collinear
Automated Multicollinearity Management

The R package collinear provides a comprehensive toolkit
for smart multicollinearity management in datasets with mixed variable
types. The main function, collinear(),
integrates five core components:
Target Encoding (function target_encoding_lab()): Transparently converts categorical predictors to numeric when required, enabling VIF and correlation analysis across mixed data types.
Intelligent Predictor Ranking (function preference_order()): Prioritizes predictors by their univariate association with the response to ensure that the most relevant ones are retained during filtering.
Unified Correlation Framework (function cor_df()): Computes pairwise correlations between any variable types using Pearson correlation (numeric-numeric), target encoding (numeric-categorical), and Cramer’s V (categorical-categorical) within a single, consistent workflow.
Adaptive Filtering Thresholds (function collinear()): Automatically configures correlation and VIF thresholds based on each dataset’s correlation structure, eliminating guesswork while allowing manual override.
Dual Filtering Strategy (function collinear_select()): Combines pairwise correlation and Variance Inflation Factor filtering while considering predictor rankings to manage multicollinearity while maximizing the predictive power of the resulting selection of predictors.
These methods, except target encoding are also fully integrated into
the tidymodels implementation step_collinear().
The package also provides diagnostic functions (cor_df(), vif_df(), collinear_stats()) to help users assess multicollinearity in their data before and after filtering.
The package collinear can be installed from CRAN.
install.packages("collinear")The development version can be installed from GitHub.
remotes::install_github(
repo = "blasbenito/collinear",
ref = "development"
)Previous versions are in the archive_xxx branches of the
GitHub repository.
remotes::install_github(
repo = "blasbenito/collinear",
ref = "archive_v2.0.0"
)Most functions in the collinear package support
parallelization and progress bars via future and progressr.
Parallelization, however, is only advantageous for large datasets
including categorical predictors.
library(collinear)
library(future)
library(progressr)
future::plan(
future::multisession,
workers = future::availableCores() - 1
)
#does not work in Rmarkdown
#progressr::handlers(global = TRUE)The example dataframe vi_smol
has several response variables and a large set of predictors. Here we
focus on the numeric response vi_numeric, and the complete
set of numeric and categorical predictors, stored in the vector vi_predictors.
data(vi_smol, vi_predictors)
nrow(vi_smol)
#> [1] 610
length(vi_predictors)
#> [1] 58The package provides several functions to assess multicollinearity.
The functions cor_df()
and vif_df()
generate dataframes with the pairwise correlations and VIF scores of the
predictors, while the functions cor_stats(),
vif_stats()
(used below) and collinear_stats()
generate descriptive multicollinearity statistics. Notice that the
function takes a while to execute because computing correlations for the
categorical variables in vi_predictors is computationally
expensive.
collinear::vif_stats(
df = vi_smol,
predictors = vi_predictors,
quiet = TRUE
)
#> Warning:
#> collinear::vif_stats()
#> └── collinear::vif_df()
#> └── collinear::cor_matrix()
#> └── collinear::cor_df(): 11 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
#> method statistic value
#> 1 vif n 58.0000
#> 2 vif minimum -194.5080
#> 3 vif quantile_0.05 -11.2993
#> 4 vif quantile_0.25 0.4528
#> 5 vif mean 67.8998
#> 6 vif median 25.2999
#> 7 vif quantile_0.75 90.3970
#> 8 vif quantile_0.95 316.6229
#> 9 vif maximum 629.6362The quantile 0.75 returned by vif_stats() indicates that
25% of the predictors have a VIF score higher than 6.5. This suggests
substantial redundancy in the set of predictors.
To reduce multicollinearity in vi_smol we apply collinear()
with a minimal setup.
x <- collinear::collinear(
df = vi_smol,
response = "vi_numeric",
predictors = vi_predictors
)
#>
#> collinear::collinear()
#> └── collinear::validate_arg_df(): converted the following character columns to factor:
#> - koppen_zone
#> - koppen_group
#> - koppen_description
#> - biogeo_ecoregion
#> - biogeo_biome
#> - biogeo_realm
#> - country_name
#> - continent
#> - region
#> - subregion
#>
#> collinear::collinear()
#> └── collinear::cor_df(): 11 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
#>
#> collinear::collinear(): setting 'max_cor' to 0.6842.
#>
#> collinear::collinear(): setting 'max_vif' to 6.5269.
#>
#> collinear::collinear()
#> └── collinear::preference_order()
#> └── collinear::f_auto(): selected function 'f_numeric_rf()' to compute preference order.
#>
#> collinear::collinear()
#> └── collinear::collinear_select()
#> └── collinear::vif(): some VIF values exceeded 1M and were set to Inf.
