Package 'shapr'

November 17, 2025

Version 1.0.6

Title Prediction Explanation with Dependence-Aware Shapley Values

Description Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements methods which accounts for any feature

dependence, and thereby produces more accurate estimates of the true Shapley values. An accompanying 'Python' wrapper ('shaprpy') is available through the GitHub repository.

```
URL https://norskregnesentral.github.io/shapr/,
    https://github.com/NorskRegnesentral/shapr/
```

BugReports https://github.com/NorskRegnesentral/shapr/issues

License MIT + file LICENSE

Encoding UTF-8
ByteCompile true
Language en-US
RoxygenNote 7.3.2
Depends R (>= 3.5.0)

Imports stats, data.table (>= 1.15.0), Rcpp (>= 0.12.15), Matrix, future.apply, methods, cli, rlang

Suggests ranger, xgboost, mgcv, testthat (>= 3.0.0), knitr, rmarkdown, roxygen2, ggplot2, gbm, party, partykit, waldo, progressr, future, ggbeeswarm, vdiffr, forecast, torch, GGally, coro, parsnip, recipes, workflows, tune, dials, yardstick, hardhat, rsample

LinkingTo RcppArmadillo, Rcpp

VignetteBuilder knitr Config/testthat/edition 3 NeedsCompilation yes

Author Martin Jullum [cre, aut] (ORCID:	,
Maintainer Martin Jullum <martin.jullum@nr.no></martin.jullum@nr.no>	
Repository CRAN	
Date/Publication 2025-11-17 15:00:02 UTC	
Contents	
explain	
explain_forecast	
get_extra_comp_args_default	
get_output_args_default	
get_results	
get_supported_approaches	
get_supported_models	
plot.shapr	28
plot_MSEv_eval_crit	32
plot_SV_several_approaches	37
plot_vaeac_eval_crit	
plot_vaeac_imputed_ggpairs	
print.shapr	
summary.shapr	
vaeac_get_extra_para_default	
vaeac_train_model_continue	53
Index	56
	_

explain

Explain the Output of Machine Learning Models with Dependence-Aware (Conditional/Observational) Shapley Values

Description

Compute dependence-aware Shapley values for observations in x_explain from the specified model using the method specified in approach to estimate the conditional expectation. See Aas et al. (2021) for a thorough introduction to dependence-aware prediction explanation with Shapley values. For an overview of the methodology and capabilities of the package, see the software paper Jullum et al. (2025), or the pkgdown site at norskregnesentral.github.io/shapr/.

Usage

```
explain(
 model,
 x_explain,
  x_train,
  approach,
  phi0,
  iterative = NULL,
 max_n_coalitions = NULL,
  group = NULL,
  n_MC_samples = 1000,
  seed = NULL,
  verbose = "basic",
  predict_model = NULL,
  get_model_specs = NULL,
  prev_shapr_object = NULL,
  asymmetric = FALSE,
  causal_ordering = NULL,
  confounding = NULL,
  extra_computation_args = list(),
  iterative_args = list(),
  output_args = list(),
)
```

Arguments

model	Model object. The model whose predictions you want to explain. Run get_supported_models() for a table of which models explain supports natively. Unsupported models can still be explained by passing predict_model and (optionally) get_model_specs, see details for more information.
x_explain	Matrix or data.frame/data.table. Features for which predictions should be explained.
x_train	Matrix or data.frame/data.table. Data used to estimate the (conditional) feature distributions needed to properly estimate the conditional expectations in the Shapley formula.
approach	Character vector of length 1 or one less than the number of features. All elements should either be "gaussian", "copula", "empirical", "ctree", "vaeac", "categorical", "timeseries", "independence", "regression_separate",

or "regression_surrogate". The two regression approaches cannot be combined with any other approach. See details for more information.

phi0

Numeric. The prediction value for unseen data, i.e., an estimate of the expected prediction without conditioning on any features. Typically set this equal to the mean of the response in the training data, but alternatives such as the mean of the training predictions are also reasonable.

iterative

Logical or NULL. If NULL (default), set to TRUE if there are more than 5 features/groups, and FALSE otherwise. If TRUE, Shapley values are estimated iteratively for faster, sufficiently accurate results. First an initial number of coalitions is sampled, then bootstrapping estimates the variance of the Shapley values. A convergence criterion determines if the variances are sufficiently small. If not, additional samples are added. The process repeats until the variances are below the threshold. Specifics for the iterative process and convergence criterion are set via iterative_args.

max_n_coalitions

Integer. Upper limit on the number of unique feature/group coalitions to use in the iterative procedure (if iterative = TRUE). If iterative = FALSE, it represents the number of feature/group coalitions to use directly. The quantity refers to the number of unique feature coalitions if group = NULL, and group coalitions if group != NULL. max_n_coalitions = NULL corresponds to 2^n_features.

group

List. If NULL, regular feature-wise Shapley values are computed. If provided, group-wise Shapley values are computed. group then has length equal to the number of groups. Each list element contains the character vectors with the features included in the corresponding group. See Jullum et al. (2021) for more information on group-wise Shapley values.

 $n_MC_samples$

Positive integer. For most approaches, it indicates the maximum number of samples to use in the Monte Carlo integration of every conditional expectation. For approach="ctree", n_MC_samples corresponds to the number of samples from the leaf node (see an exception related to the ctree.sample argument in setup_approach.ctree()). For approach="empirical", n_MC_samples is the *K* parameter in equations (14-15) of Aas et al. (2021), i.e. the maximum number of observations (with largest weights) that is used, see also the empirical.eta argument setup_approach.empirical().

seed

Positive integer. Specifies the seed before any code involving randomness is run. If NULL (default), no seed is set in the calling environment.

verbose

String vector or NULL. Controls verbosity (printout detail level) via one or more of "basic", "progress", "convergence", "shapley" and "vS_details". "basic" (default) displays basic information about the computation and messages about parameters/checks. "progress" displays where in the calculation process the function currently is. "convergence" displays how close the Shapley value estimates are to convergence (only when iterative = TRUE). "shapley" displays intermediate Shapley value estimates and standard deviations (only when iterative = TRUE), and the final estimates. "vS_details" displays information about the v(S) estimates, most relevant for approach %in% c("regression_separate", "regression_surrogate", "vaeac"). NULL means no printout. Any combination can be used, e.g., verbose = c("basic", "vS_details").

predict_model

Function. Prediction function to use when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function must have two arguments, model and newdata, which specify the model and a data.frame/data.table to compute predictions for, respectively. The function must give the prediction as a numeric vector. NULL (the default) uses functions specified internally. Can also be used to override the default function for natively supported model classes.

get_model_specs

Function. An optional function for checking model/data consistency when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function takes model as an argument and provides a list with 3 elements:

labels Character vector with the names of each feature.

classes Character vector with the class of each feature.

factor_levels Character vector with the levels for any categorical features.

If NULL (the default), internal functions are used for natively supported model classes, and checking is disabled for unsupported model classes. Can also be used to override the default function for natively supported model classes.

prev_shapr_object

shapr object or string. If an object of class shapr is provided, or a string with a path to where intermediate results are stored, then the function will use the previous object to continue the computation. This is useful if the computation is interrupted or you want higher accuracy than already obtained, and therefore want to continue the iterative estimation. See the general usage vignette for examples.

asymmetric

Logical. Not applicable for (regular) non-causal explanations. If FALSE (default), explain computes regular symmetric Shapley values. If TRUE, explain computes asymmetric Shapley values based on the (partial) causal ordering given by causal_ordering. That is, explain only uses feature coalitions that respect the causal ordering. If asymmetric is TRUE and confounding is NULL (default), explain computes asymmetric conditional Shapley values as specified in Frye et al. (2020). If confounding is provided, i.e., not NULL, then explain computes asymmetric causal Shapley values as specified in Heskes et al. (2020).

causal_ordering

List. Not applicable for (regular) non-causal or asymmetric explanations. causal_ordering is an unnamed list of vectors specifying the components of the partial causal ordering that the coalitions must respect. Each vector represents a component and contains one or more features/groups identified by their names (strings) or indices (integers). If causal_ordering is NULL (default), no causal ordering is assumed and all possible coalitions are allowed. No causal ordering is equivalent to a causal ordering with a single component that includes all features (list(1:n_features)) or groups (list(1:n_groups)) for feature-wise and group-wise Shapley values, respectively. For feature-wise Shapley values and causal_ordering = list(c(1, 2), c(3, 4)), the interpretation is that features 1 and 2 are the ancestors of features 3 and 4, while features 3

> and 4 are on the same level. Note: All features/groups must be included in causal_ordering without duplicates.

confounding

Logical vector. Not applicable for (regular) non-causal or asymmetric explanations. confounding is a logical vector specifying whether confounding is assumed for each component in the causal_ordering. If NULL (default), no assumption about the confounding structure is made and explain computes asymmetric/symmetric conditional Shapley values, depending on asymmetric. If confounding is a single logical (FALSE or TRUE), the assumption is set globally for all components in the causal ordering. Otherwise, confounding must have the same length as causal_ordering, indicating the confounding assumption for each component. When confounding is specified, explain computes asymmetric/symmetric causal Shapley values, depending on asymmetric. The approach cannot be regression_separate or regression_surrogate, as the regression-based approaches are not applicable to the causal Shapley methodology.

extra_computation_args

Named list. Specifies extra arguments related to the computation of the Shapley values. See get_extra_comp_args_default() for description of the arguments and their default values.

iterative_args Named list. Specifies the arguments for the iterative procedure. See get_iterative_args_default() for description of the arguments and their default values.

output_args

Named list. Specifies certain arguments related to the output of the function. See get_output_args_default() for description of the arguments and their default values.

Arguments passed on to setup_approach.categorical, setup_approach.copula, setup_approach.ctree, setup_approach.empirical, setup_approach.gaussian, setup_approach.independence, setup_approach.regression_separate, setup_approach.regres setup_approach.timeseries, setup_approach.vaeac

categorical.joint_prob_dt Data.table. (Optional) Containing the joint probability distribution for each combination of feature values. NULL means it is estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If categorical.joint_prob_dt is not supplied, probabilities/frequencies are estimated using x_train. If certain observations occur in x_explain and NOT in x_train, then epsilon is used as the proportion of times that these observations occur in the training data. In theory, this proportion should be zero, but this causes an error later in the Shapley computation.

internal List. Not used directly, but passed through from explain().

ctree.mincriterion Numeric scalar or vector. Either a scalar or vector of length equal to the number of features in the model. The value is equal to 1 - α where α is the nominal level of the conditional independence tests. If it is a vector, this indicates which value to use when conditioning on various numbers of features. The default value is 0.95.

ctree.minsplit Numeric scalar. Determines the minimum value that the sum of the left and right daughter nodes must reach for a split. The default value is 20.

ctree.minbucket Numeric scalar. Determines the minimum sum of weights in a terminal node required for a split. The default value is 7.

- ctree.sample Boolean. If TRUE (default), then the method always samples n_MC_samples observations from the leaf nodes (with replacement). If FALSE and the number of observations in the leaf node is less than n_MC_samples, the method will take all observations in the leaf. If FALSE and the number of observations in the leaf node is more than n_MC_samples, the method will sample n_MC_samples observations (with replacement). This means that there will always be sampling in the leaf unless sample = FALSE *and* the number of obs in the node is less than n_MC_samples.
- empirical.type Character. (default = "fixed_sigma") Must be one of "independence",
 "fixed_sigma", "AICc_each_k", or "AICc_full". Note: "empirical.type
 = independence" is deprecated; use approach = "independence" instead.
 "fixed_sigma" uses a fixed bandwidth (set through empirical.fixed_sigma)
 in the kernel density estimation. "AICc_each_k" and "AICc_full" optimize the bandwidth using the AICc criterion, with respectively one bandwidth per coalition size and one bandwidth for all coalition sizes.
- empirical.eta Numeric scalar. Needs to be \emptyset < eta <= 1. The default value is 0.95. Represents the minimum proportion of the total empirical weight that data samples should use. For example, if eta = .8, we choose the K samples with the largest weights so that the sum of the weights accounts for 80\ eta is the η parameter in equation (15) of Aas et al. (2021).
- empirical.fixed_sigma Positive numeric scalar. The default value is 0.1.

