APACHE UNOMI 1.X -
DOCUMENTATION

TABLE OF CONTENTS

1. Quick start
1.1. Five Minutes QuickStart
2. First steps with Apache Unomi

2.1. Getting started with Unomi
2.1.1. Prerequisites
2.1.2. Running Unomi

2.2. Recipes
2.2.1. Introduction
2.2.2. How to read a profile
2.2.3. How to update a profile from the public internet
2.2.4. How to search for profile events
2.2.5. How to create a new rule
2.2.6. How to search for profiles
2.2.7. Getting / updating consents
2.2.8. How to send a login event to Unomi

2.3. Request examples
2.3.1. Retrieving your first context
2.3.2. Retrieving a context as a JSON object.
2.3.3. Accessing profile properties in a context
2.3.4. Sending events using the context servlet
2.3.5. Sending events using the eventcollector servlet
2.3.6. Where to go from here

2.4. Web Tracker
2.4.1. Getting started
2.4.2. How to contribute
2.4.3. Tracking page views
2.4.4. Tracking form submissions

2.5. Configuration
2.5.1. Centralized configuration
2.5.2. Changing the default configuration using environment variables (i.e. Docker
configuration)
2.5.3. Changing the default configuration using property files
2.5.4. Secured events configuration
2.5.5. Installing the MaxMind GeolPLite2 IP lookup database
2.5.6. Installing Geonames database
2.5.7. REST API Security
2.5.8. Scripting security
2.5.9. Automatic profile merging
2.5.10. Securing a production environment
2.5.11. Integrating with an Apache HTTP web server
2.5.12. Changing the default tracking location
2.5.13. Apache Karaf SSH Console
2.5.14. ElasticSearch authentication and security

2.6. Useful Apache Unomi URLs

o O 5 5 L

=

d

8
41
12
12
13
413
14
14
415
45
45
16
17
17
17
18
18
21
27
27

27
28
28
30
30
30
31
31
32
33
35
36
36
37

Apache Unomi 1.x - Documentation - 1

2.7. How profile tracking works
2.7.1. Steps
2.8. Context Request Flow
3. Queries and aggregations
3.1. Query counts
3.2. Metrics
3.3. Aggregations
3.3.1. Aggregation types
4. Profile import & export
4.1. Importing profiles
4.1.1. Import API
4.2. Exporting profiles
4.2.1. Export API
4.3. Configuration in details
5. Consent management
5.1. Consent API
5.1.1. Profiles with consents
5.1.2. Consent type definitions
5.1.3. Creating / update a visitor consent
5.1.4. How it works (internally)
6. Privacy management
6.1. Setting up access to the privacy endpoint
6.2. Anonymizing a profile
6.3. Downloading profile data
6.4. Deleting a profile
6.5. Related
7. Cluster setup
7.1. Cluster setup
8. Reference
8.1. Data Model Overview
8.2. Scope
8.2.1. Example
8.3. Item
8.3.1. Structure definition
8.4. Metadata
8.4.1. Structure definition
8.4.2. Example
8.5. Metadataltem
8.5.1. Structure definition
8.5.2. Example
8.6. Event
8.6.1. Fields
8.6.2. Event types
8.7. Profile
8.7.1. Structure definition
8.7.2. Example
8.8. Persona
8.8.1. Structure definition
8.8.2. Example
8.9. Consent
8.9.1. Structure definition

Apache Unomi 1.x - Documentation - 2

38
38
39
40
41
4l
42
42
48
48
49
50
50
52
53
53
54
55
55
57
58
58
59
59
59
59
60
60
60
60
61
61
61
62
63
63
64
64
64
65
65
65
66
66
67
67
70
70
a0
71
71

8.9.2. Example
8.10. Session
8.10.1. Structure definition
8.10.2. Example
8.11. Segment
8.11.1. Structure definition
8.11.2. Example
8.12. Condition
8.12.1. Structure definition
8.12.2. Example
8.13. Rule
8.13.1. Structure definition
8.13.2. Example
8.14. Action
8.14.1. Structure definition
8.14.2. Example
8.15. List
8.15.1. Structure definition
8.15.2. Example
8.16. Goal
8.16.1. Structure definition
8.16.2. Example
8.17. Campaign
8.17.1. Structure definition
8.17.2. Example
8.18. Scoring plan
8.18.1. Structure definition
8.18.2. Example
8.19. Data Model changes for Apache Unomi 1.5.0
8.19.1. Data model and ElasticSearch 7
8.19.2. API changes
8.20. Built-in Event types
8.20.1. Login event type
8.20.2. View event type
8.20.3. Form event type
8.20.4. Update properties event type
8.20.5. Identify event type
8.20.6. Session created event type
8.20.7. Goal event type
8.20.8. Modify consent event type
8.21. Built-in condition types
8.21.1. Existing condition type descriptors
8.22. Built-in action types
8.22.1. Existing action types descriptors
8.23. Updating Events Using the Context Servlet
8.23.1. Solution
8.23.2. Defining Rules
9. Integration samples
9.1. Samples
9.2. Login sample
9.2.1. Warning !

71
71
72
2
d4
74
45
76
J7
A7
78
80
80
81
81
82
82
82
82
83
83
83
84
84
85
386
87
87
88
388
388
90
90
92
93
95
97
99
100
402
405
106
407
407
108
408
109
109
409
409
410

Apache Unomi 1.x - Documentation - 3

10.

11.

9.2.2. Installing the samples
9.3. Twitter sample
9.3.1. Overview
9.3.2. Interacting with the context server
9.3.3. Retrieving context information from Unomi using the context servlet
9.4. Example
9.4.1. HTML page
9.4.2. Javascript
9.5. Conclusion
9.6. Annex
9.7. Weather update sample
Connectors
10.1. Connectors
10.1.1. Call for contributors
10.2. Salesforce Connector
10.2.1. Getting started
10.2.2. Properties
10.2.3. Hot-deploying updates to the Salesforce connector (for developers)
10.2.4. Using the Salesforce Workbench for testing REST API
10.2.5. Setting up Streaming Push queries
10.2.6. Executing the unit tests
10.3. MailChimp Connector
10.3.1. Getting started
Developers
11.1. Building
11.1.1. Initial Setup
11.1.2. Building
11.1.3. Installing an ElasticSearch server
11.1.4. Deploying the generated binary package
11.1.5. Deploying into an existing Karaf server
11.1.6. JDK Selection on Mac OS X
11.1.7. Running the integration tests
11.1.8. Running the performance tests
11.1.9. Testing with an example page
11.2. SSH Shell Commands
11.2.1. Using the shell
11.2.2. Lifecycle commands
11.2.3. Runtime commands
11.3. Writing Plugins
11.4. Types vs. instances
11.5. Plugin structure
11.6. Extension points
11.6.1. ActionType
11.6.2. ConditionType
11.6.3. Persona
11.6.4. PropertyMergeStrategyType
11.6.5. PropertyType
11.6.6. Rule
11.6.7. Scoring
11.6.8. Segments
11.6.9. Tag

Apache Unomi 1.x - Documentation - 4

410
410
410
411
112
112
413
413
421
421
122
422
422
423
123
423
425
425
126
126
126
427
427
429
429
429
429
429
130
430
431
432
432
433
433
433
134
134
139
439
439
140
140
141
141
141
141
141
141
141
142

11.6.20. ValueType o 142

11.7. Custom plugins 142
11.7.1. Creating a plugin 142
11.7.2. Deployment and custom definition 143
11.7.3. Predefined segments 144
11.7.4. Predefined rules 144
11.7.5. Predefined properties 145
11.7.6. Predefined child conditions 146
11.7.7. Predefined personas 146
11.7.8. Custom action types 147
11.7.9. Custom condition types 149

11.8. Migration patChes 450

APACHE

SOFTWARE FOUNDATION
apache.org

1. QUICK START

1.1. FIVE MINUTES QUICKSTART

1) Instal JDK 8 (https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html) and make sure you set the JAVA_HOME variable https://docs.oracle.com/cd/E19182-01/
820-7851/inst_cli_jdk_javahome_t/ (see our Getting Started guide for more information on JDK
compatibility)

2) Download ElasticSearch here : https://www.elastic.co/downloads/past-releases/elasticsearch-7-4-2
(please make sure you use the proper version : 7.4.2)

3) Uncompress it and change the config/elasticsearch.yml to include the following config
<code>cluster.name: contextElasticSearch</code>

4) Launch ElasticSearch using : bin/elasticsearch

5) Download Apache Unomi here : https://unomi.apache.org/download.html

6) Start it using : ./bin/karaf

7) Start the Apache Unomi packages using unomi:start in the Apache Karaf Shell
8) Wait for startup to complete

9) Try accessing https://localhost:9443/cxs/cluster with username/password: karaf/karaf . You might get a
certificate warning in your browser, just accept it despite the warning it is safe.

10) Request your first context by simply accessing : http://localhost:8181/context.js?sessionld=1234

Apache Unomi 1.x - Documentation - 5

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://www.elastic.co/downloads/past-releases/elasticsearch-7-4-2
https://unomi.apache.org/download.html
https://localhost:9443/cxs/cluster
http://localhost:8181/context.js?sessionId=1234

11) If something goes wrong, you should check the logs in Jdata/log/karaf.log . If you get errors on
ElasticSearch, make sure you are using the proper version.

Next steps:

¥ Connect to http://localhost:8181 to try our some live examples (such as the web tracker)
¥ Trying our integration samples page

¥ Learning more about the web tracker

2. FIRST STEPS WITH APACHE UNOMI

2.1. GETTING STARTED WITH UNOMI

We will first get you up and running with an example. We will then lift the corner of the cover
somewhat and explain in greater details what just happened.

2.1.1. PREREQUISITES

This document assumes working knowledge of git to be able to retrieve the code for Unomi and the
example. Additionally, you will require a working Java 8 or above install. Refer to
http://www.oracle.com/technetwork/java/javase/ for details on how to download and install Java SE 8 or
greater.

JDK COMPATIBILITY

Starting with Java 9, Oracle made some big changes to the Java platform releases. This is why Apache
Unomi is focused on supporting the Long Term Supported versions of the JDK, currently versions 8 and
11. We do not test with intermediate versions so they may or may not work properly. Currently the most
tested version is version 8 and version 11 is also supported.

Also, as there are new licensing restrictions on JDKs provided by Oracle for production usages, Apache
Unomi has also added support for OpenJDK builds. Other JDK distributions might also work but are not
regularly tested so you should use them at your own risks.

