classification of portions of very long and high-level tonal signals as "inactive speech". 
4) Frequent changes between "inactive speech" and "active speech" for particular types of 

background noises. 
5) Frequent SID update frames, which is undesirable for VoIP applications where the packet 

overhead information is considerably larger than the payload for such frames. 

III.2 Solutions for the reported issues with Annex B  
The issues reported with respect to Annex B were resolved by several modifications. The 
modifications are under the flag VAD_VOIP_APP_III in the attached C program files vad.c and 
dtx.c. This flag needs to be defined in the project or the makefile.  

III.3 Examples for the solutions of reported issues with Annex B 

For packet voice applications (e.g., VoIP), the following issues on the operation of VAD and the 
DTX of Annex B were noted. This appendix provides the solution to these issues: 
1) The initial estimation of the background noise characteristics is done during the first 

320 ms with a threshold of 15 dB. These two constraints can result in ineffective initial 
estimate of the background noise characteristics. For example, some voice packet network 
processors start the G.729 encoder before the actual speech channel is established, which 
can result in this ineffective initial estimate of the background noise characteristics. Similar 
behaviour may also happen if the type or the level of background noise changes abruptly. 
This ineffective update might result in classifying subsequent background noise frames 
"active-speech", which reduces the bandwidth efficiency expected from the silence 
compression scheme in Annex B. Figure III.1 contains an example of the result of 
ineffective estimation of the background noise characteristics in Annex B and how it is 
handled by this appendix. 
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Figure III.1 – Example of estimation of the background noise characteristics 

2) Early estimation of the energy and the spectral content of the first SID frame after a sharp 
edge from high level into a very low level (e.g., silence) can occur, resulting in a 
breathing-like noise. This issue is mostly noticeable at the sharp offset edge of voice-band 
tones, such as ring-back or busy tones. Figure III.2 contains an example of sharp-edge 
offset issue in Annex B and its resolution by this appendix. 

 

Figure III.2 – Example of sharp-edge offset issue 
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3) For very long and high-level tonal signals (typically longer than 1 second), the later 
portions could be classified as "inactive-speech". These later portions of such very long 
tonal signals might be erroneously reproduced at the decoder as a high-level noise signal. 
Figure III.3 contains an example of the issue of very long and high-level tonal signals in 
Annex B and its resolution by this appendix. 

 

Figure III.3 – Example of very long and high-level tonal signals issue 
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4) For particular types of background noise, frequent changes between full-rate encoding at 
8 kbit/s and low-rate silence encoding may occur. Figure III.4 contains an example of the 
issue of frequent changes between full-rate encoding at 8 kbit/s and low-rate silence 
encoding in Annex B and its resolution by this appendix. 

 

Figure III.4 – Example of frequent changes between full-rate 
encoding at 8 kbit/s and low-rate silence encoding 

5) In voice packet network applications, the transmitted-signal bandwidth is affected not only 
by the payload but also by the address and header information. Although the size of the 
payload of a SID frame is small, frequent update of the SID might be a considerable factor 
on the bandwidth used by Annex B for these applications. 

Table III.1 contains an example of the percentage of active frames, SID frames and NT frames in 
Annex B and in this appendix, demonstrating the reduction in SID frames by this appendix. 

Table III.1 – Example of the reduction in active frames, SID frames and NT frames 

Noise type VAD Speech frames SID frames NT frames SID/Inactive 

G.729B 4805 (46.2%) 799 (7.68%) 4796 (46.12%) 14.3% 15 dB  
street noise App III 6079 (58.45%) 275 (2.64%) 4046 (38.90%) 6.4% 

G.729B 4986 (47.94%) 846 (8.13%) 4568 (43.92%) 15.6% 15 dB 
car noise App III 5806 (55.83%) 292 (2.81%) 4302 (41.37%) 6.4% 

G.729B 4991 (47.99%) 1287 (12.38%) 4122 (39.63%) 23.8% 15 dB 
babble noise App III 5896 (56.69%) 561 (5.39%) 3943 (37.91%) 12.5% 
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III.4 Electronic attachments 
There are three electronic attachments to this appendix. The first two are the modified C source 
code files vad.c and dtx.c. For correct compilation, the flag VAD_VOIP_APP_III needs to be defined 
in the project or makefile. The other is a set of test files that were used to test the algorithm in this 
appendix. 
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