 Represents the kernel bandwidth in the distance computation used when conditioning on all different coalitions. Only used when empirical.type = "fixed_sigma"
- empirical.n_samples_aicc Positive integer. Number of samples to consider in AICc optimization. The default value is 1000. Only used when empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.eval_max_aicc Positive integer. Maximum number of iterations when optimizing the AICc. The default value is 20. Only used when empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.start_aicc Numeric. Start value of the sigma parameter when optimizing the AICc. The default value is 0.1. Only used when empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.cov_mat Numeric matrix. (Optional) The covariance matrix of the data generating distribution used to define the Mahalanobis distance. NULL means it is estimated from x_train.
- gaussian.mu Numeric vector. (Optional) Containing the mean of the data generating distribution. NULL means it is estimated from the x_train.
- gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance matrix of the data generating distribution. NULL means it is estimated from the x_train.
- regression.model A tidymodels object of class model_specs. Default is a linear regression model, i.e., parsnip::linear_reg(). See tidymodels for all possible models, and see the vignette for how to add new/own models. Note, to make it easier to call explain() from Python, the regression.model

parameter can also be a string specifying the model which will be parsed and evaluated. For example, "parsnip::rand_forest(mtry = hardhat::tune(), trees = 100, is also a valid input. It is essential to include the package prefix if the package is not loaded.

- regression.tune_values Either NULL (default), a data.frame/data.table/tibble, or a function. The data.frame must contain the possible hyperparameter value combinations to try. The column names must match the names of the tunable parameters specified in regression.model. If regression.tune_values is a function, then it should take one argument x which is the training data for the current coalition and returns a data.frame/data.table/tibble with the properties described above. Using a function allows the hyperparameter values to change based on the size of the coalition See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.tune_values can also be a string containing an R function. For example, "function(x) return(dials::grid_regular(dials::mtry(c(1, ncol(x)))), levels = 3))" is also a valid input. It is essential to include the package prefix if the package is not loaded.
- regression.vfold_cv_para Either NULL (default) or a named list containing the parameters to be sent to rsample::vfold_cv(). See the regression vignette for several examples.
- regression.recipe_func Either NULL (default) or a function that that takes in a recipes::recipe() object and returns a modified recipes::recipe() with potentially additional recipe steps. See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.recipe_func can also be a string containing an R function. For example, "function(recipe) return(recipes::step_ns(recipe, recipes::all_numeric_predictors(), deg_free = 2))" is also a valid input. It is essential to include the package prefix if the package is not loaded.
- regression.surrogate_n_comb Positive integer. Specifies the number of unique coalitions to apply to each training observation. The default is the number of sampled coalitions in the present iteration. Any integer between 1 and the default is allowed. Larger values requires more memory, but may improve the surrogate model. If the user sets a value lower than the maximum, we sample this amount of unique coalitions separately for each training observations. That is, on average, all coalitions should be equally trained.
- timeseries.fixed_sigma Positive numeric scalar. Represents the kernel bandwidth in the distance computation. The default value is 2.
- timeseries.bounds Numeric vector of length two. Specifies the lower and upper bounds of the timeseries. The default is c(NULL, NULL), i.e. no bounds. If one or both of these bounds are not NULL, we restrict the sampled time series to be between these bounds. This is useful if the underlying time series are scaled between 0 and 1, for example.
- vaeac.depth Positive integer (default is 3). The number of hidden layers in the neural networks of the masked encoder, full encoder, and decoder.
- vaeac.width Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder, and decoder.

vaeac.latent_dim Positive integer (default is 8). The number of dimensions in the latent space.

- vaeac.lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.
- vaeac.activation_function An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(),
 torch::nn_selu(), or torch::nn_sigmoid().
- vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of different vaeac models to initiate in the start. Pick the best performing one after vaeac.extra_parameters\$epochs_initiation_phase epochs (default is 2) and continue training that one.
- vaeac.epochs Positive integer (default is 100). The number of epochs to train the final vaeac model. This includes vaeac.extra_parameters\$epochs_initiation_phase, where the default is 2.
- vaeac.extra_parameters Named list with extra parameters to the vaeac approach. See vaeac_get_extra_para_default() for description of possible additional parameters and their default values.

Details

The shapr package implements kernelSHAP estimation of dependence-aware Shapley values with eight different Monte Carlo-based approaches for estimating the conditional distributions of the data. These are all introduced in the general usage vignette. (From R: vignette("general_usage", package = "shapr")). For an overview of the methodology and capabilities of the package, please also see the software paper Jullum et al. (2025). Moreover, Aas et al. (2021) gives a general introduction to dependence-aware Shapley values and the approaches "empirical", "gaussian", "copula", and also discusses "independence". Redelmeier et al. (2020) introduces the approach "ctree". Olsen et al. (2022) introduces the "vaeac" approach. Approach "timeseries" is discussed in Jullum et al. (2021). shapr has also implemented two regression-based approaches "regression_separate" and "regression_surrogate", as described in Olsen et al. (2024). It is also possible to combine the different approaches, see the general usage vignette for more information.

The package also supports the computation of causal and asymmetric Shapley values as introduced by Heskes et al. (2020) and Frye et al. (2020). Asymmetric Shapley values were proposed by Frye et al. (2020) as a way to incorporate causal knowledge in the real world by restricting the possible feature combinations/coalitions when computing the Shapley values to those consistent with a (partial) causal ordering. Causal Shapley values were proposed by Heskes et al. (2020) as a way to explain the total effect of features on the prediction, taking into account their causal relationships, by adapting the sampling procedure in shapr.

The package allows parallelized computation with progress updates through the tightly connected future::future and progressr::progressr packages. See the examples below. For iterative estimation (iterative=TRUE), intermediate results may be printed to the console (according to the verbose argument). Moreover, the intermediate results are written to disk. This combined batch computation of the v(S) values enables fast and accurate estimation of the Shapley values in a memory-friendly manner.

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values_est data.table with the estimated Shapley values with explained observation in the rows and features along the columns. The column none is the prediction not devoted to any of the features (given by the argument phi0)

shapley_values_sd data.table with the standard deviation of the Shapley values reflecting the uncertainty in the coalition sampling part of the kernelSHAP procedure. These are, by definition, 0 when all coalitions are used. Only present when extra_computation_args\$compute_sd=TRUE, which is the default when iterative = TRUE.

internal List with the different parameters, data, functions and other output used internally.

pred_explain Numeric vector with the predictions for the explained observations.

MSEv List with the values of the MSEv evaluation criterion for the approach. See the MSEv evaluation section in the general usage vignette for details.

timing List containing timing information for the different parts of the computation. summary contains the time stamps for the start and end time in addition to the total execution time. overall_timing_secs gives the time spent on different parts of the explanation computation. main_computation_timing_secs further decomposes the main computation time into different parts of the computation for each iteration of the iterative estimation routine, if used.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

- Jullum, M., Olsen, L. H. B., Lachmann, J., & Redelmeier, A. (2025). shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python. arXiv preprint arXiv:2504.01842.
- Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502
- Frye, C., Rowat, C., & Feige, I. (2020). Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability. Advances in neural information processing systems, 33, 1229-1239
- Heskes, T., Sijben, E., Bucur, I. G., & Claassen, T. (2020). Causal shapley values: Exploiting causal knowledge to explain individual predictions of complex models. Advances in neural information processing systems, 33, 4778-4789
- Jullum, M., Redelmeier, A. & Aas, K. (2021). Efficient and simple prediction explanations
 with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intelligence 2021.
- Redelmeier, A., Jullum, M., & Aas, K. (2020). Explaining predictive models with mixed features using Shapley values and conditional inference trees. In Machine Learning and Knowledge Extraction: International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland, August 25-28, 2020, Proceedings 4 (pp. 117-137). Springer International Publishing.

 Sellereite N., & Jullum, M. (2019). shapr: An R-package for explaining machine learning models with dependence-aware Shapley values. Journal of Open Source Software, 5(46), 2027

- Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features. Journal of machine learning research, 23(213), 1-51
- Olsen, L. H. B., Glad, I. K., Jullum, M., & Aas, K. (2024). A comparative study of methods for estimating model-agnostic Shapley value explanations. Data Mining and Knowledge Discovery, 1-48
- Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP. arXiv e-prints, arXiv-2410

Examples

```
# Load example data
data("airquality")
airquality <- airquality[complete.cases(airquality), ]</pre>
x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
y_var <- "Ozone"
# Split data into test and training data
data_train <- head(airquality, -3)</pre>
data_explain <- tail(airquality, 3)</pre>
x_train <- data_train[, x_var]</pre>
x_explain <- data_explain[, x_var]</pre>
# Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))</pre>
model <- lm(lm_formula, data = data_train)</pre>
# Explain predictions
p <- mean(data_train[, y_var])</pre>
# (Optionally) enable parallelization via the future package
if (requireNamespace("future", quietly = TRUE)) {
  future::plan("multisession", workers = 2)
}
# (Optionally) enable progress updates within every iteration via the progressr package
if (requireNamespace("progressr", quietly = TRUE)) {
  progressr::handlers(global = TRUE)
# Empirical approach
explain1 <- explain(
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "empirical",
```

```
phi0 = p,
 n_MC_samples = 1e2
# Gaussian approach
explain2 <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_train = x_train,
  approach = "gaussian",
  phi0 = p,
  n_MC_samples = 1e2
)
# Gaussian copula approach
explain3 <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = "copula",
  phi0 = p,
  n_MC_samples = 1e2
)
if (requireNamespace("party", quietly = TRUE)) {
  # ctree approach
  explain4 <- explain(</pre>
    model = model,
    x_{explain} = x_{explain}
    x_train = x_train,
    approach = "ctree",
    phi0 = p,
    n_MC_samples = 1e2
  )
}
# Combined approach
approach <- c("gaussian", "gaussian", "empirical")</pre>
explain5 <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = approach,
  phi0 = p,
  n_MC_samples = 1e2
)
## Printing
print(explain1) # The Shapley values
print(explain1) # The Shapley values
# The MSEv criterion (+sd). Smaller values indicate a better approach.
print(explain1, what = "MSEv")
```

```
print(explain2, what = "MSEv")
print(explain3, what = "MSEv")
## Summary
summary1 <- summary(explain1)</pre>
# Various additional info stored in the summary object
summary1$shapley_est # A data.table with the Shapley values
summary1$timing$total_time_secs # Total computation time in seconds
summary1$parameters$n_MC_samples # Number of Monte Carlo samples used for the numerical integration
summary1$parameters$empirical.type # Type of empirical approach used
# Plot the results
if (requireNamespace("ggplot2", quietly = TRUE)) {
 plot(explain1)
 plot(explain1, plot_type = "waterfall")
}
# Group-wise explanations
group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))</pre>
explain_groups <- explain(</pre>
 model = model,
 x_{explain} = x_{explain}
 x_{train} = x_{train}
 group = group_list,
 approach = "empirical",
 phi0 = p,
 n_MC_samples = 1e2
)
print(explain_groups)
# Separate and surrogate regression approaches with linear regression models.
req_pkgs <- c("parsnip", "recipes", "workflows", "rsample", "tune", "yardstick")</pre>
if (requireNamespace(req_pkgs, quietly = TRUE)) {
 explain_separate_lm <- explain(</pre>
   model = model,
    x_{explain} = x_{explain}
    x_train = x_train,
   phi0 = p,
    approach = "regression_separate",
    regression.model = parsnip::linear_reg()
 )
 explain_surrogate_lm <- explain(</pre>
    model = model,
    x_{explain} = x_{explain}
    x_train = x_train,
    phi0 = p,
    approach = "regression_surrogate",
    regression.model = parsnip::linear_reg()
```

```
)
# Iterative estimation
# For illustration only. By default not used for such small dimensions as here.
# Restricting the initial and maximum number of coalitions as well.
explain_iterative <- explain(
 model = model,
 x_{explain} = x_{explain}
 x_{train} = x_{train}
 approach = "gaussian",
 phi0 = p,
 iterative = TRUE,
 iterative_args = list(initial_n_coalitions = 8),
 max_n_coalitions = 12
)
# When not using all coalitions, we can also get the SD of the Shapley values,
# reflecting uncertainty in the coalition sampling part of the procedure.
print(explain_iterative, what = "shapley_sd")
## Summary
# For iterative estimation, convergence info is also provided
summary_iterative <- summary(explain_iterative)</pre>
```

explain_forecast

Explain a Forecast from Time Series Models with Dependence-Aware (Conditional/Observational) Shapley Values

Description

Computes dependence-aware Shapley values for observations in explain_idx from the specified model by using the method specified in approach to estimate the conditional expectation. See Aas, et. al (2021) for a thorough introduction to dependence-aware prediction explanation with Shapley values. For an overview of the methodology and capabilities of the shapr package, see the software paper Jullum et al. (2025), or the pkgdown site at norskregnesentral.github.io/shapr/.