ELASTICSEARCH COMPATIBILITY

Starting with version 1.5.0 Apache Unomi adds compatibility with ElasticSearch 7.4 . It is highly
recommended to use the ElasticSearch version provided by the documentation when possible. However
minor versions (7.4.x) should also work, and one version higher (7.5) will usually work. Going higher
than that is risky given the way that ElasticSearch is developed and breaking changes are introduced
quite often. If in doubt, donOt hesitate to check with the Apache Unomi community to get the latest
information about ElasticSearch version compatibility.

2.1.2. RUNNING UNOMI

Apache Unomi 1.x - Documentation - 6

http://localhost:8181
https://git-scm.com/
http://www.oracle.com/technetwork/java/javase/

START UNOMI

Start Unomi according to the five minutes quick start or by compiling using the building instructions
Once you have Karaf running, you should wait until you see the following messages on the Karaf
console:

Initializing user list service endpoint...
Initializing geonames service endpoint...
Initializing segment service endpoint...
Initializing scoring service endpoint...
Initializing campaigns service endpoint...
Initializing rule service endpoint...
Initializing profile service endpoint...
Initializing cluster service endpoint...

This indicates that all the Unomi services are started and ready to react to requests. You can then open a
browser and go to http://localhost:8181/cxs to see the list of available RESTful services or retrieve an
initial context at http://localhost:8181/context.json (which isnOt very useful at this point).

You can now find an introduction page at the following location: http://localhost:8181

Also now that your service is up and running you can go look at the request examples to learn basic
requests you can do once your server is up and running.

2.2. RECIPES

2.2.1. INTRODUCTION

In this section of the documentation we provide quick recipes focused on helping you achieve a specific
result with Apache Unomi.

2.2.2. HOW TO READ A PROFILE

The simplest way to retrieve profile data for the current profile is to simply send a request to the
Icontext.json endpoint. However you will need to send a body along with that request. HereOs an
example:

Here is an example that will retrieve all the session and profile properties.

Apache Unomi 1.x - Documentation - 7

http://localhost:8181/cxs
http://localhost:8181/context.json
http://localhost:8181

curl -X POST http://localhost:8181/context.json?sessionld=1234 \
-H "Content-Type: application/json™ \
-d @- <<'EOF'

"source": {
"itemld":"homepage",
"itemType":"page",
"scope":"example"
h
"requiredProfileProperties":["*"],
"requiredSessionProperties":["*"],
"requireSegments™:true

M~ T [M M M b M

o
=

The requiredProfileProperties and requiredSessionProperties are properties that take an array of
property names that should be retrieved. In this case we use the wildcard character *' to say we want to
retrieve all the available properties. The structure of the JSON object that you should send is a JSON-
serialized version of the ContextRequest Java class.

Note that it is also possible to access a profileOs data through the /cxs/profiles/ endpoint but that really
should be reserved to administrative purposes. All public accesses should always use the /context.json
endpoint for consistency and security.

2.2.3. HOW TO UPDATE A PROFILE FROM THE PUBLIC INTERNET

Before we get into how to update a profile directly from a request coming from the public internet, weOll
quickly talk first about how NOT to do it, because we often see users using the following anti-patterns.

HOW NOT TO UPDATE A PROFILE FROM THE PUBLIC INTERNET

Please avoid using the /cxs/profile endpoint. This endpoint was initially the only way to update a profile
but it has multiple issues:

¥ it requires authenticated access. The temptation can be great to use this endpoint because it is
simple to access but the risk is that developers might include the credentials to access it in non-
secure parts of code such as client-side code. Since there is no difference between this endpoint and
any other administration-focused endpoints, attackers could easily re-use stolen credentials to
wreak havock on the whole platform.

¥ No history of profile modifications is kept: this can be a problem for multiple reasons: you might
want to keep an trail of profile modifications, or even a history of profile values in case you want to
understand how a profile property was modified.

¥ Even when protected using some kind of proxy, potentially the whole profile properties might be
modified, including ones that you might not want to be overriden.

RECOMMENDED WAYS TO UPDATE A PROFILE

Instead you can use the following solutions to update profiles:

Apache Unomi 1.x - Documentation - 8

http://unomi.apache.org/unomi-api/apidocs/org/apache/unomi/api/ContextRequest.html

¥ (Preferred) Use you own custom event(s) to send data you want to be inserted in a profile, and use
rules to map the event data to the profile. This is simpler than it sounds, as usually all it requires is
setting up a simple rule and youOre ready to update profiles using events. This is also the safest way
to update a profile because if you design your events to be as specific as possible to your needs, only
the data that you specified will be copied to the profile, making sure that even in the case an
attacker tries to send more data using your custom event it will simply be ignored.

¥ Use the protected built-in "updateProperties" event. This event is designed to be used for
administrative purposes only. Again, prefer the custom events solution because as this is a
protected event it will require sending the Unomi key as a request header, and as Unomi only
supports a single key for the moment it could be problematic if the key is intercepted. But at least
by using an event you will get the benefits of auditing and historical property modification tracing.

LetOs go into more detail about the preferred way to update a profile. LetOs consider the following

example of a rule:

Apache Unomi 1.x - Documentation - 9

curl -X POST http://localhost:8181/cxs/rules \
--user karaf:karaf \
-H "Content-Type: application/json" \
-d @- <<'EOF'
{,\
E "metadata": {
"id": "setContactinfo",
"name": "Copy the received contact info to the current profile”,
"description”: "Copies the contact info received in a custom event called 'contactinfoSubmitted' to
the current profile"
E}
E "raiseEventOnlyOnceForSession": false,
"condition™: {

"type": "eventTypeCondition",

"parameterValues™: {

"eventTypeld": "contactinfoSubmitted"

}
I
"actions": [
{
"type": "setPropertyAction”,
"parameterValues": {
"setPropertyName": "properties(firstName)",
"setPropertyValue": "eventProperty::properties(firstName)",
"setPropertyStrategy": "alwaysSet"

}
Ji
{
"type": "setPropertyAction",
"parameterValues": {
"setPropertyName": "properties(lastName)",
"setPropertyValue": "eventProperty::properties(lastName)",

"setPropertyStrategy": "alwaysSet"

}
h
{
"type": "setPropertyAction”,

"parameterValues": {
"setPropertyName": "properties(email)",
"setPropertyValue": "eventProperty::properties(email)”,
"setPropertyStrategy": "alwaysSet"

T mp mp

M =~ M [T [T [T T [T [T [T T T T T T T T T T T T T T T M T T T T T T [T T [T [T

What this rule does is that it listen for a custom event (events donOt need any registration, you can
simply start sending them to Apache Unomi whenever you like) of type 'contactinfoSubmitted' and it
will search for properties called ‘'firstName', 'lastName' and 'email' and copy them over to the profile
with corresponding property names. You could of course change any of the property names to find your
needs. For example you might want to prefix the profile properties with the source of the event, such as
'mobileApp:firstName'.

Apache Unomi 1.x - Documentation - 10

You could then simply send the

curl -X POST http://localhost:8181/eventcollector \

-H "Content-Type: application/json" \
-d @- <<'EOF'

"sessionld" : "1234",
"events":[

{

"scope": "example",
"source":
"itemType": "site",

"scope":"example”,
"itemld": "mysite"

h

"target":{
"itemType":"form",
"scope":"example”,
“itemld";"contactForm"

b

"properties" : {
"firstName" : "John",
"lastName" : "Doe",
"email" : "john.doe@acme.com"

m =~ [T [T [T M T T T [T [T [T T T T T T T T T T me me mp

©)
=

contactinfoSubmitted

"eventType":"contactinfoSubmitted",

event using a request similar to this one:

2.2.4. HOW TO SEARCH FOR PROFILE EVENTS

Sometimes you want to retrieve events for a known profile. You will need to provide a query in the body
of the request that looks something like this (and

documentation is available in the REST API

curl -X POST http://localhost:8181/cxs/events/search \

--user karaf:karaf \
-H "Content-Type: application/json" \
-d @- <<'EOF'

{ "offset" : O,

E "limit" ; 20,

E "condition" : {

E "type": "eventPropertyCondition",
E "parameterValues" : {

E "propertyName" : "profileld",

E "comparisonOperator" : "equals",
E "propertyValue" : "PROFILE_ID"
E }

E}

}

EOF

Apache Unomi 1.x - Documentation - 11

):

https://unomi.apache.org/rest-api-doc/#1768188821

where PROFILE_ID is a profile identifier. This will indeed retrieve all the events for a given profile.

2.2.5. HOW TO CREATE A NEW RULE

There are basically two ways to create a new rule :

¥ Using the REST API

¥ Packaging it as a predefined rule in a plugin

In both cases the JSON structure for the rule will be exactly the same, and in most scenarios it will be
more interesting to use the REST API to create and manipulate rules, as they donOt require any
development or deployments on the Apache Unomi server.

curl -X POST http://localhost:8181/cxs/rules \
--user karaf:karaf \

-H "Content-Type: application/json™ \

-d @- <<'EOF'

"metadata": {
"id": "exampleEventCopy",
"name": "Example Copy Event to Profile",
"description": "Copy event properties to profile properties"
h
"condition: {
"type": "eventTypeCondition",
"parameterValues": {
"eventTypeld" : "myEvent"
}
h
"actions": [
{
"parameterValues": {
h
"type": "allEventToProfilePropertiesAction”
}
]

m == [[[M M T T T T T T T T T T me me

OF

The above rule will be executed if the incoming event is of type myEvent and will simply copy all the
properties contained in the event to the current profile.

2.2.6. HOW TO SEARCH FOR PROFILES

In order to search for profiles you will have to use the /cxs/profiles/search endpoint that requires a
Query JSON structure. HereOs an example of a profile search with a Query object:

Apache Unomi 1.x - Documentation - 12

curl -X POST http://localhost:8181/cxs/profiles/search \
--user karaf:karaf \

-H "Content-Type: application/json™ \

-d @- <<'EOF'

"text" : "unomi",

"offset" : 0,

“limit" : 10,

"sortby" : "properties.lastName:asc,properties.firstName:desc",
"condition” : {

"type" : "booleanCondition",
"parameterValues" : {
"operator” : "and",
"subConditions" : [
{
"type": "profilePropertyCondition”,
"parameterValues": {
"propertyName": "properties.leadAssignedTo",
"comparisonOperator”: "exists"
}
h

{
"type": "profilePropertyCondition",

"parameterValues": {
"propertyName": "properties.lastName",
"comparisonOperator":; "exists"
}
}

m =~ [[T [T [T T T T [T [T [T T T T T T T T T T T T me me me me

In the above example, you search for all the profiles that have the leadAssignedTo and lastName
properties and that have the unomi value anywhere in their profile property values. You are also
specifying that you only want 10 results beginning at offset 0. The results will be also sorted in
alphabetical order for the lastName property value, and then by reverse alphabetical order for the
firstName property value.