#>
#> collinear::collinear(): selected predictors:
#> - rainfall_mean
#> - swi_mean
#> - evapotranspiration_max
#> - evapotranspiration_range
#> - swi_min
#> - soil_soc
#> - humidity_range
#> - topo_elevation
#> - cloud_cover_range
#> - continent
#> - soil_sand
#> - topo_diversity
#> - topo_slopeThe function returns an object of class
collinear_output, that has its own print() and
summary() methods.
x
#> Result
#> ===================
#> - response: vi_numeric
#> --------------------
#>
#> + df:
#> - rows: 610
#> - cols: 14
#>
#> + preference order:
#> + df:
#> - rows: 58
#> - cols: 6
#> + preference:
#> - rainfall_mean
#> - growing_season_rainfall
#> - growing_season_length
#> - swi_mean
#> - aridity_index
#> + f: f_numeric_rf
#>
#> + selection:
#> - rainfall_mean
#> - swi_mean
#> - evapotranspiration_max
#> - evapotranspiration_range
#> - swi_min
#> - ... (8 ommited)
#>
#> + formulas:
#> - linear: vi_numeric ~ rainfall_mean + swi_mean + evapotranspiration_max + evapotranspiration_range + swi_min + ... (8 terms omitted)
#> - smooth: vi_numeric ~ s(rainfall_mean) + s(swi_mean) + s(evapotranspiration_max) + s(evapotranspiration_range) + s(swi_min) + ... (8 terms omitted)The object df contains the response and the selected
predictors.
colnames(x$vi_numeric$df)
#> [1] "vi_numeric" "rainfall_mean"
#> [3] "swi_mean" "evapotranspiration_max"
#> [5] "evapotranspiration_range" "swi_min"
#> [7] "soil_soc" "humidity_range"
#> [9] "topo_elevation" "cloud_cover_range"
#> [11] "continent" "soil_sand"
#> [13] "topo_diversity" "topo_slope"The object preference_order contains the ranking of
predictors. It is computed by the function preference_order()
by assessing the association between the response and the predictors. In
this case, it fits univariate models between the response and each
predictor using f_numeric_rf,
and returns the R-squared of the observations vs the model predictions.
This ranking ensures that the most important predictors are protected
during multicollinearity filtering.
head(x$vi_numeric$preference_order)
#> response predictor f metric score rank
#> 1 vi_numeric rainfall_mean f_numeric_rf R-squared 0.8835 1
#> 2 vi_numeric growing_season_rainfall f_numeric_rf R-squared 0.8731 2
#> 3 vi_numeric growing_season_length f_numeric_rf R-squared 0.8644 3
#> 4 vi_numeric swi_mean f_numeric_rf R-squared 0.8333 4
#> 5 vi_numeric aridity_index f_numeric_rf R-squared 0.8279 5
#> 6 vi_numeric koppen_zone f_numeric_rf R-squared 0.8174 6The object selection contains non-collinear predictors
chosen by taking into account their pairwise correlation and VIF against
all other predictors, and their position in the ranking above.
x$vi_numeric$selection
#> [1] "rainfall_mean" "swi_mean"
#> [3] "evapotranspiration_max" "evapotranspiration_range"
#> [5] "swi_min" "soil_soc"
#> [7] "humidity_range" "topo_elevation"
#> [9] "cloud_cover_range" "continent"
#> [11] "soil_sand" "topo_diversity"
#> [13] "topo_slope"
#> attr(,"validated")
#> [1] TRUEWe can check that this selection of predictors shows low multicollinearity by running the function vif_df() on them.
collinear::vif_df(
df = x$vi_numeric$df,
predictors = x$vi_numeric$selection
)
#> vif predictor
#> 1 4.7203 cloud_cover_range
#> 2 3.3447 continent
#> 3 3.1112 evapotranspiration_max
#> 4 3.0627 evapotranspiration_range
#> 5 2.3856 humidity_range
#> 6 2.0747 rainfall_mean
#> 7 1.9928 soil_sand
#> 8 1.7690 soil_soc
#> 9 1.6346 swi_mean
#> 10 1.5984 swi_min
#> 11 1.3531 topo_diversity
#> 12 0.9320 topo_elevation
#> 13 -0.2235 topo_slopeAll VIF scores are below 2.5, collinear() did a good job
here!
Finally, collinear() also returns modeling formulas to
help kick start exploratory modelling.
x$vi_numeric$formulas
#> $linear
#> vi_numeric ~ rainfall_mean + swi_mean + evapotranspiration_max +
#> evapotranspiration_range + swi_min + soil_soc + humidity_range +
#> topo_elevation + cloud_cover_range + continent + soil_sand +
#> topo_diversity + topo_slope
#> <environment: 0x5adb1977e4b0>
#>
#> $smooth
#> vi_numeric ~ s(rainfall_mean) + s(swi_mean) + s(evapotranspiration_max) +
#> s(evapotranspiration_range) + s(swi_min) + s(soil_soc) +
#> s(humidity_range) + s(topo_elevation) + s(cloud_cover_range) +
#> continent + s(soil_sand) + s(topo_diversity) + s(topo_slope)
#> <environment: 0x5adb1977e4b0>The function returns linear formulas for numeric outcomes, and classification formulas for categorical outcomes.