Usage

```
explain_forecast(
  model,
  y,
  xreg = NULL,
  train_idx = NULL,
  explain_idx,
```

```
explain_y_lags,
  explain_xreg_lags = explain_y_lags,
  horizon,
  approach,
  phi0,
 max_n_coalitions = NULL,
  iterative = NULL,
  group_lags = TRUE,
  group = NULL,
  n_MC_samples = 1000,
  seed = NULL,
  predict_model = NULL,
  get_model_specs = NULL,
  verbose = "basic",
  extra_computation_args = list(),
  iterative_args = list(),
  output_args = list(),
)
```

Arguments

model Model object. The model whose predictions you want to explain. Run get_supported_models()

for a table of which models explain supports natively. Unsupported models can still be explained by passing predict_model and (optionally) get_model_specs,

see details for more information.

y Matrix, data.frame/data.table or a numeric vector. Contains the endogenous variables used to estimate the (conditional) distributions needed to properly es-

timate the conditional expectations in the Shapley formula including the obser-

vations to be explained.

xreg Matrix, data.frame/data.table or a numeric vector. Contains the exogenous vari-

ables used to estimate the (conditional) distributions needed to properly estimate the conditional expectations in the Shapley formula including the observations to be explained. As exogenous variables are used contemporaneously when pro-

ducing a forecast, this item should contain nrow(y) + horizon rows.

train_idx Numeric vector. The row indices in data and reg denoting points in time to use

when estimating the conditional expectations in the Shapley value formula. If train_idx = NULL (default) all indices not selected to be explained will be used.

explain_idx Numeric vector. The row indices in data and reg denoting points in time to

explain.

explain_y_lags Numeric vector. Denotes the number of lags that should be used for each vari-

able in y when making a forecast.

explain_xreg_lags

Numeric vector. If xreg != NULL, denotes the number of lags that should be

used for each variable in xreg when making a forecast.

horizon Numeric. The forecast horizon to explain. Passed to the predict_model func-

tion.

approach

Character vector of length 1 or one less than the number of features. All elements should either be "gaussian", "copula", "empirical", "ctree", "vaeac", "categorical", "timeseries", "independence", "regression_separate", or "regression_surrogate". The two regression approaches cannot be combined with any other approach. See details for more information.

phi0

Numeric. The prediction value for unseen data, i.e., an estimate of the expected prediction without conditioning on any features. Typically set this equal to the mean of the response in the training data, but alternatives such as the mean of the training predictions are also reasonable.

max_n_coalitions

Integer. Upper limit on the number of unique feature/group coalitions to use in the iterative procedure (if iterative = TRUE). If iterative = FALSE, it represents the number of feature/group coalitions to use directly. The quantity refers to the number of unique feature coalitions if group = NULL, and group coalitions if group != NULL. max_n_coalitions = NULL corresponds to 2^n_features.

iterative

Logical or NULL. If NULL (default), set to TRUE if there are more than 5 features/groups, and FALSE otherwise. If TRUE, Shapley values are estimated iteratively for faster, sufficiently accurate results. First an initial number of coalitions is sampled, then bootstrapping estimates the variance of the Shapley values. A convergence criterion determines if the variances are sufficiently small. If not, additional samples are added. The process repeats until the variances are below the threshold. Specifics for the iterative process and convergence criterion are set via iterative_args.

group_lags

Logical. If TRUE all lags of each variable are grouped together and explained as a group. If FALSE all lags of each variable are explained individually.

group

List. If NULL, regular feature-wise Shapley values are computed. If provided, group-wise Shapley values are computed. group then has length equal to the number of groups. Each list element contains the character vectors with the features included in the corresponding group. See Jullum et al. (2021) for more information on group-wise Shapley values.

Positive integer. For most approaches, it indicates the maximum number of samples to use in the Monte Carlo integration of every conditional expectation. For approach="ctree", n_MC_samples corresponds to the number of samples from the leaf node (see an exception related to the ctree.sample argument in setup_approach.ctree()). For approach="empirical", n_MC_samples is the K parameter in equations (14-15) of Aas et al. (2021), i.e. the maximum number of observations (with largest weights) that is used, see also the empirical.eta argument setup_approach.empirical().

seed

Positive integer. Specifies the seed before any code involving randomness is run. If NULL (default), no seed is set in the calling environment.

predict_model

Function. Prediction function to use when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function must have two arguments, model and newdata, which specify the model and a data.frame/data.table to compute predictions for, respectively. The function must give the prediction as a numeric vector. NULL (the default) uses functions specified internally. Can also be used to override the default function for natively supported model classes.

n_MC_samples

get_model_specs

Function. An optional function for checking model/data consistency when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function takes model as an argument and provides a list with 3 elements:

labels Character vector with the names of each feature.

classes Character vector with the class of each feature.

factor_levels Character vector with the levels for any categorical features.

If NULL (the default), internal functions are used for natively supported model classes, and checking is disabled for unsupported model classes. Can also be used to override the default function for natively supported model classes.

verbose

String vector or NULL. Controls verbosity (printout detail level) via one or more of "basic", "progress", "convergence", "shapley" and "vS_details". "basic" (default) displays basic information about the computation and messages about parameters/checks. "progress" displays where in the calculation process the function currently is. "convergence" displays how close the Shapley value estimates are to convergence (only when iterative = TRUE). "shapley" displays intermediate Shapley value estimates and standard deviations (only when iterative = TRUE), and the final estimates. "vS_details" displays information about the v(S) estimates, most relevant for approach %in% $c("regression_separate",$ "regression_surrogate", "vaeac"). NULL means no printout. Any combination can be used, e.g., verbose = c("basic", "vS_details").

extra_computation_args

Named list. Specifies extra arguments related to the computation of the Shapley values. See get_extra_comp_args_default() for description of the arguments and their default values.

iterative_args Named list. Specifies the arguments for the iterative procedure. See get_iterative_args_default() for description of the arguments and their default values.

output_args

Named list. Specifies certain arguments related to the output of the function. See get_output_args_default() for description of the arguments and their default values.

Arguments passed on to setup_approach.categorical, setup_approach.copula, setup_approach.ctree, setup_approach.empirical, setup_approach.gaussian, setup_approach.independence, setup_approach.timeseries, setup_approach.vaeac

categorical.joint_prob_dt Data.table. (Optional) Containing the joint probability distribution for each combination of feature values. NULL means it is estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If categorical.joint_prob_dt is not supplied, probabilities/frequencies are estimated using x_train. If certain observations occur in x_explain and NOT in x_train, then epsilon is used as the proportion of times that these observations occur in the training data. In theory, this proportion should be zero, but this causes an error later in the Shapley computation.

internal List. Not used directly, but passed through from explain().

ctree.mincriterion Numeric scalar or vector. Either a scalar or vector of length equal to the number of features in the model. The value is equal to 1

- α where α is the nominal level of the conditional independence tests. If it is a vector, this indicates which value to use when conditioning on various numbers of features. The default value is 0.95.

- ctree.minsplit Numeric scalar. Determines the minimum value that the sum of the left and right daughter nodes must reach for a split. The default value is 20.
- ctree.minbucket Numeric scalar. Determines the minimum sum of weights in a terminal node required for a split. The default value is 7.
- ctree.sample Boolean. If TRUE (default), then the method always samples n_MC_samples observations from the leaf nodes (with replacement). If FALSE and the number of observations in the leaf node is less than n_MC_samples, the method will take all observations in the leaf. If FALSE and the number of observations in the leaf node is more than n_MC_samples, the method will sample n_MC_samples observations (with replacement). This means that there will always be sampling in the leaf unless sample = FALSE and the number of obs in the node is less than n_MC_samples.
- empirical.type Character. (default = "fixed_sigma") Must be one of "independence",
 "fixed_sigma", "AICc_each_k", or "AICc_full". Note: "empirical.type
 = independence" is deprecated; use approach = "independence" instead.
 "fixed_sigma" uses a fixed bandwidth (set through empirical.fixed_sigma)
 in the kernel density estimation. "AICc_each_k" and "AICc_full" optimize the bandwidth using the AICc criterion, with respectively one bandwidth per coalition size and one bandwidth for all coalition sizes.
- empirical.eta Numeric scalar. Needs to be \emptyset < eta <= 1. The default value is 0.95. Represents the minimum proportion of the total empirical weight that data samples should use. For example, if eta = .8, we choose the K samples with the largest weights so that the sum of the weights accounts for 80\ eta is the η parameter in equation (15) of Aas et al. (2021).
- empirical.fixed_sigma Positive numeric scalar. The default value is 0.1.

 Represents the kernel bandwidth in the distance computation used when conditioning on all different coalitions. Only used when empirical.type = "fixed_sigma"
- empirical.n_samples_aicc Positive integer. Number of samples to consider
 in AICc optimization. The default value is 1000. Only used when empirical.type
 is either "AICc_each_k" or "AICc_full".
- empirical.eval_max_aicc Positive integer. Maximum number of iterations when optimizing the AICc. The default value is 20. Only used when empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.start_aicc Numeric. Start value of the sigma parameter when optimizing the AICc. The default value is 0.1. Only used when empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.cov_mat Numeric matrix. (Optional) The covariance matrix of the data generating distribution used to define the Mahalanobis distance. NULL means it is estimated from x_train.
- gaussian.mu Numeric vector. (Optional) Containing the mean of the data generating distribution. NULL means it is estimated from the x_train.

gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance matrix of the data generating distribution. NULL means it is estimated from the x_train.

- timeseries.fixed_sigma Positive numeric scalar. Represents the kernel bandwidth in the distance computation. The default value is 2.
- timeseries.bounds Numeric vector of length two. Specifies the lower and upper bounds of the timeseries. The default is c(NULL, NULL), i.e. no bounds. If one or both of these bounds are not NULL, we restrict the sampled time series to be between these bounds. This is useful if the underlying time series are scaled between 0 and 1, for example.
- vaeac.depth Positive integer (default is 3). The number of hidden layers in the neural networks of the masked encoder, full encoder, and decoder.
- vaeac.width Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder, and decoder.
- vaeac.latent_dim Positive integer (default is 8). The number of dimensions in the latent space.
- vaeac.lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.
- vaeac.activation_function An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(),
 torch::nn_selu(), or torch::nn_sigmoid().
- vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
 different vaeac models to initiate in the start. Pick the best performing
 one after vaeac.extra_parameters\$epochs_initiation_phase epochs
 (default is 2) and continue training that one.
- vaeac.epochs Positive integer (default is 100). The number of epochs to train
 the final vaeac model. This includes vaeac.extra_parameters\$epochs_initiation_phase,
 where the default is 2.
- vaeac.extra_parameters Named list with extra parameters to the vaeac approach. See vaeac_get_extra_para_default() for description of possible additional parameters and their default values.

Details

This function explains a forecast of length horizon. The argument train_idx is analogous to x_train in explain(), however, it just contains the time indices of where in the data the forecast should start for each training sample. In the same way explain_idx defines the time index (indices) which will precede a forecast to be explained.

As any autoregressive forecast model will require a set of lags to make a forecast at an arbitrary point in time, explain_y_lags and explain_xreg_lags define how many lags are required to "refit" the model at any given time index. This allows the different approaches to work in the same way they do for time-invariant models.

See the forecasting section of the general usage vignette for further details. See also the software paper Julium et al. (2025, Sec. 6) for a more detailed introduction to the methodology, and additional examples.

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values_est data.table with the estimated Shapley values with explained observation in the rows and features along the columns. The column none is the prediction not devoted to any of the features (given by the argument phi0)

shapley_values_sd data.table with the standard deviation of the Shapley values reflecting the uncertainty in the coalition sampling part of the kernelSHAP procedure. These are, by definition, 0 when all coalitions are used. Only present when extra_computation_args\$compute_sd=TRUE, which is the default when iterative = TRUE.

internal List with the different parameters, data, functions and other output used internally.

pred_explain Numeric vector with the predictions for the explained observations.

MSEv List with the values of the MSEv evaluation criterion for the approach. See the MSEv evaluation section in the general usage vignette for details.

timing List containing timing information for the different parts of the computation. summary contains the time stamps for the start and end time in addition to the total execution time. overall_timing_secs gives the time spent on different parts of the explanation computation. main_computation_timing_secs further decomposes the main computation time into different parts of the computation for each iteration of the iterative estimation routine, if used.