As you can see, queries can be quite complex. Please remember that the more complex the more
resources it will consume on the server and potentially this could affect performance.

2.2.7. GETTING / UPDATING CONSENTS

You can find information on how to retrieve or create/update consents in the Consent API section.

2.2.8. HOW TO SEND A LOGIN EVENT TO UNOMI

Tracking logins must be done carefully with Unomi. A login event is considered a "privileged" event and
therefore for not be initiated from the public internet. Ideally user authentication should always be
validated by a trusted third- party even if it is a well-known social platform such as Facebook or Twitter.

Apache Unomi 1.x - Documentation - 13

Basically what should NEVER be done:

1. Login to a social platform
2. Call back to the originating page

3. Send a login event to Unomi from the page originating the login in step 1

The problem with this, is that any attacker could simply directly call step 3 without any kind of security.
Instead the flow should look something like this:

1. Login to a social platform

2. Call back to a special secured system that performs an server-to-server call to send the login event
to Apache Unomi using the Unomi key.

For simplicity reasons, in our login example, the first method is used, but it really should never be done
like this in production because of the aforementioned security issues. The second method, although a

little more involved, is much preferred.

When sending a login event, you can setup a rule that can check a profile property to see if profiles can
be merged on an universal identifier such as an email address.

In our login sample we provide an example of such a rule. You can find it here:

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/
cxs/rules/exampleLogin.json

As you can see in this rule, we call an action called :
mergeProfilesOnPropertyAction

with as a parameter value the name of the property on which to perform the merge (the email). What
this means is that upon successful login using an email, Unomi will look for other profiles that have the
same email and merge them into a single profile. Because of the merge, this should only be done for
authenticated profiles, otherwise this could be a security issue since it could be a way to load data from
other profiles by merging their data !

2.3. REQUEST EXAMPLES

2.3.1. RETRIEVING YOUR FIRST CONTEXT

You can retrieve a context using curl like this :
curl http://localhost:8181/context.js?sessionld=1234

This will retrieve a JavaScript script that contains a cxs object that contains the context with the current
user profile, segments, scores as well as functions that makes it easier to perform further requests (such

Apache Unomi 1.x - Documentation - 14

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json
https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json

as collecting events using the cxs.collectEvents() function).

2.3.2. RETRIEVING A CONTEXT AS A JSON OBJECT.

If you prefer to retrieve a pure JSON object, you can simply use a request formed like this:

curl http://localhost:8181/context.json?sessionld=1234

2.3.3. ACCESSING PROFILE PROPERTIES IN A CONTEXT

By default, in order to optimize the amount of data sent over the network, Apache Unomi will not send
the content of the profile or session properties. If you need this data, you must send a JSON object to
configure the resulting output of the context.js(on) servlet.

Here is an example that will retrieve all the session and profile properties.

curl -X POST http://localhost:8181/context.json?sessionld=1234 \
-H "Content-Type: application/json" \
-d @- <<'EOF'

"source™: {
"itemld™:"homepage”,
"itemType":"page”,
"scope":"example”
Ji
"requiredProfileProperties":["*"],
"requiredSessionProperties":["*"],
"requireSegments":true

m == [[e [e e e e

©]
=

The requiredProfileProperties and requiredSessionProperties are properties that take an array of
property names that should be retrieved. In this case we use the wildcard character *' to say we want to
retrieve all the available properties. The structure of the JSON object that you should send is a JSON-
serialized version of the ContextRequest Java class.

2.3.4. SENDING EVENTS USING THE CONTEXT SERVLET

At the same time as you are retrieving the context, you can also directly send events in the
ContextRequest object as illustrated in the following example:

Apache Unomi 1.x - Documentation - 15

http://unomi.apache.org/unomi-api/apidocs/org/apache/unomi/api/ContextRequest.html

curl -X POST http://localhost:8181/context.json?sessionld=1234 \
-H "Content-Type: application/json™ \
-d @- <<'EOF'

"source"{
"itemld":"homepage",
"itemType":"page",
"scope":"example"

h

"events":[

{
"eventType":"view",
"scope": "example",
"source":{
"itemType": "site",
"scope":"example”,
"itemld": "mysite"
|3
"target”:{
"itemType":"page"”,
"scope":"example”,
"itemld":"homepage",
"properties":{
"pagelnfo":{
“"referringURL":""
}

M = [[T M [T [T [T e T T T e > T T T T T M T M T M T m
—
—
—

o
e

Upon received events, Apache Unomi will execute all the rules that match the current context, and
return an updated context. This way of sending events is usually used upon first loading of a page. If you
want to send events after the page has finished loading you could either do a second call and get an
updating context, or if you donOt need the context and want to send events in a network optimal way you
can use the eventcollector servlet (see below).

2.3.5. SENDING EVENTS USING THE EVENTCOLLECTOR SERVLET

If you only need to send events without retrieving a context, you should use the eventcollector servlet
that is optimized respond quickly and minimize network traffic. Here is an example of using this servlet:

Apache Unomi 1.x - Documentation - 16

curl -X POST http://localhost:8181/eventcollector \
-H "Content-Type: application/json™ \
-d @- <<'EOF'

"sessionld" : "1234",
"events":[

{

"eventType":"view",

"scope": "example",

"source™:
"itemType": "site",

"scope":"example”,

"itemld": "mysite"
b
"target":{
"itemType":"page”,
"scope":"example”,
"itemld":"homepage”,
"properties™:{
"pagelnfo":{
"referringURL":""
}

M " T M M M M b T M T T b T T M T T b T T T Ty b
—
e
L

©)
=

Note that the eventcollector executes the rules but does not return a context. If is generally used after a
page is loaded to send additional events.

2.3.6. WHERE TO GO FROM HERE

¥ You can find more useful Apache Unomi URLs that can be used in the same way as the above
examples.

¥ You may want to know integrate the provided web tracker into your web site.

¥ Read the Twitter sample documentation that contains a detailed example of how to integrate with
Apache Unomi.

2.4. WEB TRACKER

This extension is providing the web tracker to start collecting visitors data on your website. The tracker
is implemented as an integration of analytics.js for Unomi.

2.4.1. GETTING STARTED
Extension can be tested at : http://localhost:8181/tracker/index.html
In your page include unomiOptions and include code snippet from snippet.min.js

Apache Unomi 1.x - Documentation - 17

https://github.com/segmentio/analytics.js
http://localhost:8181/tracker/index.html

<script type="text/javascript">
var unomiOption = {

scope: 'realEstateManager’,

url: 'http://localhost:8181"
Ji
window.unomiTracker||(window.unomiTracker={}),function(){function
e(e){for(unomiTracker.initialize({"Apache Unomi":unomiOption});n.length>0;){var
r=n.shift(),t=r.shift();unomiTracker[t]&&unomiTracker[t].apply(unomiTracker,r)}}for(var
n=[],r=["trackSubmit","trackClick","trackLink","trackForm","initialize","pageview","identify","reset","
group”,"track","ready","alias","debug","page","once","off","on","personalize"],t=0;t<r.length;t++){var
i=r[t];window.unomiTracker[i]=function(e){return function(){var
r=Array.prototype.slice.call(arguments);return
r.unshift(e),n.push(r),window.unomiTracker}}(i)JunomiTracker.load=function(){var
n=document.createElement("script");n.type="text/javascript”,n.async=!0,n.src=unomiOption.url+"/tr
acker/unomi-
tracker.min.js",n.addEventListener?n.addEventListener("load",function(n){"function"==typeof
e&&e(n)},!1):n.onreadystatechange=function(){"complete"!==this.readyState&&"loaded"!==this.ready
State||e(window.event)};var
r=document.getElementsByTagName("script")[0];r.parentNode.insertBefore(n,r)},document.addEve
ntListener("DOMContentLoaded",unomiTracker.load),unomiTracker.page()}();
</script>

[T ™ [T TP [Th

window.unomiTracker can be used to send additional events when needed.

Check analytics.js APl here. All methods can be used on unomiTracker object, although not all event
types are supported by Unomi intergation.

2.4.2. HOW TO CONTRIBUTE

The source code is in the folder javascript with a package.json, the file to update is analytics.js-
integration-apache-unomi.js apply your modification in this file then use the command yarn build to
compile a new JS file. Then you can use the test page to try your changes http://localhost:8181/tracker/
index.html .

2.4.3. TRACKING PAGE VIEWS

In the initialize call, the tracker will generate an implicit page view event, which by default will be
populated with the following information:

window.digitalData.page = window.digitalData.page || {
path: location.pathname + location.hash,
pagelnfo: {
pageName: document.title,
pagelD : location.pathname + location.hash,
pagePath : location.pathname + location.hash,
destinationURL: location.href

T [T m» e e e me mp o

Now if you want to provide your own custom page information for the initial page view, you can simply

Apache Unomi 1.x - Documentation - 18

https://segment.com/docs/sources/website/analytics.js/
http://localhost:8181/tracker/index.html
http://localhost:8181/tracker/index.html

do it like this:

unomiTracker.initialize({
scope: 'myScope’,
url: 'http://unomi:8181', // we use an empty URL to make it relative to this page.
initialPageProperties: {
path: path,
pagelnfo: {
destinationURL: location.href,
tags: ['tagl", "tag2", "tag3'],
categories: ["categoryl”, "category2", "category3"]
h
interests: {
"interest1™ 1,
"interest2": 2,
"interest3": 3

T T e e e e e [e e T e > e T T [Tp

D

Also note that the FIRST call to unomiTracker.page() will be IGNORED because of this initial page
view.This is the way that the Analytics.js library handles it.So make sure you are aware of this when
calling it.This is to avoid having two page views on a single call and to be compatible with old versions
that did use the explicit call.

By default the script will track page views, but maybe you want to take control over this mechanism of

add page views to a single page application.In order to generate a page view programmatically from
Javascript you can use code similar to this :

Apache Unomi 1.x - Documentation - 19

E <script type="text/javascript">

E /I This is an example of how to provide more details page properties to the view event. This can

be useful

E I/l in the case of an SPA that wants to provide information about a view that has metadata such

as categories,

/I this will trigger a second page view for the same page (the first page view is in the tracker

E [/l tags or interests.

E path = location.pathname + location.hash;
E properties = {

E path: path,

E pagelnfo: {

E destinationURL: location.href,

E tags : ["tagl”, "tag2", "tag3"],

E categories : ["categoryl”, "category2", "category3"],
E 2

E interests : {

E "interest1" : 1,

E "interest2" : 2,

E "interest3" : 3

E }

E X

E console.log(properties);

E

snippet).

