copulaSFM: Copula-Based Simultaneous Stochastic Frontier Models

Provides estimation procedures for copula-based stochastic frontier models for cross-sectional data. The package implements maximum likelihood estimation of stochastic frontier models allowing flexible dependence structures between inefficiency and noise terms through various copula families (e.g., Gaussian and Student-t). It enables estimation of technical efficiency scores, log-likelihood values, and information criteria (AIC and BIC). The implemented framework builds upon stochastic frontier analysis introduced by Aigner, Lovell and Schmidt (1977) <doi:10.1016/0304-4076(77)90052-5> and the copula theory described in Joe (2014, ISBN:9781466583221). Empirical applications of copula-based stochastic frontier models can be found in Wiboonpongse et al. (2015) <doi:10.1016/j.ijar.2015.06.001> and Maneejuk et al. (2017, ISBN:9783319562176).

Version: 0.1.0
Imports: stats, graphics, truncnorm, VineCopula
Published: 2026-02-18
DOI: 10.32614/CRAN.package.copulaSFM (may not be active yet)
Author: Woraphon Yamaka [aut, cre], Paravee Maneejuk [aut], Nuttaphong Kaewtathip [aut]
Maintainer: Woraphon Yamaka <woraphon.econ at gmail.com>
License: GPL-3
NeedsCompilation: no
Materials: README
CRAN checks: copulaSFM results

Documentation:

Reference manual: copulaSFM.html , copulaSFM.pdf

Downloads:

Package source: copulaSFM_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=copulaSFM to link to this page.