Author(s)

Jon Lachmann, Martin Jullum

References

- Jullum, M., Olsen, L. H. B., Lachmann, J., & Redelmeier, A. (2025). shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python. arXiv preprint arXiv:2504.01842.
- Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502
- Frye, C., Rowat, C., & Feige, I. (2020). Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability. Advances in neural information processing systems, 33, 1229-1239
- Heskes, T., Sijben, E., Bucur, I. G., & Claassen, T. (2020). Causal shapley values: Exploiting causal knowledge to explain individual predictions of complex models. Advances in neural information processing systems, 33, 4778-4789
- Jullum, M., Redelmeier, A. & Aas, K. (2021). Efficient and simple prediction explanations with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intelligence 2021.
- Redelmeier, A., Jullum, M., & Aas, K. (2020). Explaining predictive models with mixed features using Shapley values and conditional inference trees. In Machine Learning and Knowledge Extraction: International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland, August 25-28, 2020, Proceedings 4 (pp. 117-137). Springer International Publishing.

- Sellereite N., & Jullum, M. (2019). shapr: An R-package for explaining machine learning models with dependence-aware Shapley values. Journal of Open Source Software, 5(46), 2027
- Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features. Journal of machine learning research, 23(213), 1-51
- Olsen, L. H. B., Glad, I. K., Jullum, M., & Aas, K. (2024). A comparative study of methods for estimating model-agnostic Shapley value explanations. Data Mining and Knowledge Discovery, 1-48
- Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP. arXiv e-prints, arXiv-2410

Examples

```
# Load example data
data("airquality")
data <- data.table::as.data.table(airquality)</pre>
# Fit an AR(2) model.
model_ar_temp <- ar(data$Temp, order = 2)</pre>
# Calculate the zero prediction values for a three step forecast.
p0_ar <- rep(mean(data$Temp), 3)</pre>
# Empirical approach, explaining forecasts starting at T = 152 and T = 153.
explain_forecast(
 model = model_ar_temp,
 y = data[, "Temp"],
 train_idx = 2:151,
 explain_idx = 152:153,
 explain_y_lags = 2,
 horizon = 3,
 approach = "empirical",
 phi0 = p0_ar,
 group_lags = FALSE
)
```

get_extra_comp_args_default

Get the Default Values for the Extra Computation Arguments

Description

Get the Default Values for the Extra Computation Arguments

Usage

```
get_extra_comp_args_default(
   internal,
   paired_shap_sampling = isFALSE(internal$parameters$asymmetric),
   semi_deterministic_sampling = FALSE,
   kernelSHAP_reweighting = "on_all_cond",
   compute_sd = isFALSE(internal$parameters$exact),
   n_boot_samps = 100,
   vS_batching_method = "future",
   max_batch_size = 10,
   min_n_batches = 10
)
```

Arguments

internal List. Not used directly, but passed through from explain(). paired_shap_sampling

Logical. If TRUE paired versions of all sampled coalitions are also included in the computation. That is, if there are 5 features and e.g. coalitions (1,3,5) are sampled, then also coalition (2,4) is used for computing the Shapley values. This is done to reduce the variance of the Shapley value estimates. TRUE is the default and is recommended for highest accuracy. For asymmetric, FALSE is the default and the only legal value.

semi_deterministic_sampling

Logical. If FALSE (default), then we sample from all coalitions. If TRUE, the sampling of coalitions is semi-deterministic, i.e. the sampling is done in a way that ensures that coalitions that are expected to be sampled based on the number of coalitions are deterministically included such that we sample among fewer coalitions. This is done to reduce the variance of the Shapley value estimates, and corresponds to the PySHAP* strategy in the paper Olsen & Jullum (2024).

kernelSHAP_reweighting

String. How to reweight the sampling frequency weights in the kernelSHAP solution after sampling. The aim of this is to reduce the randomness and thereby the variance of the Shapley value estimates. The options are one of 'none', 'on_N', 'on_all', 'on_all_cond' (default). 'none' means no reweighting, i.e. the sampling frequency weights are used as is. 'on_N' means the sampling frequencies are averaged over all coalitions with the same original sampling probabilities. 'on_all' means the original sampling probabilities are used for all coalitions. 'on_all_cond' means the original sampling probabilities are used for all coalitions, while adjusting for the probability that they are sampled at least once. 'on_all_cond' is preferred as it performs the best in simulation studies, see Olsen & Jullum (2024).

compute_sd

Logical. Whether to estimate the standard deviations of the Shapley value estimates. This is TRUE whenever sampling based kernelSHAP is applied (either iteratively or with a fixed number of coalitions).

n_boot_samps

Integer. The number of bootstrapped samples (i.e. samples with replacement) from the set of all coalitions used to estimate the standard deviations of the Shapley value estimates.

vS_batching_method

String. The method used to perform batch computing of vS. "future" (default), utilizes future.apply::future_apply (via the future::future package), enabling parallelized computation and progress updates via progressr::progressr. Alternatively, "forloop" can be used for straightforward sequential computation, which is mainly useful for package development and debugging purposes.

max_batch_size Integer. The maximum number of coalitions to estimate simultaneously within each iteration. A larger number requires more memory, but may have a slight computational advantage.

min_n_batches

Integer. The minimum number of batches to split the computation into within each iteration. Larger numbers give more frequent progress updates. If parallelization is applied, this should be set no smaller than the number of parallel workers.

Value

A list with the default values for the extra computation arguments.

Author(s)

Martin Jullum

References

 Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP. arXiv preprint arXiv:2410.04883.

```
get_iterative_args_default
```

Function to specify arguments of the iterative estimation procedure

Description

Function to specify arguments of the iterative estimation procedure

Usage

```
get_iterative_args_default(
  internal,
 initial_n_coalitions = ceiling(min(200, max(5, internal$parameters$n_features,
  (2^internal$parameters$n_features)/10), internal$parameters$max_n_coalitions)),
  fixed_n_coalitions_per_iter = NULL,
 max_iter = 20,
 convergence_tol = 0.02,
  n_{coal_next_iter_factor_vec} = c(seq(0.1, 1, by = 0.1), rep(1, max_iter - 10))
)
```

Arguments

internal List. Not used directly, but passed through from explain().

initial_n_coalitions

Integer. Number of coalitions to use in the first estimation iteration.

fixed_n_coalitions_per_iter

Integer. Number of n_coalitions to use in each iteration. NULL (default) means

setting it based on estimates based on a set convergence threshold.

max_iter

Integer. Maximum number of estimation iterations

convergence_tol

Numeric. The t variable in the convergence threshold formula on page 6 in the paper Covert and Lee (2021), 'Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression' https://arxiv.org/pdf/2012.01536. Smaller values requires more coalitions before convergence is reached.

n_coal_next_iter_factor_vec

Numeric vector. The number of n_coalitions that must be used to reach convergence in the next iteration is estimated. The number of n_coalitions actually used in the next iteration is set to this estimate multiplied by n_coal_next_iter_factor_vec[i] for iteration i. It is wise to start with smaller numbers to avoid using too many n_coalitions due to uncertain estimates in the first iterations.

Details

The functions sets default values for the iterative estimation procedure, according to the function defaults. If the argument iterative of explain() is FALSE, it sets parameters corresponding to the use of a non-iterative estimation procedure

Value

A list with the default values for the iterative estimation procedure

Author(s)

Martin Jullum

get_output_args_default

Get the Default Values for the Output Arguments

Description

Get the Default Values for the Output Arguments

get_results 25

Usage

```
get_output_args_default(
  keep_samp_for_vS = FALSE,
  MSEv_uniform_comb_weights = TRUE,
  saving_path = tempfile("shapr_obj_", fileext = ".rds")
)
```

Arguments

keep_samp_for_vS

Logical. Indicates whether the samples used in the Monte Carlo estimation of v(S) should be returned (in internal output). Not used for approach="regression_separate" or approach="regression_surrogate".

MSEv_uniform_comb_weights

Logical. If TRUE (default), then the function weights the coalitions uniformly when computing the MSEv criterion. If FALSE, then the function use the Shapley kernel weights to weight the coalitions when computing the MSEv criterion. Note that the Shapley kernel weights are replaced by the sampling frequency when not all coalitions are considered.

saving_path

String. The path to the directory where the results of the iterative estimation procedure should be saved. Defaults to a temporary directory.

Value

A list of default output arguments.

Author(s)

Martin Jullum

get_results

Extract Components from a Shapr Object

Description

Extract Components from a Shapr Object

Usage

```
get_results(
    x,
    what = c("calling_function", "proglang", "approach", "shapley_est", "shapley_sd",
        "pred_explain", "MSEv", "MSEv_explicand", "MSEv_coalition", "iterative_info",
        "iterative_shapley_est", "iterative_shapley_sd", "saving_path", "timing_summary",
        "timing_details", "parameters", "x_train", "x_explain", "dt_vS", "dt_samp_for_vS",
        "dt_used_coalitions", "dt_valid_causal_coalitions", "dt_coal_samp_info"),
        ...
)
```

26 get_results

Arguments

x A shapr object

what Character vector specifying one or more components to extract. Options: "call-

ing_function", "proglang", "approach", "shapley_est", "shapley_sd", "pred_explain", "MSEv", "MSEv_explicand", "MSEv_coalition", "iterative_info", "iterative_shapley_est",

"iterative_shapley_sd", "saving_path", "timing_summary", "timing_details", "parameters", "x_train", "x_explain", "dt_vS", "dt_samp_for_vS", "dt_used_coalitions", "dt_valid_causal_coalitions", "dt_coal_samp_info". The default is to return all

components. See details for what each component contains.

... Not used

Details

The function extracts a full suite of information related to the computation of the Shapley values from a shapr object. The allowed characters in what provides information as follows:

calling_function Name of function called to create the shapr object, (explain() or explain_forecast()).

proglang Programming language used to initiate the computations (R or Python).

approach Approach used to estimate the conditional expectations.

shapley_est data.table with the estimated Shapley values.

shapley_sd data.table with the standard deviation of the Shapley values reflecting the uncertainty in the coalition sampling part of the kernelSHAP procedure.

pred_explain Numeric vector with the predictions for the explained observations.

MSEv/MSEv_explicand/MSEv_coalition Data.tables with MSEv evaluation criterion values overall/ per explicand/per coalition. Smaller values indicate better estimates of v(S). See the MSEv evaluation section in the general usage vignette for details.

iterative_info Data.table with information about the iterative estimation procedure.

iterative_shapley_est/iterative_shapley_sd Data.tables with the estimated Shapley values/their standard deviation for each iteration (when using the iterative estimation procedure).

saving_path Character string with the path where the (temporary) results are saved.

timing_summary Data.table with one row and three columns: init_time and end_time give the time stamps for the start and end of the computation, respectively, while total_time_secs gives the total time in seconds for the full computation.

timing_details List containing timing information for the different parts of the computation. summary contains the information from timing_summary. overall_timing_secs gives the time spent on the different parts of the explanation computation. main_computation_timing_secs further decomposes the main computation time into the different parts of the computation for each iteration of the iterative estimation routine, if used.

parameters List with the parameters used in the computation.

x_train/x_explain Data.tables with the training data used in the computation/observations to explain.

 dt_vS Data.table with the contribution function (v(S)) estimates for each coalition.

- dt_samp_for_vS Data.table with the samples used in the Monte Carlo estimation of the contribution function (v(S)). This is only available if output_args_default\$keep_samp_for_vS = TRUE (defaults to FALSE) in explain().
- dt_used_coalitions Data.table with an overview of the coalitions used in the computation.
- dt_valid_causal_coalitions Data.table with the valid causal coalitions used in the computation.
- dt_coal_samp_info Data.table with information related to the coalition sampling procedure being used.

Note that the summary.shapr() function provides a nicely formatted printout with the most important information, to then invisibly return the output of the present function. The print.shapr() allows direct printing of the main results.

Value

If a single component is requested, returns that object. If multiple are requested, returns a named list.

get_supported_approaches

Get the Implemented Approaches

Description

Get the Implemented Approaches

Usage

```
get_supported_approaches()
```

Value

Character vector. The names of the implemented approaches that can be passed to argument approach in explain().

```
get_supported_models Provide a data.table with the Supported Models
```

Description

Provide a data. table with the Supported Models

Usage

```
get_supported_models()
```

Value

A data.table with the supported models.

plot.shapr

Plot of the Shapley Value Explanations

Description

Plots the individual prediction explanations.