E window.unomiTracker.page(properties);

E </script>

Here is a more detail view of what you may include in the pagelnfo object :

Table 1. Pagelnfo Properties
Name

pagelD

pageName

pagePath

destinationURL

referringURL

tags

Apache Unomi 1.x - Documentation - 20

Description

A unique identifier in string format for the page.
Default value : page path

A user-displayed name for the page. Default value :
page title

The path of the page, stored by Unomi. This value
should be the same as the one passed in the page
property of the object passed to the unomiTracker
call. Default value : page path

The full URL for the page view. This doesnOt have to
be a real existing URL it could be an internal SPA
route. Default value : page URL

The referringURL also known as the previous URL
of the page/screen viewed. Default value : page
referrer URL

A String array of tag identifiers. For example
[tagl, 'tag2', 'tag3']

Name Description

categories A String array of category identifiers. For example
[categoryl’, ‘category2’, ‘category3’]

The interests object is basically list of interests with "weights" attached to them.These interests will be
accumulated in Apache Unomi on profiles to indicate growing interest over time for specific topics.These
are freely defined and will be accepted by Apache Unomi without needing to declare them previously
anywhere (the same is true for tags and categories).

2.4.4. TRACKING FORM SUBMISSIONS

Using the web tracker you can also track form submissions. In order to do this a few steps are required
to get a formOs submission to be tracked and then its form values to be sent as events to Apache Unomi.
Finally setting up a rule to react to the incoming event will help use the form values to perform any
action that is desired.

LetOs look at a concrete example. Before we get started you should know that this example is already
available to directly test in Apache Unomi at the following URL :

http://localhost:8181/tracker

Simply modify the form values and click submit and it will perform all the steps we are describing
below.

So here is the form we want to track :

<form id="testFormTracking" action="#" name="testFormTracking">
= <label for="firstName">First name</label>
<input type="text" id="firstName" name="firstName" value="John"/>

> M

<label for="lastName">Last name</label>
<input type="text" id="lastName" name="lastName" value="Doe"/>

> Th

<label for="email">Email</label>
<input type="email" id="email" name="email" value="johndoe@acme.com"/>

> mp

>

<input type="submit" name="submitButton" value="Submit"/>
</form>

As you can see itOs composed of three fields - firstName, lastName and email - as well as a submit button.
In order to track it we can add directly under the following snippet :

Apache Unomi 1.x - Documentation - 21

<script type="text/javascript">

= window.addEventListener("load", function () {

var form = document.getElementByld(‘testFormTracking');
unomiTracker.trackForm(form, ‘formSubmitted’, {formName: form.name});

M > T m

D

</script>

What this snippet does is retrieve the form using its element ID and then uses the unomiTracker to track
form submissions. Be careful to always use in the form event name a string that starts with form in

order for the event to be sent back to Unomi. Also the form name is also a mandatory parameter that

will be passed to Unomi inside a event of type ~ form under the target.itemld property name.

Here is an example of the event that gets sent back to Apache Unomi:

Apache Unomi 1.x - Documentation - 22

{
E "itemld" : "cd627012-963e-4bb5-97f0-480990b41254",

E "itemType" : "event",
E "scope" : "realEstateManager"”,
E "version" : 1,
"eventType" : "form",
E "sessionld" : "aaad09aa-88c2-67bd-b106-5a47ded43ead",
"profileld" : "48563fd0-6319-4260-8dba-ae421beba26f",
"timeStamp" : "2018-11-23T16:32:26Z",
"properties"” : {

"firstName" : "John",

"lastName" : "Doe",

"email" : "johndoe@acme.com”,

"submitButton" : "Submit"
8
"source" : {

“itemld" : "/tracker/",

"itemType" : "page"”,

"scope" : "realEstateManager”,

"version" : null,

"properties" : {

"pagelnfo" : {

"destinationURL" :
"http://localhost:8181/tracker/?firstName=Bill&lastName=Gates&email=bgates%40microsoft.com",
"pagelD" : "/tracker/",

"pagePath" : "/tracker/",

"pageName" : "Apache Unomi Web Tracker Test Page",

"referringURL" :
"http://localhost:8181/tracker/?firstName=John&lastName=Doe&email=johndoe%40acme.com"
h

"attributes" : [],

"consentTypes" : [1],

"interests" : { }

}

>

>

[T> [T T [T T > TP mp [T TP e T mp [T TP

[T T [Ty mp

}

arget” : {

"itemld" : "testFormTracking",
"itemType" : "form",

"scope” : "realEstateManager”,
"version" : null,

"properties" : { }

h

'persistent” : true

" [Tp [T [T T [T M T > T T M T T [Th

You can see in this event that the form values are sent as properties of the event itself, while the form
name is sent as the target.itemld

While setting up form tracking, it can be very useful to use the Apache Unomi Karaf SSH shell
commands : event-tail and event-view to check if you are properly receiving the form submission events

and that they contain the expected data. If not, check your tracking code for any errors.

Now that the data is properly sent using an event to Apache Unomi, we must still use it to perform some
kind of actions. Using rules, we could do anything from updating the profile to sending the data to a

Apache Unomi 1.x - Documentation - 23

third-party server (using a custom- developped action of course). In this example we will illustrate how
to update the profile.

In order to do so we will deploy a rule that will copy data coming from the event into a profile. But we
will need to map the form field names to profile names, and this can be done using the
setPropertyAction thatOs available out of the box in the Apache Unomi server.

There are two ways to register rules : either by building a custom OSGi bundle plugin or using the REST

API to directly send a JSON representation of the rule to be saved. We will in this example use the CURL
shell command to make a call to the REST API.

Apache Unomi 1.x - Documentation - 24

curl -X POST -k -u karaf:karaf https://localhost:9443/cxs/rules \
E --header "Content-Type: application/json" \
-d @- << EOF

“"itemld": "form-mapping-example",
"itemType": "rule",
"linkedltems": null,
"raiseEventOnlyOnceForProfile": false,
"raiseEventOnlyOnceForSession": false,
"priority": -1,
"metadata": {

"id": "form-mapping-example",

"name": "Example Form Mapping",

"scope": "realEstateManager",
“tags™: [l,
"enabled": true,
"missingPlugins": false,
"hidden": false,
"readOnly": false
)i
"condition"; {
"type": "formEventCondition",
"parameterValues": {
"formld": "testFormTracking",
"pagePath" : "ftracker/"

}
}

ctions": [

{

"type": "setPropertyAction”,
"parameterValues": {

"setPropertyName": "properties(firstName)",

"setPropertyValue": "eventProperty::properties(firstName)",

"setPropertyStrategy": "alwaysSet"

}
h
{
"type": "setPropertyAction”,

"parameterValues": {
"setPropertyName": "properties(lastName)",
"setPropertyValue": "eventProperty::properties(lastName)",
"setPropertyStrategy": "alwaysSet"
}
Ji
{
"type": "setPropertyAction”,

"parameterValues": {
"setPropertyName": "properties(email)",
"setPropertyValue": "eventProperty::properties(email)”,
"setPropertyStrategy": "alwaysSet"

m =~ [[T M [T T T T [T [T [T T T T T T T T T T [T [T T T T T M T T T T [T T [T [T [T T T M T T T T T T T me me me me m o

"description”: "An example of how to map event properties to profile properties”,

Apache Unomi 1.x - Documentation - 25

As you can see in this request, we have a few parameters that need explaining:
¥ -k is used to accept any certificate as we are in this example using a default Apache Unomi server
configuration that comes with its predefined HTTPS certificates

¥ -u karaf:karaf is the default username/password for authenticating to the REST API. To change this
value you should edit the “etc/users.propertiesfile and it is required to modify this login before
going to production.

Finally the rule itself should be pretty self-explanatory but there are a few important things to note :

¥ the itemld and metadata.id values should be the same
¥ the scope should be the same as the scope that was setup in the tracker initialization
¥ the formld parameter must have the form name value

¥ the pagePath should be the pagePath passed through the event (if youOre not sure of its value, you
could either using network debugging in the browser or use the event-tail and event-view
commands in the Apache Unomi Karaf SSH shell).

¥ the setPropertyAction may be repeated as many times as desired to copy the values from the event
to the profile. Note that the setPropertyName will define the property to set on the profile and the
setPropertyValue will define where the value is coming from. In this example the name and the
value are the same but that is no way a requirement. It could even be possible to using multiple
setPropertyAction instances to copy the same event property into different profile properties.

To check if your rule is properly deployed you can use the following SSH shell command :
unomi:rule-view form-mapping-example

The parameter is the itemld of the rule. If you want to see all the rules deployed in the system you can
use the command :

unomi:rule-list 1000

The 1000 parameter is the limit of number of objects to retrieve. As the number of rules can grow
quickly in an Apache Unomi instance, it is recommended to put this value a bit high to make sure you
get the full list of rules.

Once the rule is in place, try submitting the form with some values and check that the profile is properly
updated. One recommend way of doing this is to use the event-tail command that will output something
like this :

ID [Type |Session |Profile |Timestamp
|Scope |Persi|
cef09b89-6b99-4e4f-a99c-a4159a66b42b|form |aaad09aa-88c2-67bd-b106-

5a47ded43ead|48563fd0-6319-4260-8dba-ae421beba26f|Fri Nov 23 17:52:33 CET 2018
|realEstateManag]|true |

Apache Unomi 1.x - Documentation - 26

You can directly see the profile that is being used, so you can then simply use the
unomi:profile-view 48563fd0-6319-4260-8dba-ae421beba26f

command to see a JSON dump of the profile and check that the form values have been properly
positioned.

2.5. CONFIGURATION

2.5.1. CENTRALIZED CONFIGURATION

Apache Unomi uses a centralized configuration file that contains both system properties and
configuration properties. These settings are then fed to the OSGi and other configuration files using
placeholder that look something like this:

contextserver.publicAddress=${org.apache.unomi.cluster.public.address:-http://localhost:8181}
contextserver.internalAddress=${org.apache.unomi.cluster.internal.address:-https://localhost:9443}

Default values are stored in a file called $MY_KARAF_HOME/etc/custom.system.properties but you
should never modify this file directly, as an override mechanism is available. Simply create a file called:

unomi.custom.system.properties

and put your own property values in their to override the defaults OR you can use environment
variables to also override the values in the $MY_KARAF_HOME/etc/custom.system.properties . See the
next section for more information about that.

2.5.2. CHANGING THE DEFAULT CONFIGURATION USING ENVIRONMENT
VARIABLES (I.E. DOCKER CONFIGURATION)

You might want to use environment variables to change the default system configuration, especially if
you intend to run Apache Unomi inside a Docker container. You can find the list of all the environment
variable names in the following file:

https://github.com/apache/unomi/blob/master/package/src/main/resources/etc/custom.system.properties
If you are using Docker Container, simply pass the environment variables on the docker command line
or if you are using Docker Compose you can put the environment variables in the docker-compose.yml

file.