The output of collinear() can be used right away to fit
exploratory models, as shown below.
m <- lm(
formula = x$vi_numeric$formulas$linear,
data = x$vi_numeric$df,
na.action = na.omit
)
summary(m)
#>
#> Call:
#> lm(formula = x$vi_numeric$formulas$linear, data = x$vi_numeric$df,
#> na.action = na.omit)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.42639 -0.04274 0.00107 0.04804 0.24228
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 3.027e-01 4.557e-02 6.644 6.97e-11 ***
#> rainfall_mean 4.183e-05 7.152e-06 5.849 8.22e-09 ***
#> swi_mean 6.997e-03 4.415e-04 15.850 < 2e-16 ***
#> evapotranspiration_max -1.206e-03 1.694e-04 -7.117 3.22e-12 ***
#> evapotranspiration_range -1.763e-04 1.396e-04 -1.263 0.207122
#> swi_min -2.473e-03 6.162e-04 -4.013 6.77e-05 ***
#> soil_soc -4.845e-04 1.944e-04 -2.492 0.012964 *
#> humidity_range -1.042e-03 6.301e-04 -1.654 0.098731 .
#> topo_elevation -3.991e-05 7.280e-06 -5.481 6.27e-08 ***
#> cloud_cover_range 5.109e-04 3.588e-04 1.424 0.155005
#> continentAsia -2.847e-02 1.227e-02 -2.320 0.020687 *
#> continentEurope 3.893e-02 1.895e-02 2.054 0.040412 *
#> continentNorth America 6.304e-02 1.525e-02 4.134 4.08e-05 ***
#> continentOceania 4.555e-02 1.478e-02 3.083 0.002146 **
#> continentSouth America 5.547e-02 1.242e-02 4.466 9.54e-06 ***
#> soil_sand 5.123e-04 2.821e-04 1.816 0.069887 .
#> topo_diversity 3.318e-03 8.973e-04 3.698 0.000238 ***
#> topo_slope 4.209e-03 1.392e-03 3.024 0.002600 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.08237 on 589 degrees of freedom
#> (3 observations deleted due to missingness)
#> Multiple R-squared: 0.8515, Adjusted R-squared: 0.8473
#> F-statistic: 198.7 on 17 and 589 DF, p-value: < 2.2e-16tidymodelsThe function step_collinear()
wraps collinear()
to facilitate its usage in tidymodels recipes. Please
notice that step_collinear() does not perform target
encoding, as combining this functionality with multicollinearity
filtering does not fit well with how recipes works.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(recipes)
#>
#> Attaching package: 'recipes'
#> The following object is masked from 'package:stats':
#>
#> step
library(parsnip)
library(workflows)
# model formula
vi_formula <- collinear::model_formula(
df = vi_smol,
response = "vi_numeric",
predictors = vi_predictors
)
# recipe
vi_recipe <- recipes::recipe(
formula = vi_formula,
data = vi_smol
) |>
#multicollinearity filtering
collinear::step_collinear(
recipes::all_predictors()
)
#linear model
vi_model <- parsnip::rand_forest() |>
parsnip::set_engine("ranger", importance = "permutation") |>
parsnip::set_mode("regression")
#create and fit workflow
vi_model <- parsnip::linear_reg() |>
parsnip::set_engine("lm")
# create and fit workflow
vi_workflow <- workflows::workflow() |>
workflows::add_recipe(vi_recipe) |>
workflows::add_model(vi_model) |>
workflows::fit(data = vi_smol)
#> Warning:
#> collinear::collinear()
#> └── collinear::cor_df(): 11 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
vi_workflow
#> ══ Workflow [trained] ══════════════════════════════════════════════════════════
#> Preprocessor: Recipe
#> Model: linear_reg()
#>
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#> 1 Recipe Step
#>
#> • step_collinear()
#>
#> ── Model ───────────────────────────────────────────────────────────────────────
#>
#> Call:
#> stats::lm(formula = ..y ~ ., data = data)
#>
#> Coefficients:
#> (Intercept) rainfall_mean swi_mean
#> 3.027e-01 4.183e-05 6.997e-03
#> evapotranspiration_max evapotranspiration_range swi_min
#> -1.206e-03 -1.763e-04 -2.473e-03
#> soil_soc humidity_range topo_elevation
#> -4.845e-04 -1.042e-03 -3.991e-05
#> cloud_cover_range continentAsia continentEurope
#> 5.109e-04 -2.847e-02 3.893e-02
#> continentNorth America continentOceania continentSouth America
#> 6.304e-02 4.555e-02 5.547e-02
#> soil_sand topo_diversity topo_slope
#> 5.123e-04 3.318e-03 4.209e-03If you find this package useful, please cite it as:
Blas M. Benito (2025). collinear: R Package for Automated Multicollinearity Management. Version 3.0.0. doi: 10.5281/zenodo.17843578
If you encounter bugs or issues with the documentation, please file a issue on GitHub.