Usage

```
## S3 method for class 'shapr'
plot(
  х,
  plot_type = "bar",
  digits = 3,
  print_ggplot = TRUE,
  index_x_explain = NULL,
  top_k_features = NULL,
  col = NULL,
  bar_plot_phi0 = TRUE,
  bar_plot_order = "largest_first",
  scatter_features = NULL,
  scatter_hist = TRUE,
  include_group_feature_means = FALSE,
 beeswarm_cex = 1/length(index_x_explain)^(1/4),
)
```

Arguments

An shapr object. The output from explain().

plot_type

Character. Specifies the type of plot to produce. "bar" (the default) gives a regular horizontal bar plot of the Shapley value magnitudes. "waterfall" gives a waterfall plot indicating the changes in the prediction score due to each feature's contribution (their Shapley values). "scatter" plots the feature values on the x-axis and Shapley values on the y-axis, as well as (optionally) a background scatter_hist showing the distribution of the feature data. "beeswarm" summarizes the distribution of the Shapley values along the x-axis for all the features. Each point gives the Shapley value of a given instance, where the points are colored by the feature value of that instance.

digits

Integer. Number of significant digits to use in the feature description. Applicable for plot_type "bar" and "waterfall"

print_ggplot

Logical. Whether to print the created ggplot object once it is returned. The default is TRUE which ensures the plot is always displayed also in loops, functions, when sourcing a script, and when assigning the output to a variable like p <- plot.shapr(...). See ggplot2::print.ggplot() for more details. If you wish to further modify the returned ggplot object outside of plot. shapr, we recommend setting print_ggplot = FALSE to avoid force printing. See the examples for a practical use case.

index_x_explain

Integer vector. Which of the test observations to plot. For example, if you have explained 10 observations using explain(), you can generate a plot for the first five observations by setting $index_x=plain = 1:5$.

top_k_features Integer. How many features to include in the plot. E.g. if you have 15 features in your model you can plot the 5 most important features, for each explanation, by setting top_k_features = 1:5. Applicable for plot_type "bar" and "waterfall"

col

Character vector (where length depends on plot type). The color codes (hex codes or other names understood by ggplot2::ggplot()) for positive and negative Shapley values, respectively. The default is col=NULL, plotting with the default colors respective to the plot type. For plot_type = "bar" and plot_type = "waterfall", the default is c("#00BA38", "#F8766D"). For plot_type = "beeswarm", the default is c("#F8766D", "yellow", "#00BA38"). For plot_type = "scatter", the default is "#619CFF".

If you want to alter the colors in the plot, the length of the col vector depends on plot type. For plot_type = "bar" or plot_type = "waterfall", two colors should be provided, first for positive and then for negative Shapley values. For plot_type = "beeswarm", either two or three colors can be given. If two colors are given, then the first color determines the color that points with high feature values will have, and the second determines the color of points with low feature values. If three colors are given, then the first colors high feature values, the second colors mid-range feature values, and the third colors low feature values. For instance, col = c("red", "yellow", "blue") will make high values red, mid-range values yellow, and low values blue. For plot_type = "scatter", a single color is to be given, which determines the color of the points on the scatter plot.

Logical. Whether to include phi0 in the plot for plot_type = "bar". bar_plot_phi0

bar_plot_order Character. Specifies what order to plot the features with respect to the magnitude of the Shapley values with plot_type = "bar": "largest_first" (the default) plots the features ordered from largest to smallest absolute Shapley value. "smallest_first" plots the features ordered from smallest to largest absolute Shapley value. "original" plots the features in the original order of the data table.

scatter_features

Integer or character vector. Only used for plot_type = "scatter". Specifies which features to include in the scatter plot. Can be a numerical vector indicating feature index, or a character vector, indicating the name(s) of the feature(s) to plot.

scatter_hist

Logical. Only used for plot_type = "scatter". Whether to include a scatter_hist indicating the distribution of the data when making the scatter plot. Note that the bins are scaled so that when all the bins are stacked they fit the span of the y-axis of the plot.

include_group_feature_means

Logical. Whether to include the average feature value in a group on the y-axis or not. If FALSE (default), then no value is shown for the groups. If TRUE, then shapr includes the mean of the features in each group.

beeswarm_cex

Numeric. The cex argument of ggbeeswarm::geom_beeswarm(), controlling the spacing in the beeswarm plots.

Other arguments passed to underlying functions, like ggbeeswarm: :geom_beeswarm() for plot_type = "beeswarm".

Details

See the examples below, or vignette("general_usage", package = "shapr") for examples of how to use the function.

Value

ggplot object with plots of the Shapley value explanations

Author(s)

Martin Jullum, Vilde Ung, Lars Henry Berge Olsen

Examples

```
if (requireNamespace("party", quietly = TRUE)) {
 data("airquality")
 airquality <- airquality[complete.cases(airquality), ]</pre>
 x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
 y_var <- "Ozone"
 # Split data into test- and training data
 data_train <- head(airquality, -50)</pre>
 data_explain <- tail(airquality, 50)</pre>
```

```
x_train <- data_train[, x_var]</pre>
x_explain <- data_explain[, x_var]</pre>
# Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)</pre>
# Explain predictions
p <- mean(data_train[, y_var])</pre>
# Empirical approach
x <- explain(
  model = model,
  x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = "empirical",
 phi0 = p,
 n_MC_samples = 1e2
if (requireNamespace(c("ggplot2", "ggbeeswarm"), quietly = TRUE)) {
  # The default plotting option is a bar plot of the Shapley values
  # We draw bar plots for the first 4 observations
  plot(x, index_x_explain = 1:4)
  # We can also make waterfall plots
  plot(x, plot_type = "waterfall", index_x_explain = 1:4)
  # And only showing the two features with the largest contributions
  plot(x, plot_type = "waterfall", index_x_explain = 1:4, top_k_features = 2)
  # Or scatter plots showing the distribution of the Shapley values and feature values
  plot(x, plot_type = "scatter")
  # And only for a specific feature
  plot(x, plot_type = "scatter", scatter_features = "Temp")
 # Or a beeswarm plot summarising the Shapley values and feature values for all features
  plot(x, plot_type = "beeswarm")
 plot(x, plot_type = "beeswarm", col = c("red", "black")) # we can change colors
 # Additional arguments can be passed to ggbeeswarm::geom_beeswarm() using the '...' argument.
  # For instance, sometimes the beeswarm plots overlap too much.
  # This can be fixed with the 'corral="wrap" argument.
  # See ?ggbeeswarm::geom_beeswarm for more information.
  plot(x, plot_type = "beeswarm", corral = "wrap")
}
# Example of scatter and beeswarm plot with factor variables
airquality$Month_factor <- as.factor(month.abb[airquality$Month])</pre>
airquality <- airquality[complete.cases(airquality), ]</pre>
x_var <- c("Solar.R", "Wind", "Temp", "Month_factor")</pre>
y_var <- "Ozone"
```

```
# Split data into test- and training data
 data_train <- airquality</pre>
 data_explain <- tail(airquality, 50)</pre>
 x_train <- data_train[, x_var]</pre>
 x_explain <- data_explain[, x_var]</pre>
 # Fit a linear model
 lm_formula \leftarrow as.formula(paste0(y_var, " \sim ", paste0(x_var, collapse = " + ")))
 model <- lm(lm_formula, data = data_train)</pre>
 # Explain predictions
 p <- mean(data_train[, y_var])</pre>
 # Empirical approach
 x <- explain(</pre>
   model = model,
    x_{explain} = x_{explain}
    x_{train} = x_{train}
    approach = "ctree",
   phi0 = p,
    n_MC_samples = 1e2
 )
 if (requireNamespace(c("ggplot2", "ggbeeswarm"), quietly = TRUE)) {
    plot(x, plot_type = "scatter")
    plot(x, plot_type = "beeswarm")
 # Example of further modification of the output from plot.shapr
 plt = plot(x, index_x_explain = 1:4, print_ggplot = FALSE) # Stores ggplot object without printing
 # Displays the modified ggplot object
 plt +
    ggplot2::ggtitle("My custom title") +
    ggplot2::ylab("Variable influence") +
    ggplot2::xlab("Variable")
}
```

Description

Make plots to visualize and compare the MSEv evaluation criterion for a list of explain() objects applied to the same data and model. The function creates bar plots and line plots with points to illustrate the overall MSEv evaluation criterion, but also for each observation/explicand and coalition by only averaging over the coalitions and observations/explicands, respectively.

33

Usage

```
plot_MSEv_eval_crit(
  explanation_list,
  index_x_explain = NULL,
  id_coalition = NULL,
 CI_level = if (length(explanation_list[[1]]$pred_explain) < 20) NULL else 0.95,
  geom_col_width = 0.9,
 plot_type = "overall"
)
```

Arguments

explanation_list

A list of explain() objects applied to the same data and model. If the entries in the list are named, then the function use these names. Otherwise, they default to the approach names (with integer suffix for duplicates) for the explanation objects in explanation_list.

index_x_explain

Integer vector. Which of the test observations to plot. For example, if you have explained 10 observations using explain(), you can generate a plot for the first five observations by setting $index_x=plain = 1:5$.

id_coalition

Integer vector. Which of the coalitions to plot. E.g. if you used n_coalitions = 16 in explain(), you can generate a plot for the first 5 coalitions and the 10th by setting id_coalition = c(1:5, 10).

CI_level

Positive numeric between zero and one. Default is 0.95 if the number of observations to explain is larger than 20, otherwise CI_level = NULL, which removes the confidence intervals. The level of the approximate confidence intervals for the overall MSEv and the MSEv_coalition. The confidence intervals are based on that the MSEv scores are means over the observations/explicands, and that means are approximation normal. Since the standard deviations are estimated, we use the quantile t from the T distribution with N_explicands - 1 degrees of freedom corresponding to the provided level. Here, N_explicands is the number of observations/explicands. MSEv +/- tSD(MSEv)/sqrt(N explicands). Note that the explain() function already scales the standard deviation by $sqrt(N \ explicands)$, thus, the CI are MSEv V- tMSEv sd, where the values MSEv and MSEv sd are extracted from the MSEv data.tables in the objects in the explanation_list.

geom_col_width Numeric. Bar width. By default, set to 90% of the ggplot2::resolution() of the data.

plot_type

Character vector. The possible options are "overall" (default), "comb", and "explicand". If plot_type = "overall", then the plot (one bar plot) associated with the overall MSEv evaluation criterion for each method is created, i.e., when averaging over both the coalitions and observations/explicands. If plot_type = "comb", then the plots (one line plot and one bar plot) associated with the MSEv evaluation criterion for each coalition are created, i.e., when we only average over the observations/explicands. If plot_type = "explicand", then the plots (one line plot and one bar plot) associated with the MSEv evaluation criterion for each observations/explicands are created, i.e., when we only average over

the coalitions. If plot_type is a vector of one or several of "overall", "comb", and "explicand", then the associated plots are created.

Details

Note that in contrast to plot.shapr(), plot_MSEv_eval_crit() always just returns the ggplot objects, i.e. no force displaying through ggplot2::print.ggplot().

Value

Either a single ggplot2::ggplot() object of the MSEv criterion when plot_type = "overall", or a list of ggplot2::ggplot() objects based on the plot_type parameter.