If you want to "save" the environment values in a file, you can use the bin/setenv(.bat) to setup the
environment variables you want to use.

Apache Unomi 1.x - Documentation - 27

https://github.com/apache/unomi/blob/master/package/src/main/resources/etc/custom.system.properties

2.5.3. CHANGING THE DEFAULT CONFIGURATION USING PROPERTY FILES

If you want to change the default configuration using property files instead of environment variables,
you can perform any modification you want in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties file.

By default this file does not exist and is designed to be a file that will contain only your custom
modifications to the default configuration.

For example, if you want to change the HTTP ports that the server is listening on, you will need to create

the following lines in the $MY_KARAF_HOME/etc/unomi.custom.system.properties (and create it if you
havenOt yet) file:

org.osgi.service.http.port.secure=9443
org.osgi.service.http.port=8181

If you change these ports, also make sure you adjust the following settings in the same file :

org.apache.unomi.cluster.public.address=http://localhost:8181
org.apache.unomi.cluster.internal.address=https://localhost:9443

If you need to specify an ElasticSearch cluster name, or a host and port that are different than the
default, it is recommended to do this BEFORE you start the server for the first time, or you will loose all
the data you have stored previously.

You can use the following properties for the ElasticSearch configuration

org.apache.unomi.elasticsearch.cluster.name=contextElasticSearch

The elasticsearch.adresses may be a comma seperated list of host names and ports such as
hostA:9200,hostB:9200

Note: the port number must be repeated for each host.
org.apache.unomi.elasticsearch.addresses=localhost:9200

2.5.4. SECURED EVENTS CONFIGURATION

Apache Unomi secures some events by default. It comes out of the box with a default configuration that
you can adjust by using the centralized configuration file override in
$MY_KARAF_HOME/etc/unomi.custom.system.properties

You can find the default configuration in the following file:

$MY_KARAF_HOME/etc/custom.system.properties

The properties start with the prefix : org.apache.unomi.thirdparty.* and here are the default values :

Apache Unomi 1.x - Documentation - 28

org.apache.unomi.thirdparty.providerl.key=${env:UNOMI_THIRDPARTY_PROVIDER1_KEY:-
670c26d1cc413346¢c3b2fd9ce65dab41}
org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-127.0.0.1,::1}
org.apache.unomi.thirdparty.providerl.allowedEvents=${env:UNOMI_THIRDPARTY_PROVIDER1 A
LLOWEDEVENTS:-login,updateProperties}

The events set in allowedEvents will be secured and will only be accepted if the call comes from the
specified IP address, and if the secret-key is passed in the X-Unomi-Peer HTTP request header. The "env:"
part means that it will attempt to read an environment variable by that name, and if itOs not found it will
default to the value after the ":-" marker.

It is now also possible to use IP address ranges instead of having to list all valid IP addresses for event
sources. This is very useful when working in cluster deployments where servers may be added or

removed dynamically. In order to support this Apache Unomi uses a library called IPAddress that
supports IP ranges and subnets. Here is an example of how to setup a range:

org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-192.168.1.1-100,::1}

The above configuration will allow a range of IP addresses between 192.168.1.1 and 192.168.1.100 as
well as the IPv6 loopback.

HereOs another example using the subnet format:

org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-1.2.0.0/16,::1}

The above configuration will allow all addresses starting with 1.2 as well as the IPv6 loopback address.

Wildcards may also be used:

org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-1.2.*.*,::1}

The above configuration is exactly the same as the previous one.

More advanced ranges and subnets can be used as well, please refer to the IPAddress library
documentation for details on how to format them.

If you want to add another provider you will need to add them manually in the following file (and make
sure you maintain the changes when upgrading) :

$MY_KARAF_HOME/etc/org.apache.unomi.thirdparty.cfg

Apache Unomi 1.x - Documentation - 29

https://seancfoley.github.io/IPAddress/#_Toc525135541
https://seancfoley.github.io/IPAddress

Usually, login events, which operate on profiles and do merge on protected properties, must be secured.
For each trusted third party server, you need to add these 3 lines :

thirdparty.providerl.key=secret-key
thirdparty.providerl.ipAddresses=127.0.0.1,::1
thirdparty.providerl.allowedEvents=login,updateProperties

2.5.5. INSTALLING THE MAXMIND GEOIPLITE2 IP LOOKUP DATABASE

Apache Unomi requires an IP database in order to resolve IP addresses to user location. The GeoLite2
database can be downloaded from MaxMind here : http://dev.maxmind.com/geoip/geoip2/geolite2/

Simply download the GeoLite2-City.mmdb file into the "etc" directory.

2.5.6. INSTALLING GEONAMES DATABASE

Apache Unomi includes a geocoding service based on the geonames database (
http://www.geonames.org/). It can be used to create conditions on countries or cities.

In order to use it, you need to install the Geonames database into . Get the "allCountries.zip" database
from here : http://download.geonames.org/export/dump/

Download it and put it in the etc
$MY_KARAF_HOME/etc/unomi.custom.system.properties and set
org.apache.unomi.geonames.forcelmport to true, import should start right away. Otherwise, import

should start at the next startup. Import runs in background, but can take about 15 minutes. At the end,

directory, without unzipping it. Edit

you should have about 4 million entries in the geonames index.

2.5.7. REST API SECURITY

The Apache Unomi Context Server REST API is protected using JAAS authentication and using Basic or
Digest HTTP auth. By default, the login/password for the REST API full administrative access is
"karaf/karaf".

The generated package is also configured with a default SSL certificate. You can change it by following
these steps :

Replace the existing keystore in $MY_KARAF_HOME/etc/keystore by your own certificate :

http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

Update the keystore and certificate password in
$MY_KARAF_HOME/etc/unomi.custom.system.properties file :

Apache Unomi 1.x - Documentation - 30

http://dev.maxmind.com/geoip/geoip2/geolite2/
http://www.geonames.org/
http://download.geonames.org/export/dump/
http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

org.ops4j.pax.web.ssl.keystore=${env:UNOMI_SSL_KEYSTORE:-${karaf.etc}/keystore}
org.ops4j.pax.web.ssl.password=${env:UNOMI_SSL PASSWORD:-changeme}
org.ops4j.pax.web.ssl.keypassword=${env:UNOMI_SSL_KEYPASSWORD:-changeme}

You should now have SSL setup on Karaf with your certificate, and you can test it by trying to access it
on port 9443.

Changing the default Karaf password can be done by modifying the
org.apache.unomi.security.root.password in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties file

2.5.8. SCRIPTING SECURITY

By default, scripting (using in conditions, segments and rules) is controlled by a custom classloader that
is quite restrictive and using a white-list/black list system. It is controlled through the following property
in the unomi.custom.system.properties file:

org.apache.unomi.scripting.allow=${env:UNOMI_ALLOW_SCRIPTING_CLASSES:-
org.apache.unomi.api.Event,org.apache.unomi.api.Profile,org.apache.unomi.api.Session,org.apache
.unomi.api.ltem,org.apache.unomi.api.Customltem,ognl.* java.lang.Object,java.util. Map,java.lang.l
nteger,org.mvel2.*}
org.apache.unomi.scripting.forbid=${env:UNOMI_FORBID_SCRIPTING_CLASSES:-}

If you encounter any errors while trying to access a class in a condition or an action it might be due to
this restrictive configuration.

If you need, for example when adding a custom item type, to adjust these, please be careful as scripts
may be called directly from the context.json personalization conditions and therefore should be kept
minimal.

2.5.9. AUTOMATIC PROFILE MERGING

Apache Unomi is capable of merging profiles based on a common property value. In order to use this,
you must add the MergeProfileOnPropertyAction to a rule (such as a login rule for example), and
configure it with the name of the property that will be used to identify the profiles to be merged. An
example could be the "email" property, meaning that if two (or more) profiles are found to have the
same value for the "email" property they will be merged by this action.

Upon merge, the old profiles are marked with a "mergedWith" property that will be used on next profile
access to delete the original profile and replace it with the merged profile (aka "master" profile). Once

this is done, all cookie tracking will use the merged profile.

To test, simply configure the action in the "login" or "facebookLogin" rules and set it up on the "email"
property. Upon sending one of the events, all matching profiles will be merged.

Apache Unomi 1.x - Documentation - 31

2.5.10. SECURING A PRODUCTION ENVIRONMENT

Before going live with a project, you should absolutely read the following section that will help you setup
a proper secure environment for running your context server.

Step 1: Install and configure a firewall
You should setup a firewall around your cluster of context servers and/or Elasticsearch nodes. If you
have an application-level firewall you should only allow the following connections open to the whole

world :

¥ http://localhost:8181/context.js

¥ http://localhost:8181/eventcollector
All other ports should not be accessible to the world.

For your Apache Unomi client applications (such as the Jahia CMS), you will need to make the following
ports accessible :

8181 (Context Server HTTP port)
9443 (Context Server HTTPS port)

The Apache Unomi actually requires HTTP Basic Auth for access to the Context Server administration
REST API, so it is highly recommended that you design your client applications to use the HTTPS port for
accessing the REST API.

The user accounts to access the REST API are actually routed through KarafOs JAAS support, which you
may find the documentation for here :

¥ http://karaf.apache.org/manual/latest/users-guide/security.html

The default username/password is

karaf/karaf

You should really change this default username/password as soon as possible. Changing the default
Karaf password can be done by modifying the org.apache.unomi.security.root.password in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties file

Or if you want to also change the user name you could modify the following file :

$MY_KARAF_HOME/etc/users.properties

But you will also need to change the following property in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties :

Apache Unomi 1.x - Documentation - 32

http://localhost:8181/context.js
http://localhost:8181/eventcollector
http://karaf.apache.org/manual/latest/users-guide/security.html

karaf.local.user = karaf

For your context servers, and for any standalone Elasticsearch nodes you will need to open the following
ports for proper node-to-node communication : 9200 (Elasticsearch REST API), 9300 (Elasticsearch TCP
transport)

Of course any ports listed here are the default ports configured in each server, you may adjust them if
needed.

Step 2 : Follow industry recommended best practices for securing Elasticsearch

You may find more valuable recommendations here :

¥ https://lwww.elastic.co/blog/found-elasticsearch-security

¥ https://lwww.elastic.co/blog/scripting-security

Step 4 : Setup a proxy in front of the context server

As an alternative to an application-level firewall, you could also route all traffic to the context server
through a proxy, and use it to filter any communication.

2.5.11. INTEGRATING WITH AN APACHE HTTP WEB SERVER

If you want to setup an Apache HTTP web server in from of Apache Unomi, here is an example
configuration using mod_proxy.