Author(s)

Lars Henry Berge Olsen

Examples

```
if (requireNamespace("xgboost", quietly = TRUE) && requireNamespace("ggplot2", quietly = TRUE)) {
 # Get the data
 data("airquality")
 data <- data.table::as.data.table(airquality)</pre>
 data <- data[complete.cases(data), ]</pre>
 #' Define the features and the response
 x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
 v_var <- "Ozone"</pre>
 # Split data into test and training data set
 ind_x_explain <- 1:25</pre>
 x_train <- data[-ind_x_explain, ..x_var]</pre>
 y_train <- data[-ind_x_explain, get(y_var)]</pre>
 x_explain <- data[ind_x_explain, ..x_var]</pre>
 # Fitting a basic xgboost model to the training data
 model <- xgboost::xgboost(</pre>
   data = as.matrix(x_train),
   label = y_train,
   nround = 20,
    verbose = FALSE
 )
 # Specifying the phi_0, i.e. the expected prediction without any features
 phi0 <- mean(y_train)</pre>
 # Independence approach
 explanation_independence <- explain(</pre>
   model = model,
   x_{explain} = x_{explain}
   x_{train} = x_{train}
    approach = "independence",
```

```
35
```

```
phi0 = phi0,
 n_MC_samples = 1e2
# Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(</pre>
 model = model,
  x_{explain} = x_{explain}
  x_train = x_train,
  approach = "gaussian",
 phi0 = phi0,
 n_MC_samples = 1e1
# Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = "gaussian",
 phi0 = phi0,
 n_MC_samples = 1e2
)
# ctree approach
explanation_ctree <- explain(</pre>
 model = model,
  x_{explain} = x_{explain}
  x_train = x_train,
  approach = "ctree",
 phi0 = phi0,
 n_MC_samples = 1e2
# Combined approach
explanation_combined <- explain(</pre>
  model = model,
 x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = c("gaussian", "independence", "ctree"),
 phi0 = phi0,
 n_MC_samples = 1e2
# Create a list of explanations with names
explanation_list_named <- list(</pre>
  "Ind." = explanation_independence,
  "Gaus. 1e1" = explanation_gaussian_1e1,
  "Gaus. 1e2" = explanation_gaussian_1e2,
  "Ctree" = explanation_ctree,
  "Combined" = explanation_combined
)
```

```
# with approximate 95% confidence intervals
 plot_MSEv_eval_crit(explanation_list_named, CI_level = 0.95, plot_type = "overall")
 # Can also create plots of the MSEv criterion averaged only over the coalitions or observations.
 MSEv_figures <- plot_MSEv_eval_crit(explanation_list_named,</pre>
   CI_level = 0.95,
   plot_type = c("overall", "comb", "explicand")
 MSEv_figures$MSEv_bar
 MSEv_figures$MSEv_coalition_bar
 MSEv_figures$MSEv_explicand_bar
 # When there are many coalitions or observations, then it can be easier to look at line plots
 MSEv_figures$MSEv_coalition_line_point
 MSEv_figures$MSEv_explicand_line_point
 # We can specify which observations or coalitions to plot
 plot_MSEv_eval_crit(explanation_list_named,
    plot_type = "explicand",
    index_x=explain = c(1, 3:4, 6),
    CI_level = 0.95
 )$MSEv_explicand_bar
 plot_MSEv_eval_crit(explanation_list_named,
    plot_type = "comb",
    id_{coalition} = c(3, 4, 9, 13:15),
    CI_level = 0.95
 )$MSEv_coalition_bar
 # We can alter the figures if other palette schemes or design is wanted
 bar_text_n_decimals <- 1</pre>
 MSEv_figures$MSEv_bar +
   ggplot2::scale_x_discrete(limits = rev(levels(MSEv_figures$MSEv_bar$data$Method))) +
    ggplot2::coord_flip() +
    ggplot2::scale_fill_discrete() + #' Default ggplot2 palette
    ggplot2::theme_minimal() + #' This must be set before the other theme call
   ggplot2::theme(
      plot.title = ggplot2::element_text(size = 10),
      legend.position = "bottom"
    ggplot2::guides(fill = ggplot2::guide_legend(nrow = 1, ncol = 6)) +
   ggplot2::geom_text(
      ggplot2::aes(label = sprintf(
        paste("%.", sprintf("%d", bar_text_n_decimals), "f", sep = ""),
        round(MSEv, bar_text_n_decimals)
      )),
      vjust = -1.1, # This value must be altered based on the plot dimension
      hjust = 1.1, # This value must be altered based on the plot dimension
      color = "black",
      position = ggplot2::position_dodge(0.9),
      size = 5
   )
}
```

Create the default MSEv plot where we average over both the coalitions and observations

```
plot_SV_several_approaches
```

Shapley Value Bar Plots for Several Explanation Objects

Description

Make plots to visualize and compare the estimated Shapley values for a list of explain() objects applied to the same data and model. For group-wise Shapley values, the features values plotted are the mean feature values for all features in each group.

Usage

```
plot_SV_several_approaches(
  explanation_list,
  index_explicands = NULL,
  index_explicands_sort = FALSE,
  only_these_features = NULL,
  plot_phi0 = FALSE,
  digits = 4,
  print_ggplot = TRUE,
  add_zero_line = FALSE,
  axis_labels_n_dodge = NULL,
  axis_labels_rotate_angle = NULL,
  horizontal_bars = TRUE,
  facet_scales = "free",
  facet_ncol = 2,
  geom\_col\_width = 0.85,
  brewer_palette = NULL,
  include_group_feature_means = FALSE
)
```

Arguments

```
explanation_list
```

A list of explain() objects applied to the same data and model. If the entries in the list are named, then the function use these names. Otherwise, they default to the approach names (with integer suffix for duplicates) for the explanation objects in explanation_list.

index_explicands

Integer vector. Which of the explicands (test observations) to plot. E.g. if you have explained 10 observations using explain(), you can generate a plot for the first 5 observations/explicands and the 10th by setting index_x_explain = c(1:5, 10). The argument index_explicands_sort must be FALSE to plot the explicand in the order specified in index_x_explain.

index_explicands_sort

Boolean. If FALSE (default), then shapr plots the explicands in the order specified in index_explicands. If TRUE, then shapr sort the indices in increasing order based on their id.

only_these_features

String vector. Containing the names of the features which are to be included in the bar plots.

plot_phi0 Boolean. If we are to include the ϕ_0 in the bar plots or not.

Integer. Number of significant digits to use in the feature description. Applicable digits for plot_type "bar" and "waterfall"

Logical. Whether to print the created ggplot object once it is returned. The print_ggplot default is TRUE which ensures the plot is always displayed also in loops, functions, when sourcing a script, and when assigning the output to a variable like p <- plot.shapr(...). See ggplot2::print.ggplot() for more details. If you wish to further modify the returned ggplot object outside of plot. shapr, we recommend setting print_ggplot = FALSE to avoid force printing. See the examples for a practical use case.

add_zero_line Boolean. If we are to add a black line for a feature contribution of 0. axis_labels_n_dodge

> Integer. The number of rows that should be used to render the labels. This is useful for displaying labels that would otherwise overlap.

axis_labels_rotate_angle

Numeric. The angle of the axis label, where 0 means horizontal, 45 means tilted, and 90 means vertical. Compared to setting the angle in ggplot2::theme() / ggplot2::element_text(), this also uses some heuristics to automatically pick the hjust and vjust that you probably want.

Boolean. Flip Cartesian coordinates so that horizontal becomes vertical, and vertical, horizontal. This is primarily useful for converting geoms and statistics which display y conditional on x, to x conditional on y. See ggplot2::coord_flip().

facet scales Should scales be free ("free", the default), fixed ("fixed"), or free in one dimension ("free_x", "free_y")? The user has to change the latter manually depending on the value of horizontal_bars.

facet_ncol Integer. The number of columns in the facet grid. Default is facet_ncol = 2.

geom_col_width Numeric. Bar width. By default, set to 85% of the ggplot2::resolution() of the data.

brewer_palette String. Name of one of the color palettes from RColorBrewer::RColorBrewer(). If NULL, then the function uses the default ggplot2::ggplot() color scheme. The following palettes are available for use with these scales:

> Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spectral

PuBuGn, PuRd, Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd

Qualitative Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3 Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu,

horizontal_bars

```
include_group_feature_means
```

Logical. Whether to include the average feature value in a group on the y-axis or not. If FALSE (default), then no value is shown for the groups. If TRUE, then shapr includes the mean of the features in each group.

Value

```
A ggplot2::ggplot() object.
```

Author(s)

Lars Henry Berge Olsen

Examples

```
## Not run:
if (requireNamespace("xgboost", quietly = TRUE) && requireNamespace("ggplot2", quietly = TRUE)) {
 # Get the data
 data("airquality")
 data <- data.table::as.data.table(airquality)</pre>
 data <- data[complete.cases(data), ]</pre>
 # Define the features and the response
 x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
 y_var <- "Ozone"
 # Split data into test and training data set
 ind_x_explain <- 1:12</pre>
 x_train <- data[-ind_x_explain, ..x_var]</pre>
 y_train <- data[-ind_x_explain, get(y_var)]</pre>
 x_explain <- data[ind_x_explain, ..x_var]</pre>
 # Fitting a basic xgboost model to the training data
 model <- xgboost::xgboost(</pre>
    data = as.matrix(x_train),
   label = y_train,
   nround = 20,
    verbose = FALSE
 )
 # Specifying the phi_0, i.e. the expected prediction without any features
 phi0 <- mean(y_train)</pre>
 # Independence approach
 explanation_independence <- explain(</pre>
   model = model,
   x_{explain} = x_{explain}
    x_train = x_train,
    approach = "independence",
   phi0 = phi0,
   n_MC_samples = 1e2
 )
```

```
# Empirical approach
explanation_empirical <- explain(</pre>
  model = model,
 x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = "empirical",
 phi0 = phi0,
 n_MC_samples = 1e2
# Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_train = x_train,
  approach = "gaussian",
 phi0 = phi0,
 n_MC_samples = 1e1
# Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(</pre>
 model = model,
 x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = "gaussian",
 phi0 = phi0,
 n_MC_samples = 1e2
)
# Combined approach
explanation_combined <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
 x_train = x_train,
  approach = c("gaussian", "ctree", "empirical"),
 phi0 = phi0,
 n_MC_samples = 1e2
# Create a list of explanations with names
explanation_list <- list(</pre>
  "Ind." = explanation_independence,
  "Emp." = explanation_empirical,
  "Gaus. 1e1" = explanation_gaussian_1e1,
  "Gaus. 1e2" = explanation_gaussian_1e2,
  "Combined" = explanation_combined
)
# The function uses the provided names.
plot_SV_several_approaches(explanation_list)
```

```
# We can change the number of columns in the grid of plots and add other visual alterations
 # Set `print_ggplot = FALSE` to avoid force displaying the ggplot object before the modifications
 # outside plot_SV_several_approaches()
 plot_SV_several_approaches(explanation_list,
    facet_ncol = 3,
    facet_scales = "free_y",
   add_zero_line = TRUE,
   digits = 2,
   brewer_palette = "Paired",
   geom_col_width = 0.6,
   print_ggplot = FALSE
    ggplot2::theme_minimal() +
  ggplot2::theme(legend.position = "bottom", plot.title = ggplot2::element_text(size = 10))
 # We can specify which explicands to plot to get less chaotic plots and make the bars vertical
 plot_SV_several_approaches(explanation_list,
    index_explicands = c(1:2, 5, 10),
   horizontal_bars = FALSE,
   axis_labels_rotate_angle = 45
 )
 # We can change the order of the features by specifying the
 # order using the `only_these_features` parameter.
 plot_SV_several_approaches(explanation_list,
    index_explicands = c(1:2, 5, 10),
   only_these_features = c("Temp", "Solar.R", "Month", "Wind")
 )
 # We can also remove certain features if we are not interested in them
 # or want to focus on, e.g., two features. The function will give a
 # message to if the user specifies non-valid feature names.
 plot_SV_several_approaches(explanation_list,
    index_explicands = c(1:2, 5, 10),
   only_these_features = c("Temp", "Solar.R"),
   plot_phi0 = TRUE
 )
}
## End(Not run)
```

Description

This function makes (ggplot2::ggplot()) figures of the training VLB and the validation IWAE for a list of explain() objects with approach = "vaeac". See setup_approach() for more information about the vaeac approach. Two figures are returned by the function. In the figure, each object in explanation_list gets its own facet, while in the second figure, we plot the criteria in each facet for all objects.

Usage

```
plot_vaeac_eval_crit(
   explanation_list,
   plot_from_nth_epoch = 1,
   plot_every_nth_epoch = 1,
   criteria = c("VLB", "IWAE"),
   plot_type = c("method", "criterion"),
   facet_wrap_scales = "fixed",
   facet_wrap_ncol = NULL
)
```

Arguments

explanation_list

A list of explain() objects applied to the same data, model, and vaeac must be the used approach. If the entries in the list is named, then the function use these names. Otherwise, it defaults to the approach names (with integer suffix for duplicates) for the explanation objects in explanation_list.

plot_from_nth_epoch

Integer. If we are only plot the results form the nth epoch and so forth. The first epochs can be large in absolute value and make the rest of the plot difficult to interpret.

plot_every_nth_epoch

Integer. If we are only to plot every nth epoch. Usefully to illustrate the overall trend, as there can be a lot of fluctuation and oscillation in the values between each epoch.

criteria Character vector. The possible options are "VLB", "IWAE", "IWAE_running". Default is the first two.

plot_type Character vector. The possible options are "method" and "criterion". Default is to plot both.

facet_wrap_scales

String. Should the scales be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y").

facet_wrap_ncol

Integer. Number of columns in the facet wrap.

Details

See Olsen et al. (2022) or the blog post for a summary of the VLB and IWAE.

Value

Either a single ggplot2::ggplot() object or a list of ggplot2::ggplot() objects based on the plot_type parameter.

Author(s)

Lars Henry Berge Olsen

References

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features. Journal of machine learning research, 23(213), 1-51

Examples

```
if (requireNamespace("xgboost", quietly = TRUE) &&
 requireNamespace("torch", quietly = TRUE) &&
 torch::torch_is_installed()) {
 data("airquality")
 data <- data.table::as.data.table(airquality)</pre>
 data <- data[complete.cases(data), ]</pre>
 x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
 y_var <- "Ozone"
 ind_x_explain <- 1:6</pre>
 x_train <- data[-ind_x_explain, ..x_var]</pre>
 y_train <- data[-ind_x_explain, get(y_var)]</pre>
 x_explain <- data[ind_x_explain, ..x_var]</pre>
 # Fitting a basic xgboost model to the training data
 model <- xgboost::xgboost(</pre>
    data = as.matrix(x_train),
   label = y_train,
   nround = 100,
    verbose = FALSE
 )
 # Specifying the phi_0, i.e. the expected prediction without any features
 p0 <- mean(y_train)</pre>
 # Train vaeac with and without paired sampling
 explanation_paired <- explain(</pre>
   model = model,
   x_{explain} = x_{explain}
    x_train = x_train,
    approach = "vaeac",
   phi0 = p0,
   n_MC_samples = 1, # As we are only interested in the training of the vaeac
   vaeac.epochs = 10, # Should be higher in applications.
```

```
vaeac.n_vaeacs_initialize = 1,
  vaeac.width = 16,
  vaeac.depth = 2,
  vaeac.extra_parameters = list(vaeac.paired_sampling = TRUE)
explanation_regular <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_train = x_train,
  approach = "vaeac",
  phi0 = p0,
  n_MC_samples = 1, # As we are only interested in the training of the vaeac
  vaeac.epochs = 10, # Should be higher in applications.
  vaeac.width = 16,
  vaeac.depth = 2,
  vaeac.n_vaeacs_initialize = 1,
  vaeac.extra_parameters = list(vaeac.paired_sampling = FALSE)
)
# Collect the explanation objects in an named list
explanation_list <- list(</pre>
  "Regular sampling" = explanation_regular,
  "Paired sampling" = explanation_paired
)
# Call the function with the named list, will use the provided names
plot_vaeac_eval_crit(explanation_list = explanation_list)
# The function also works if we have only one method,
# but then one should only look at the method plot.
plot_vaeac_eval_crit(
  explanation_list = explanation_list[2],
  plot_type = "method"
# Can alter the plot
plot_vaeac_eval_crit(
  explanation_list = explanation_list,
  plot_from_nth_epoch = 2,
  plot_every_nth_epoch = 2,
  facet_wrap_scales = "free"
\# If we only want the VLB
plot_vaeac_eval_crit(
  explanation_list = explanation_list,
  criteria = "VLB",
 plot_type = "criterion"
# If we want only want the criterion version
tmp_fig_criterion <-</pre>
```

plot_vaeac_imputed_ggpairs

Plot Pairwise Plots for Imputed and True Data

Description

A function that creates a matrix of plots (GGally::ggpairs()) from generated imputations from the unconditioned distribution p(x) estimated by a vaeac model, and then compares the imputed values with data from the true distribution (if provided). See ggpairs for an introduction to GGally::ggpairs(), and the corresponding vignette.

Usage

```
plot_vaeac_imputed_ggpairs(
  explanation,
 which_vaeac_model = "best",
  x_{true} = NULL,
  add_title = TRUE,
  alpha = 0.5,
 upper_cont = c("cor", "points", "smooth", "smooth_loess", "density", "blank"),
  upper_cat = c("count", "cross", "ratio", "facetbar", "blank"),
  upper_mix = c("box", "box_no_facet", "dot", "dot_no_facet", "facethist",
    "facetdensity", "denstrip", "blank"),
 lower_cont = c("points", "smooth", "smooth_loess", "density", "cor", "blank"),
  lower_cat = c("facetbar", "ratio", "count", "cross", "blank"),
  lower_mix = c("facetdensity", "box", "box_no_facet", "dot", "dot_no_facet",
    "facethist", "denstrip", "blank"),
  diag_cont = c("densityDiag", "barDiag", "blankDiag"),
 diag_cat = c("barDiag", "blankDiag"),
  cor_method = c("pearson", "kendall", "spearman")
)
```

Arguments

```
explanation
                  Shapr list. The output list from the explain() function.
which_vaeac_model
                  String. Indicating which vaeac model to use when generating the samples. Pos-
                  sible options are always 'best', 'best_running', and 'last'. All possible
                  options can be obtained by calling names (explanation$internal$parameters$vaeac$models).
                  Data.table containing the data from the distribution that the vaeac model is fitted
x_true
add_title
                  Logical. If TRUE, then a title is added to the plot based on the internal description
                  of the vaeac model specified in which_vaeac_model.
alpha
                  Numeric between 0 and 1 (default is 0.5). The degree of color transparency.
                  String. Type of plot to use in upper triangle for continuous features, see GGally::ggpairs().
upper_cont
                  Possible options are: 'cor' (default), 'points', 'smooth', 'smooth_loess',
                   'density', and 'blank'.
                  String. Type of plot to use in upper triangle for categorical features, see GGally::ggpairs().
upper_cat
                  Possible options are: 'count' (default), 'cross', 'ratio', 'facetbar', and
                   'blank'.
                  String. Type of plot to use in upper triangle for mixed features, see GGally::ggpairs().
upper_mix
                  Possible options are: 'box' (default), 'box_no_facet', 'dot', 'dot_no_facet',
                  'facethist', 'facetdensity', 'denstrip', and 'blank'
lower_cont
                  String. Type of plot to use in lower triangle for continuous features, see GGally::ggpairs().
                  Possible options are: 'points' (default), 'smooth', 'smooth_loess', 'density',
                   'cor', and 'blank'.
lower_cat
                  String. Type of plot to use in lower triangle for categorical features, see GGally::ggpairs().
                  Possible options are: 'facetbar' (default), 'ratio', 'count', 'cross', and
                   'blank'.
lower_mix
                  String. Type of plot to use in lower triangle for mixed features, see GGally::ggpairs().
                  Possible options are: 'facetdensity' (default), 'box', 'box_no_facet', 'dot',
                   'dot_no_facet', 'facethist', 'denstrip', and 'blank'.
diag_cont
                  String. Type of plot to use on the diagonal for continuous features, see GGally::ggpairs().
                  Possible options are: 'densityDiag' (default), 'barDiag', and 'blankDiag'.
diag_cat
                  String. Type of plot to use on the diagonal for categorical features, see GGally::ggpairs().
                  Possible options are: 'barDiag' (default) and 'blankDiag'.
cor_method
                  String. Type of correlation measure, see GGally::ggpairs(). Possible options
                  are: 'pearson' (default), 'kendall', and 'spearman'.
```

Value

```
A GGally::ggpairs() figure.
```

Author(s)

Lars Henry Berge Olsen

References

 Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features. Journal of machine learning research, 23(213), 1-51

Examples

```
if (requireNamespace("xgboost", quietly = TRUE) &&
 requireNamespace("ggplot2", quietly = TRUE) &&
 requireNamespace("torch", quietly = TRUE) &&
 torch::torch_is_installed()) {
 data("airquality")
 data <- data.table::as.data.table(airquality)</pre>
 data <- data[complete.cases(data), ]</pre>
 x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
 y_var <- "Ozone"
 ind_x_explain <- 1:6</pre>
 x_train <- data[-ind_x_explain, ..x_var]</pre>
 y_train <- data[-ind_x_explain, get(y_var)]</pre>
 x_explain <- data[ind_x_explain, ..x_var]</pre>
 # Fitting a basic xgboost model to the training data
 model <- xgboost::xgboost(</pre>
   data = as.matrix(x_train),
   label = y_train,
   nround = 100,
    verbose = FALSE
 )
 explanation <- shapr::explain(</pre>
    model = model,
    x_{explain} = x_{explain}
    x_train = x_train,
    approach = "vaeac"
   phi0 = mean(y_train),
   n_MC_samples = 1,
   vaeac.epochs = 10,
    vaeac.n_vaeacs_initialize = 1
 )
 # Plot the results
 figure <- shapr::plot_vaeac_imputed_ggpairs(</pre>
   explanation = explanation,
   which_vaeac_model = "best",
    x_true = x_train,
    add_title = TRUE
 figure
```

48 print.shapr

```
# Note that this is an ggplot2 object which we can alter, e.g., we can change the colors.
figure +
    ggplot2::scale_color_manual(values = c("#E69F00", "#999999")) +
    ggplot2::scale_fill_manual(values = c("#E69F00", "#999999"))
}
```

print.shapr

Print Method for Shapr Objects

Description

Print Method for Shapr Objects

Usage

```
## S3 method for class 'shapr'
print(
    x,
    what = c("shapley_est", "shapley_sd", "MSEv", "MSEv_explicand", "MSEv_coalition",
        "timing_summary"),
    digits = 3L,
    ...
)
```

Arguments

Х	A shapr object	
what	Character. Which component to print. Options are "shapley_est", "shapley_sd", "MSEv", "MSEv_explicand", "MSEv_coalition", and "timing_summary". Defaults to "shapley_est". Only one component can be printed at a time. See the details section of get_results() for details about each component.	
digits	Integer. Number of significant digits to display. Defaults to 3.	
	Further arguments passed to data.table::print.data.table().	

Value

The object is returned invisibly after printing selected output.

summary.shapr 49

summary	/ shanr

Summary Method for Shapr Objects

Description

Summary Method for Shapr Objects

Usage

```
## S3 method for class 'shapr'
summary(object, digits = 2L, ...)
```

Arguments

object A shapr object.

digits Integer. (Maximum) number of digits to be displayed after the decimal point.

Defaults to 2.

... Currently unused.

Value

Prints a formatted summary of the shapr object, and invisibly returns a named list of summary components. See the details section of get_results() for details about each component.

```
vaeac_get_extra_para_default
```

Specify the Extra Parameters in the vaeac Model

Description

In this function, we specify the default values for the extra parameters used in explain() for approach = "vaeac".