In your Unomi package directory, in $MY_KARAF_HOME/etc/unomi.custom.system.properties setup the
public address for the hostname unomi.apache.org :

org.apache.unomi.cluster.public.address=https://unomi.apache.org/
org.apache.unomi.cluster.internal.address=http://192.168.1.1:8181

and you will also need to change the cookie domain in the same file:

org.apache.unomi.profile.cookie.domain=apache.org

Main virtual host config:

Apache Unomi 1.x - Documentation - 33

https://www.elastic.co/blog/found-elasticsearch-security
https://www.elastic.co/blog/scripting-security

<VirtualHost *:80>
E Include /var/www/vhosts/unomi.apache.org/conf/common.conf
</VirtualHost>

<IfModule mod_ssl.c>

E <VirtualHost *:443>

E Include /var/www/vhosts/unomi.apache.org/conf/common.conf

E SSLEngine on

E SSL CertificateFile /var/www/vhosts/unomi.apache.org/conf/ssl/24d5b9691e96eafa.crt
E SSL CertificateKeyFile /var/www/vhosts/unomi.apache.org/conf/ssl/apache.org.key

E SSL CertificateChainFile /var/www/vhosts/unomi.apache.org/conf/ssl/gd_bundle-g2-g1.crt
E <FilesMatch "\.(cgi|shtml|phtml|php)$">

E SSLOptions +StdEnvVars

E </FilesMatch>

E <Directory /ust/lib/cgi-bin>

E SSLOptions +StdEnvVars

E </Directory>

E BrowserMatch "MSIE [2-6]" \

E nokeepalive ssl-unclean-shutdown \

E downgrade-1.0 force-response-1.0

E BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

E </VirtualHost>
</IfModule>

common.conf:

Apache Unomi 1.x - Documentation - 34

ServerName unomi.apache.org
ServerAdmin webmaster@apache.org

DocumentRoot /var/www/vhosts/unomi.apache.org/html
CustomLog /var/log/apache2/access-unomi.apache.org.log combined
<Directory />

E Options FollowSymLinks

E AllowOverride None

</Directory>

<Directory /var/www/vhosts/unomi.apache.org/html>
Options FollowSymLinks MultiViews
AllowOverride None

Order allow,deny

allow from all

</Directory>

<Location /cxs>

Order deny,allow

deny from all

allow from 88.198.26.2

allow from www.apache.org

</Location>

T mp me mp

™ mp e mp

RewriteEngine On

RewriteCond %{REQUEST_METHOD} /TRACE|TRACK)
RewriteRule .* - [F]

ProxyPreserveHost On

ProxyPass /server-status !

ProxyPass /robots.txt !

RewriteCond %{HTTP_USER_AGENT} Googlebot [OR]
RewriteCond %{HTTP_USER_AGENT} msnbot [OR]
RewriteCond %{HTTP_USER_AGENT} Slurp
RewriteRule ~.* - [F,L]

ProxyPass / http://localhost:8181/ connectiontimeout=20 timeout=300 ttl=120
ProxyPassReverse / http://localhost:8181/

2.5.12. CHANGING THE DEFAULT TRACKING LOCATION

When performing localhost requests to Apache Unomi, a default location will be used to insert values
into the session to make the location-based personalization still work. You can modify the default
location settings using the centralized configuration file
($MY_KARAF_HOME/etc/unomi.custom.system.properties).

Here are the default values for the location settings :

Apache Unomi 1.x - Documentation - 35

The following settings represent the default position that is used for localhost requests
org.apache.unomi.ip.database.location=${env:UNOMI_IP_DB:-${karaf.etc}/GeoLite2-City.mmdb}
org.apache.unomi.ip.default.countryCode=${env:UNOMI_IP_DEFAULT_COUNTRYCODE:-CH}
org.apache.unomi.ip.default.countryName=%${env:UNOMI_IP_DEFAULT_COUNTRYNAME:-
Switzerland}

org.apache.unomi.ip.default.city=${env:UNOMI_IP_DEFAULT_CITY:-Geneva}
org.apache.unomi.ip.default.subdivi=${env:UNOMI_IP_DEFAULT_SUBDIV1:-2660645}
org.apache.unomi.ip.default.subdiv2=${env:UNOMI_IP_DEFAULT_SUBDIV2:-6458783}
org.apache.unomi.ip.default.isp=${env:UNOMI_IP_DEFAULT _ISP:-Cablecom}
org.apache.unomi.ip.default.latitude=${env:UNOMI_IP_DEFAULT_LATITUDE:-46.1884341}
org.apache.unomi.ip.default.longitude=${env:UNOMI_IP_DEFAULT_LONGITUDE:-6.1282508}

You might want to change these for testing or for demonstration purposes.

2.5.13. APACHE KARAF SSH CONSOLE

The Apache Karaf SSH console is available inside Apache Unomi, but the port has been changed from the
default value of 8101 to 8102 to avoid conflicts with other Karaf-based products. So to connect to the SSH
console you should use:

ssh -p 8102 karaf@localhost

or the user/password you have setup to protect the system if you have changed it. You can find the list of
Apache Unomi shell commands in the "Shell commands" section of the documentation.

2.5.14. ELASTICSEARCH AUTHENTICATION AND SECURITY

With ElasticSearch 7, itOs possible to secure the access to your data.
(https://www.elastic.co/guide/en/elasticsearch/reference/7.5/secure-cluster.html)

Depending on your ElasticSearch license you may need to install Kibana and enable xpack security:
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/configuring-security.html

USER AUTHENTICATION !

If your ElasticSearch have been configured to be only accessible by authenticated users
(https://www.elastic.co/guide/en/elasticsearch/reference/7.5/setting-up-authentication.html)

Just edit etc/org.apache.unomi.persistence.elasticsearch.cfg to add the following settings:

username=USER
password=PASSWORD

SSL COMMUNICATION

By default Unomi will communicate with ElasticSearch using http but you can configure your
ElasticSearch server(s) to allow encrypted request using https .

Apache Unomi 1.x - Documentation - 36

https://www.elastic.co/guide/en/elasticsearch/reference/7.5/secure-cluster.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/configuring-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/setting-up-authentication.html

You can follow this documentation to enable SSL on your ElasticSearch server(s):

¥ Full documentation
¥ Configure certificates

¥ Encrypt HTTP communications
If your ElasticSearch is correctly configure to encrypt communications on https :

Just edit etc/org.apache.unomi.persistence.elasticsearch.cfg to add the following settings:

sslEnable=true

By default, certificates will have to be configured on the Apache Unomi server to be able to trust the
identity of the ElasticSearch server(s). But if you need to trust all certificates automatically, you can use
this setting:

ss|TrustAllCertificates=true

2.6. USEFUL APACHE UNOMI URLS

In this section we will list some useful URLs that can be used to quickly access parts of Apache Unomi
that can help you understand or diagnose what is going on in the system.

You can of course find more information about the REST API in the related section in the Apache Unomi
website.

For these requests it can be nice to use a browser (such as Firefox) that understands JSON to make it
easier to view the results as the returned JSON is not beautified (another possiblity is a tool such as
Postman).

Important : all URLs are relative to the private Apache Unomi URL, by default: https://localhost:9443

Table 2. Useful URLs

Path Method Description
[cxs/profiles/properties GET Listing deployed properties
/cxs/definitions/conditions GET Listing deployed conditions
/cxs/definitions/actions GET Listing deployed actions
[cxs/profiles/PROFILE_ID GET Dumping a profile in JSON
/cxs/profiles/PROFILE_ID/sessions GET Listing sessions for a profile
/cxslprofiles/sessions/SESSION_ID GET Dumping a session in JSON

Apache Unomi 1.x - Documentation - 37

https://www.elastic.co/guide/en/elasticsearch/reference/7.5/ssl-tls.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/configuring-tls.html#node-certificates
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/configuring-tls.html#tls-http
http://unomi.apache.org/documentation.html
https://localhost:9443

Path Method

/cxslprofiles/sessions/SESSION_ID GET

/events

/cxs/events/search POST
[cxs/rules/statistics GET
/cxs/rules/statistics DELETE

2.7. HOW PROFILE TRACKING WORKS

In this section you will learn how Apache Unomi keeps track of visitors.

2.7.1. STEPS

1. A visitor comes to a website

Description

Listing events for a session. This
qguery can have additional such
as eventTypes, g (query), offset,
size, sort. See the related section
in the REST API for detalils.

Listing events for a profile. You
will need to provide a query in
the body of the request that looks
something like this (and
documentation is available in the
REST AP) : { "offset" : O, "limit" :
20, "condition" : { "type":
"eventPropertyCondition",
"parameterValues" : {
"propertyName" : "profileld",
"comparisonOperator" : "equals",
"propertyValue" : "PROFILE_ID" }
} } where PROFILE_ID is a profile
identifier. This will indeed

retrieve all the events for a given
profile.

Get all rule execution statistics

Reset all rule execution statistics
to0

2. The web server resolves a previous request session ID if it exists, or if it doesnOt it create a new

sessionlD

3. A request to Apache UnomiOs /context.json servlet is made passing the web server session ID as a

query parameter

4. Unomi uses the sessionID and tries to load an existing session, if none is found a new session is

created with the ID passed by the web server

5. If a session was found, the profile ID is extracted from the session and if it not found, Unomi looks

for a cookie called context-profile-id to read the profilelD. If no profilelD is found or if the session

didnOt exist, a new profile ID is created by Apache Unomi

Apache Unomi 1.x - Documentation - 38

https://unomi.apache.org/rest-api-doc/#1019321624
https://unomi.apache.org/rest-api-doc/#1019321624
https://unomi.apache.org/rest-api-doc/#1768188821
https://unomi.apache.org/rest-api-doc/#1768188821

6. If the profile ID existed, the corresponding profile is loaded by Apache Unomi, otherwise a new

profile is created

7. If events were passed along with the request to the context.json endpoint, they are processed

against the profile

8. The updated profile is sent back as a response to the context.json request. Along with the response

It is important to note that the profilelD is always server-generated. Injecting a custom cookie with a
non-valid profile ID will result in failure to load the profile. Profile ID are UUIDs, which make them

(pretty) safe from brute- forcing.

2.8. CONTEXT REQUEST FLOW

Here is an overview of how Unomi processes incoming requests to the ContextServlet .

Apache Unomi 1.x - Documentation - 39

T I

Request
—

I

| I
I 1
| | |
1 { User identification F I
| I
| I I
I 1
1

I

I

]

Find/create user and session !

| I
| Find/create user andl session

}..(.................... OSSO !