Usage

```
vaeac_get_extra_para_default(
  vaeac.model_description = make.names(Sys.time()),
  vaeac.folder_to_save_model = tempdir(),
  vaeac.pretrained_vaeac_model = NULL,
  vaeac.cuda = FALSE,
  vaeac.epochs_initiation_phase = 2,
  vaeac.epochs_early_stopping = NULL,
  vaeac.save_every_nth_epoch = NULL,
  vaeac.val_ratio = 0.25,
  vaeac.val_iwae_n_samples = 25,
```

```
vaeac.batch_size = 64,
  vaeac.batch_size_sampling = NULL,
  vaeac.running_avg_n_values = 5,
  vaeac.skip_conn_layer = TRUE,
  vaeac.skip_conn_masked_enc_dec = TRUE,
  vaeac.batch_normalization = FALSE,
  vaeac.paired_sampling = TRUE,
  vaeac.masking_ratio = 0.5,
  vaeac.mask_gen_coalitions = NULL,
 vaeac.mask_gen_coalitions_prob = NULL,
  vaeac.sigma_mu = 10000,
  vaeac.sigma_sigma = 1e-04,
  vaeac.sample_random = TRUE,
  vaeac.save_data = FALSE,
  vaeac.log_exp_cont_feat = FALSE,
  vaeac.which_vaeac_model = "best",
  vaeac.save_model = TRUE
)
```

Arguments

vaeac.model_description

String (default is make.names(Sys.time())). String containing, e.g., the name of the data distribution or additional parameter information. Used in the save name of the fitted model. If not provided, then a name will be generated based on base::Sys.time() to ensure a unique name. We use base::make.names() to ensure a valid file name for all operating systems.

vaeac.folder_to_save_model

String (default is base::tempdir()). String specifying a path to a folder where the function is to save the fitted vaeac model. Note that the path will be removed from the returned explain() object if vaeac.save_model = FALSE. Furthermore, the model cannot be moved from its original folder if we are to use the vaeac_train_model_continue() function to continue training the model.

vaeac.pretrained_vaeac_model

List or String (default is NULL). 1) Either a list of class vaeac, i.e., the list stored in explanation\$internal\$parameters\$vaeac where explanation is the returned list from an earlier call to the explain() function. 2) A string containing the path to where the vaeac model is stored on disk, for example, explanation\$internal\$parameters\$vaeac\$models\$best.

vaeac.cuda

Logical (default is FALSE). If TRUE, then the vaeac model will be trained using cuda/GPU. If torch::cuda_is_available() is FALSE, we fall back to using the CPU. Using a GPU for smaller tabular dataset often do not improve the efficiency. See vignette("installation", package = "torch") fo help to enable running on the GPU (only Linux and Windows).

vaeac.epochs_initiation_phase

Positive integer (default is 2). The number of epochs to run each of the vaeac.n_vaeacs_initialize vaeac models before continuing to train only the best performing model.

vaeac.epochs_early_stopping

Positive integer (default is NULL). The training stops if there has been no improvement in the validation IWAE for vaeac.epochs_early_stopping epochs. If the user wants the training process to be solely based on this training criterion, then vaeac.epochs in explain() should be set to a large number. If NULL, then shapr will internally set vaeac.epochs_early_stopping = vaeac.epochs such that early stopping does not occur.

vaeac.save_every_nth_epoch

Positive integer (default is NULL). If provided, then the vaeac model after every vaeac.save_every_nth_epochth epoch will be saved.

vaeac.val_ratio

Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of instances from the input data which will be used as validation data. That is, vaeac.val_ratio = 0.25 means that 75% of the provided data is used as training data, while the remaining 25% is used as validation data.

vaeac.val_iwae_n_samples

Positive integer (default is 25). The number of generated samples used to compute the IWAE criterion when validating the vaeac model on the validation data.

vaeac.batch_size

Positive integer (default is 64). The number of samples to include in each batch during the training of the vaeac model. Used in torch::dataloader().

vaeac.batch_size_sampling

Positive integer (default is NULL) The number of samples to include in each batch when generating the Monte Carlo samples. If NULL, then the function generates the Monte Carlo samples for the provided coalitions and all explicands sent to explain() at the time. The number of coalitions are determined by the n_batches used by explain(). We recommend to tweak extra_computation_args\$max_batch_size and extra_computation_args\$min_n_batches rather than vaeac.batch_size_sampling. Larger batch sizes are often much faster provided sufficient memory.

vaeac.running_avg_n_values

Positive integer (default is 5). The number of previous IWAE values to include when we compute the running means of the IWAE criterion.

vaeac.skip_conn_layer

Logical (default is TRUE). If TRUE, we apply identity skip connections in each layer, see $skip_connection()$. That is, we add the input X to the outcome of each hidden layer, so the output becomes X + activation(WX + b).

vaeac.skip_conn_masked_enc_dec

Logical (default is TRUE). If TRUE, we apply concatenate skip connections between the layers in the masked encoder and decoder. The first layer of the masked encoder will be linked to the last layer of the decoder. The second layer of the masked encoder will be linked to the second to last layer of the decoder, and so on.

vaeac.batch_normalization

Logical (default is FALSE). If TRUE, we apply batch normalization after the activation function. Note that if vaeac.skip_conn_layer = TRUE, then the normalization is applied after the inclusion of the skip connection. That is, we batch normalize the whole quantity X + activation(WX + b).

vaeac.paired_sampling

Logical (default is TRUE). If TRUE, we apply paired sampling to the training batches. That is, the training observations in each batch will be duplicated, where the first instance will be masked by S while the second instance will be masked by \bar{S} . This ensures that the training of the vaeac model becomes more stable as the model has access to the full version of each training observation. However, this will increase the training time due to more complex implementation and doubling the size of each batch. See paired_sampler() for more information.

vaeac.masking_ratio

Numeric (default is 0.5). Probability of masking a feature in the mcar_mask_generator() (MCAR = Missing Completely At Random). The MCAR masking scheme ensures that vaeac model can do arbitrary conditioning as all coalitions will be trained. vaeac.masking_ratio will be overruled if vaeac.mask_gen_coalitions is specified.

vaeac.mask_gen_coalitions

Matrix (default is NULL). Matrix containing the coalitions that the vaeac model will be trained on, see specified_masks_mask_generator(). This parameter is used internally in shapr when we only consider a subset of coalitions, i.e., when n_coalitions $< 2^{n_{\text{features}}}$, and for group Shapley, i.e., when group is specified in explain().

vaeac.mask_gen_coalitions_prob

Numeric array (default is NULL). Array of length equal to the height of vaeac.mask_gen_coalitions containing the probabilities of sampling the corresponding coalitions in vaeac.mask_gen_coalitions.

vaeac.sigma_mu Numeric (default is 1e4). One of two hyperparameter values in the normal-gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al. (2022).

vaeac.sigma_sigma

Numeric (default is 1e-4). One of two hyperparameter values in the normal-gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al. (2022).

vaeac.sample_random

Logical (default is TRUE). If TRUE, the function generates random Monte Carlo samples from the inferred generative distributions. If FALSE, the function use the most likely values, i.e., the mean and class with highest probability for continuous and categorical, respectively.

vaeac.save_data

Logical (default is FALSE). If TRUE, then the data is stored together with the model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

vaeac.log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features before sending the data to vaeac(). The vaeac model creates unbounded Monte Carlo sample values. Thus, if the continuous features are strictly positive (as for, e.g., the Burr distribution and Abalone data set), it can be advantageous to log transform the data to unbounded form before using vaeac. If TRUE, then vaeac_postprocess_data() will take the exp of the results to get back to strictly positive values when using the vaeac model to impute missing values/generate the Monte Carlo samples.

vaeac.which_vaeac_model

String (default is best). The name of the vaeac model (snapshots from different epochs) to use when generating the Monte Carlo samples. The standard choices are: "best" (epoch with lowest IWAE), "best_running" (epoch with lowest running IWAE, see vaeac.running_avg_n_values), and last (the last epoch). Note that additional choices are available if vaeac.save_every_nth_epoch is provided. For example, if vaeac.save_every_nth_epoch = 5, then vaeac.which_vaeac_model can also take the values "epoch_5", "epoch_10", "epoch_15", and so on.

vaeac.save_model

Boolean. If TRUE (default), the vaeac model will be saved either in a base::tempdir() folder or in a user specified location in vaeac.folder_to_save_model. If FALSE, then the paths to model and the model will will be deleted from the returned object from explain().

Details

The vaeac model consists of three neural network (a full encoder, a masked encoder, and a decoder) based on the provided vaeac.depth and vaeac.width. The encoders map the full and masked input representations to latent representations, respectively, where the dimension is given by vaeac.latent_dim. The latent representations are sent to the decoder to go back to the real feature space and provide a samplable probabilistic representation, from which the Monte Carlo samples are generated. We use the vaeac method at the epoch with the lowest validation error (IWAE) by default, but other possibilities are available by setting the vaeac.which_vaeac_model parameter. See Olsen et al. (2022) for more details.

Value

Named list of the default values vaeac extra parameter arguments specified in this function call. Note that both vaeac.model_description and vaeac.folder_to_save_model will change with time and R session.

Author(s)

Lars Henry Berge Olsen

References

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features. Journal of machine learning research, 23(213), 1-51

vaeac_train_model_continue

Continue to Train the vaeac Model

Description

Function that loads a previously trained vaeac model and continue the training, either on new data or on the same dataset as it was trained on before. If we are given a new dataset, then we assume that new dataset has the same distribution and one_hot_max_sizes as the original dataset.

Usage

```
vaeac_train_model_continue(
  explanation,
  epochs_new,
  lr_new = NULL,
  x_train = NULL,
  save_data = FALSE,
  verbose = NULL,
  seed = 1
)
```

Arguments

explanation	A explain() object and vaeac must be the used approach.	
epochs_new	Positive integer. The number of extra epochs to conduct.	
lr_new	Positive numeric. If we are to overwrite the old learning rate in the adam optimizer.	
x_train	A data table containing the training data. Categorical data must have class names $1, 2, \ldots, K$.	
save_data	Logical (default is FALSE). If TRUE, then the data is stored together with the model. Useful if one are to continue to train the model later using vaeac_train_model_continue().	
verbose	String vector or NULL. Controls verbosity (printout detail level) via one or more of "basic", "progress", "convergence", "shapley" and "vS_details". "basic" (default) displays basic information about the computation and messages about parameters/checks. "progress" displays where in the calculation process the function currently is. "convergence" displays how close the Shapley value estimates are to convergence (only when iterative = TRUE). "shapley" displays intermediate Shapley value estimates and standard deviations (only when iterative = TRUE), and the final estimates. "vS_details" displays information about the v(S) estimates, most relevant for approach %in% c("regression_separate", "regression_surrogate", "vaeac"). NULL means no printout. Any combination can be used, e.g., verbose = c("basic", "vS_details").	
seed	Positive integer (default is 1). Seed for reproducibility. Specifies the seed before any randomness based code is being run.	

Value

A list containing the training/validation errors and paths to where the vaeac models are saved on the disk.

Author(s)

Lars Henry Berge Olsen

References

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features. Journal of machine learning research, 23(213), 1-51

Index

```
plot_MSEv_eval_crit(), 34
base::make.names(), 50
base::Sys.time(), 50
                                                plot_SV_several_approaches, 37
base::tempdir(), 50, 53
                                                plot_vaeac_eval_crit, 41
                                                plot_vaeac_imputed_ggpairs, 45
data.table::print.data.table(), 48
                                                print.shapr, 48
                                                print.shapr(), 27
explain, 2
                                                progressr::progressr, 9, 23
explain(), 6, 17, 22, 24, 27, 29, 32, 33, 37,
        42, 46, 49–54
                                                RColorBrewer::RColorBrewer(), 38
explain_forecast, 14
                                                recipes::recipe(), 8
                                                rsample::vfold_cv(), 8
future.apply::future_apply, 23
future::future, 9, 23
                                                setup_approach(), 42
                                                setup_approach.categorical, 6, 17
get_extra_comp_args_default, 21
                                                setup_approach.copula, 6, 17
get_extra_comp_args_default(), 6, 17
                                                setup_approach.ctree, 6, 17
get_iterative_args_default, 23
                                                setup_approach.ctree(), 4, 16
get_iterative_args_default(), 6, 17
                                                setup_approach.empirical, 6, 17
get_output_args_default, 24
                                                setup_approach.empirical(), 4, 16
get_output_args_default(), 6, 17
                                                setup_approach.gaussian, 6, 17
get_results, 25
                                                setup_approach.independence, 6, 17
get_results(), 48, 49
                                                setup_approach.regression_separate, 6
get_supported_approaches, 27
                                                setup_approach.regression_surrogate, 6
get_supported_models, 28
                                                setup_approach.timeseries, 6, 17
get_supported_models(), 3, 5, 15-17
                                                setup_approach.vaeac, 6, 17
GGally::ggpairs(), 45, 46
                                                skip\_connection(), 51
ggbeeswarm::geom_beeswarm(), 30
                                                specified_masks_mask_generator(), 52
ggplot2::coord_flip(), 38
                                                summary.shapr, 49
ggplot2::element_text(), 38
                                                summary.shapr(), 27
ggplot2::ggplot(), 29, 34, 38, 39, 42, 43
ggplot2::print.ggplot(), 29, 34, 38
                                                torch::cuda_is_available(), 50
ggplot2::resolution(), 33, 38
                                                torch::dataloader(), 51
ggplot2::theme(), 38
                                                torch::nn_leaky_relu(), 9, 19
                                                torch::nn_module(), 9, 19
mcar_mask_generator(), 52
                                                torch::nn_relu(), 9, 19
paired_sampler(), 52
                                                torch::nn_selu(), 9, 19
parsnip::linear_reg(), 7
                                                torch::nn_sigmoid(), 9, 19
plot.shapr, 28
                                                torch::optim_adam(), 9, 19
plot.shapr(), 34
plot_MSEv_eval_crit, 32
                                                vaeac(), 52
```

INDEX 57

```
vaeac_get_extra_para_default, 49
vaeac_get_extra_para_default(), 9, 19
vaeac_postprocess_data(), 52
vaeac_train_model_continue, 53
vaeac_train_model_continue(), 50, 52, 54
```