St | |

| prerr—
| Handle events F

[all events]

loop /

Send events

Event handlin
1 Call listener

I
' Cet matching rules
I
I
|

[_loop 7 [all rules]

: Test rule against current
1+ event / source | profile | session

I

I

|

1 1
i [loop ¢ [all actions]
I

I

I

I

1

1

Execute action

P

Send "rule fired" Event

D >,

T

1

i

Recurse i
Event Handling 1
1

- !

T

i

Recurse
Event Handling

I
I
1
1
I
I
I
I
]
I
1
— |
lTest condition filters 3 ;
I I
IooE /1 lall condition filters) | |
1 1
Check condition against current profile/session | |
I I
] I
Test condition agaimst current profile/session .
i [O e)
1 I 1 1 1
A ! ! ! !
| I I I
Add filter results 1 : : :
To answer | | | |
" . " " "
1 I 1 1 1
| | /e | |
. 7 jiltackediCondlsionsEik i i
I | I I I
| Get tracked conditions | | | 1
| | | l |
: 1 : loop / [all rules) |
I | I I I
| | | 1 Test condition against current event source
1 I 1
i | i oo |
I | I
.. L S I
:-< | I I I
Add tracked conditions | i i |
to answer | i i i
T | I I I
H | — | |
i T Iﬂr i i
I | I I I
| Save profile and/or session if needed | i i i
I | I I I
1 | Save profile to persistence ! !
I | I I I
| [—— A — S |
e mmmmm e em e e e i i i i
1 I 1 1 1
Response ! } : : :
-
I | I I I

3. QUERIES AND AGGREGATIONS

Apache Unomi contains a query endpoint that is quite powerful. It provides ways to perform queries
that can quickly get result counts, apply metrics such as sum/min/max/avg or even use powerful
aggregations.

In this section we will show examples of requests that may be built using this API.

Apache Unomi 1.x - Documentation - 40

3.1. QUERY COUNTS

Query counts are highly optimized queries that will count the number of objects that match a certain
condition without retrieving the results. This can be used for example to quickly figure out how many

objects will match a given condition before actually retrieving the results. It uses ElasticSearch/Lucene
optimizations to avoid the cost of loading all the resulting objects.

HereOs an example of a query:

curl -X POST http://localhost:8181/cxs/query/profile/count \
--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

"parameterValues": {
"subConditions": [
{
"type": "profilePropertyCondition",
"parameterValues": {

"propertyName"; "systemProperties.isAnonymousProfile",
"comparisonOperator": "missing"
}
b

{
"type": "profilePropertyCondition”,

"parameterValues": {
"propertyName": "properties.nbOfVisits",
"comparisonOperator": "equals",
"propertyValuelnteger": 1
}
}
1,

"operator": "and"
}1

"type": "booleanCondition"

m == [[T [T [T [T T T [T [T [T [T T T T T T T T T T me

OF

The above result will return the profile count of all the profiles

Result will be something like this:

2084

3.2. METRICS

Metric queries make it possible to apply functions to the resulting property. The supported metrics are:

¥ sum

Apache Unomi 1.x - Documentation - 41

¥ avg
¥ min

¥ max

It is also possible to request more than one metric in a single request by concatenating them with a "/" in
the URL. HereOs an example request that uses the sum and avg metrics:

curl -X POST http://localhost:8181/cxs/query/session/profile.properties.nbOfVisits/sum/avg \
--user karaf:karaf \

-H "Content-Type: application/json” \

-d @- <<'EOF'

"parameterValues": {
"subConditions": [
{
"type": "sessionPropertyCondition",
"parameterValues": {
"comparisonOperator": "equals",
"propertyName": "scope”,
"propertyValue": "digitall"
}
}
I
"operator": "and"
I3

"type": "booleanCondition"

m =~ [M M T T T T [T T T me me me m

OF

The result will look something like this:

_avg":1.0,
~sum™:9.0

— m) m)r-'—\

3.3. AGGREGATIONS

Aggregations are a very powerful way to build queries in Apache Unomi that will collect and aggregate
data by filtering on certain conditions.

Aggregations are composed of : - an object type and a property on which to aggregate - an aggregation

setup (how data will be aggregated, by date, by numeric range, date range or ip range) - a condition
(used to filter the data set that will be aggregated)

3.3.1. AGGREGATION TYPES

Aggregations may be of different types. They are listed here below.

Apache Unomi 1.x - Documentation - 42

DATE

Date aggregations make it possible to automatically generate "buckets" by time periods. For more
information about the format, it is directly inherited from ElasticSearch and you may find it here:
https://lwww.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-datehistogram-
aggregation.html

HereOs an example of a request to retrieve a histogram of by day of all the session that have been create
by newcomers (nbOfVisits=1)

curl -X POST http://localhost:8181/cxs/query/session/timeStamp \
--user karaf:karaf \

-H "Content-Type: application/json™ \

-d @- <<'EOF'

"aggregate": {
"type": "date",
"parameters": {
"interval": "1d",
"format": "yyyy-MM-dd"

"condition: {
"type": "booleanCondition",
"parameterValues™: {

"operator": "and",
"subConditions": [

{

{A

E

E

E

E

E

E

E

E

E

E

E

E

E

E "type": "sessionPropertyCondition",

E "parameterValues": {

E "propertyName": "scope",

E "comparisonOperator"; "equals”,

E "propertyValue": "acme"

E 1}

E 1}

E |

E "type": "sessionPropertyCondition",

E "parameterValues": {

E "propertyName": "profile.properties.nbOfVisits",
E "comparisonOperator": "equals”,

E "propertyValuelnteger": 1

E
E
E
E
E
}
E

The above request will produce a similar that looks like this:

Apache Unomi 1.x - Documentation - 43

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-datehistogram-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-datehistogram-aggregation.html

{
E " all": 8062,
E " filtered": 4085,
"2018-10-02": 3,
"2018-10-03": 17,
"2018-10-04": 18,
"2018-10-05": 19,
"2018-10-06": 23,
"2018-10-07": 18,
E "2018-10-08": 20
}

[T ™ [T e My [T

You can see that we retrieve the count of newcomers aggregated by day.

DATE RANGE

Date ranges make it possible to "bucket" dates, for example to regroup profiles by their birth date as in
the example below:

Apache Unomi 1.x - Documentation - 44

curl -X POST http://localhost:8181/cxs/query/profile/properties.birthDate \
--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

"aggregate™: {
"property": "properties.birthDate",
"type": "dateRange",
"dateRanges": [
{
"key": "After 2009",
"from": "now-10y/y",
"to": null
b
{
"key": "Between 1999 and 2009",

"from": "now-20y/y",
"to": "now-10y/y"
}!

{
"key": "Between 1989 and 1999",

"from": "now-30y/y",
"to": "now-20y/y"
}1

{
"key": "Between 1979 and 1989",

"from": "now-40y/y",
"to": "now-30y/y"
}1

{
"key": "Between 1969 and 1979",

"from": "now-50y/y",
"to": "now-40y/y"
h

{
"key": "Before 1969",

"from": null,
"to": "now-50y/y"
}
]
)i
"condition”; {
"type": "matchAllCondition",
"parameterValues": {}

> T M M T T T T M T T T T M T M T T

E}
}
EOF

The resulting JSON response will look something like this:

Apache Unomi 1.x - Documentation - 45

" all":4095,

" filtered":4095,

"Before 1969":2517,

"Between 1969 and 1979":353,
"Between 1979 and 1989":336,
"Between 1989 and 1999":337,
"Between 1999 and 2009":35,
"After 2009":0,

" _missing":517

~ [T [M M M b M M M

You can find more information about the date range formats here: https://lwww.elastic.co/guide/en/
elasticsearch/reference/5.6/search-aggregations-bucket-daterange-aggregation.html

NUMERIC RANGE

Numeric ranges make it possible to use "buckets" for the various ranges you want to classify.

HereOs an example of a using numeric range to regroup profiles by number of visits:

Apache Unomi 1.x - Documentation - 46

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-daterange-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-daterange-aggregation.html

curl -X POST http://localhost:8181/cxs/query/profile/properties.nbOfVisits \
--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

"aggregate™: {
"property": "properties.nbOfVisits",
"type": "numericRange",
"numericRanges": [
{
"key": "Less than 5",
"from": null,
"to": 5
fi
{
"key": "Between 5 and 10",
"from": 5,
"to": 10
2
{
"key": "Between 10 and 20",
"from": 10,
"to": 20
h
{
"key": "Between 20 and 40",
"from": 20,
"to": 40
Ji
{
"key": "Between 40 and 80",
"from": 40,
"to": 80
I
{
"key": "Greater than 100",
"from": 100,
"to": null

}
]
)i
"condition”; {
"type": "matchAllCondition",
"parameterValues": {}

}

M == M M [T [T T [T [T [T T T T T M T T T T [T [T T e T T M T T T T T T [T [T [T T M T T T e

OF

This will produce an output that looks like this:

Apache Unomi 1.x - Documentation - 47

" all":4095,
"_filtered":4095,

"Less than 5":3855,
"Between 5 and 10":233,
"Between 10 and 20":7,
"Between 20 and 40":0,
"Between 40 and 80":0,
"Greater than 100":0

== [Tb [T [T [Tb T [T [b=

4. PROFILE IMPORT & EXPORT

The profile import and export feature in Apache Unomi is based on configurations and consumes or
produces CSV files that contain profiles to be imported andEexported.

4.1. IMPORTING PROFILES

Only ftp, sftp ,Eps Eandfile Eare supported in the sourceEpath. For example:
file:/[ltmp/?fileName=profiles.csv&move=.done&consumer.delay=25s

Where:

¥ fileName Can be a pattern, for exampleE include=.*.csv instead of fileName=E to consume all CSV
files.E By default the processed files are moved to .camel folder you can change it using the move
option.

¥ consumer.delay Is the frequency of polling in milliseconds. For example,E20000Emilliseconds is 20
seconds. This frequency canEalso be 20s. Other possible format are: 2h30m10sE= 2 hours and 30
minutes and 10 seconds.

See http://camel.apache.org/ftp.html and http://camel.apache.org/file2.html to build more complex
source path. Also be careful with FTP configuration as most servers no longer support plain text FTP and

you should use SFTP or FTPS instead, but they are a little more difficult to configure properly. It is
recommended to test the connection with an FTP client first before setting up these source paths to
ensure that everything works properly. Also on FTP connections most servers require PASSIVE mode so
you can specify that in the path using the passiveMode=true parameter.

Here are some examples of FTPS and SFTP source paths:

sftp://USER@HOST/PATH?password=PASSWORD&include=.*.csv
ftps://[USER@HOST ?password=PASSWORD&fileName=profiles.csv&passiveMode=true

Where:

Apache Unomi 1.x - Documentation - 48

http://camel.apache.org/ftp.html
http://camel.apache.org/file2.html

¥ USERIs the user name of the SFTP/FTPS user account to login with

¥ PASSWORDis the password for the user account

¥ HOST is the host name (or IP address) of the host server that provides the SFTP / FTPS server

¥ PATH is a path to a directory inside the userOs account where the file will be retrieved.

4.1.1. IMPORT API

Apache Unomi provides REST endpoints to manage import configurations:

E GET /cxs/importConfiguration

E GET /cxs/limportConfiguration/{configld}

E POSTE/cxs/importConfiguration

E DELETEE/cxs/importConfiguration/{configld}

This is how a oneshotEimport configuration looks like:

"itemld"; "importConfigld",
"itemType": "importConfig",
"name": "Import Config Sample",
"description": "Sample description",

{A

E

E

E

E

E "configType": "oneshot", /[Config type can be 'oneshot' or 'recurrent’

E "properties™: {

E "mapping": {

E "email": O, /I<Apache Unomi Property Id> : <Column Index In the CSV>

E "firstName": 2,

E

E 1}

E)

E "columnSeparator": ",", /ICharacter used to separate columns

E ‘"lineSeparator": "\n", /ICharacter used to separate lines (\n or \r)

E "multiValueSeparator": ";", //Character used to separate values for multivalued columns
E "multiValueDelimiter": "[]", //Character used to wrap values for multivalued columns

E "status": "SUCCESS", //Status of last execution

E “executions": [/[(RETURN) Last executions by default only last 5 are returned
E ..

E 1,

E "mergingProperty": "email", /[Apache Unomi Property Id used to check duplicates

E "overwriteExistingProfiles": true, //Overwrite profiles that have duplicates

E "propertiesToOverwrite": "firstName, lastName, ...", //If last is set to true, which property to
overwrite, 'null' means overwrite all

E "hasHeader": true, /ICSV file to import contains a header line

E "hasDeleteColumn": false /ICSV file to import doesn't contain a TO DELETE column (if it

contains, will be the last column)

}

A recurrent import configuration is similar to the previous one with some s
the JSON like:

pecific information to add to

Apache Unomi 1.x - Documentation - 49

m

"configType": "recurrent”,

E "properties": {

E "source"
"ftp://[USER@SERVER[:PORT]/PATH?password=xxx&fileName=profiles.csv&move=.done&consumer.
delay=20000",

m

E /I Only 'ftp', 'sftp’, 'ftps' and 'file’ are supported in the 'source’ path

E /I eqg. file://ltmp/?fileName=profiles.csv&move=.done&consumer.delay=25s

E /I 'fileName' can be a pattern eg 'include=.*.csv' instead of ‘fileName=..." to consume all CSV
files

E /I By default the processed files are moved to '.camel’ folder you can change it using the
'move’ option

E /['consumer.delay' is the frequency of polling. '20000" (in milliseconds) means 20 seconds.

Can be also '20s'
/I Other possible format are: '2h30m10s' = 2 hours and 30 minutes and 10 seconds
"mapping": {

}...
12

"active": true, //If true the polling will start according to the 'source' configured above

" [Tp [T» T I > M e mp

4.2. EXPORTING PROFILES

OnlyEtp , sftp ,Eps EandE fileEare supported in the sourceEpath. For example:

file://ftmp/?fileName=profiles-export-${date:now:yyyyMMddHHmm}.csv&fileExist=Append)E
sftp://USER@HOST/PATH?password=PASSWORD&binary=true&fileName=profiles-export-
${date:now:yyyyMMddHHmMm}.csv&fileExist=Append
ftps://[USER@HOST?password=PASSWORD&binary=true&fileName=profiles-export-
${date:now:yyyyMMddHHmMm}.csv&fileExist=Append&passiveMode=true

As you can see in the examples above, you can inject variables in the produced file
nameB${date:now:yyyyMMddHHmm} is the current date formatted with the patternE yyyyMMddHHmMm
fileExist option put as Append will tell the file writer to append to the same file for each execution of the
export configuration. You cam omit this option to write a profile per file.

Seekttp://camel.apache.org/ftp.htmlEandEhttp://camel.apache.orgffile2.htmlEto build more complex
destinationEpath.

4.2.1. EXPORT API

Apache Unomi provides REST endpoints to manage export configurations:

Apache Unomi 1.x - Documentation - 50

http://camel.apache.org/ftp.html and http://camel.apache.org/file2.html to

E GET /cxs/exportConfiguration

E GET /cxs/exportConfiguration/{configld}

E POSTE/cxs/exportConfiguration

E DELETEE/cxs/exportConfiguration/{configld}

This is how a oneshotEexport configuration looks like:

"itemld": "exportConfigld",
"itemType": "exportConfig",
"name": "Export configuration sample”,
"description": "Sample description",
"configType": "oneshot",
"properties": {
"period": "2m30s",
"segment"; "contacts",
"mapping": {
"0": "firstName",
"1": "lastName",

}
12

"columnSeparator": ",",
"lineSeparator": "\\n",
"multiValueSeparator": ";",
"multiValueDelimiter": "[]",
"status": "RUNNING",

"executions": [

]

~ T [T M > > M M M M T T e M M M T T e M M m mp

A recurrent export configuration is similar to the previous one with some specific information to add to
the JSON like:

Apache Unomi 1.x - Documentation - 51

"configType": "recurrent”,

"properties": {

"destination": "sftp://USER@SERVER:PORT/PATH?password=XXX&fileName=profiles-export-
{date:now:yyyyMMddHHmMm}.csv&fileExist=Append",

& [T T M m—

E "period": "2m30s", //Same as 'consumer.delay' option in the import source path
E "segment": "contacts", //Segment ID to use to collect profiles to export

E "mapping": {

E ..

E 1}

E }

E ..

E “active": true, //If true the configuration will start polling upon save until the user deactivate
it

E

}

4.3. CONFIGURATION IN DETAILS

First configuration you need to change would be the configuration type of your import / export feature
(code name router) in the etc/unomi.custom.system.properties file (creating it if necessary):

#Configuration Type values {'nobroker’, 'kafka'}
org.apache.unomi.router.config.type=nobroker

By default the feature is configured (as above) to use no external broker, Ewhich means to handle
import/export data it will use in memory queues (In the same JVM as Apache Unomi). If you are
clustering Apache Unomi, most important thing to know about this type of configuration is that each
Apache Unomi will handle the import/export task by itself without the help of other nodes (No Load-
Distribution).

Changing this property to kafkaEmeans you have to provide the Apache Kafka configuration, and in the
opposite of the nobroker optionEimport/export data will be handled using an external broker (Apache
Kafka), this will lighten the burden on the Apache Unomi machines.

You mayEuse several Apache Kafka instance, 1Eper N Apache Unomi nodes for better application scaling.

To enable using Apache Kafka you need to configure the feature as follows:

#Configuration Type values {'nobroker', 'kafka'}
org.apache.unomi.router.config.type=kafka

Uncomment and update Kafka settings to use Kafka as a broker

Apache Unomi 1.x - Documentation - 52

#Kafka

org.apache.unomi.router.kafka.host=localhost
org.apache.unomi.router.kafka.port=9092
org.apache.unomi.router.kafka.import.topic=import-deposit
org.apache.unomi.router.kafka.export.topic=export-deposit
org.apache.unomi.router.kafka.import.groupld=unomi-import-group
org.apache.unomi.router.kafka.export.groupld=unomi-import-group
org.apache.unomi.router.kafka.consumerCount=10
org.apache.unomi.router.kafka.autoCommit=true

There is couple of properties you may want to change to fit your needs, one of them is the
import.oneshot.uploadDirEwhich will tell Apache Unomi where to store temporarily the CSV files to
import in Oneshot mode, itOs a technical property to allow the choice of the convenient disk space where
to store the files to be imported. It defaults to the following path under the Apache Unomi Karaf (It is
recommended to change the path to a more convenient one).

#lmport One Shot upload directory
org.apache.unomi.router.import.oneshot.uploadDir=${karaf.data}/tmp/unomi_oneshot_import_conf
igs/

Next two properties are max sizes for executions historyEand error reports, for some reason you donOt
want Apache Unomi to report all the executions history and error reports generated by the executions of
an import/export configuration. To change this you have to change the default values of these
properties.

#lmport/Export executions history size
org.apache.unomi.router.executionsHistory.size=5

#errors report size
org.apache.unomi.router.executions.error.report.size=200

Final one is about the allowed endpoints you can use when building the source or destionation path, as
mentioned above we can have a path of type file, ftp, ftps, sftp. You can make it less if you want to omit
some endpoints (eg. you donOt want to permit the use of non secure FTP).

#Allowed source endpoints
org.apache.unomi.router.config.allowedEndpoints=file,ftp,sftp,ftps

5. CONSENT MANAGEMENT

5.1. CONSENT API

Starting with Apache Unomi 1.3, a new API for consent management is now available. This API is
designed to be able to store/retrieve/update visitor consents in order to comply with new privacy

Apache Unomi 1.x - Documentation - 53

regulations such as the GDPR

5.1.1. PROFILES WITH CONSENTS
Visitor profiles now contain a new Consent object that contains the following information:

¥ a scope

¥ a type identifier for the consent. This can be any key to reference a consent. Note that Unomi does
not manage consent definitions, it only stores/retrieves consents for each profile based on this type

¥ a status : GRANT, DENY or REVOKED
¥ a status date (the date at which the status was updated)

¥ a revocation date, in order to comply with GDPR this is usually set at two years

Consents are stored as a sub-structure inside a profile. To retrieve the consents of a profile you can
simply retrieve a profile with the following request:

curl -X POST http://localhost:8181/context.json?sessionld=1234 \
-H "Content-Type: application/json™ \
-d @- <<'EOF'

"source": {
"itemld":"homepage",
"itemType":"page",
"scope":"example"

}

M~ [M m m M

o
M

Here is an example of a response with a Profile with a consent attached to it:

Apache Unomi 1.x - Documentation - 54

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

~ [Tp T > > M M M M T T e M T T T e My m

"profileld": "18afb5e3-48cf-4f8b-96c4-854cfaadf889",
"sessionld™: "1234",
"profileProperties™: null,
"sessionProperties": null,
"profileSegments": null,
"filteringResults": null,
"personalizations": null,
"trackedConditions": [],
"anonymousBrowsing": false,
"consents": {
"example/newsletter": {

"scope": "example",

"typeldentifier": "newsletter",

"status": "GRANTED",

"statusDate": "2018-05-22T09:27:09Z",

"revokeDate": "2020-05-21T09:27:09Z"

It is of course possible to have multiple consents defined for a single visitor profile.

5.1.2. CONSENT TYPE DEFINITIONS

Apache Unomi does not manage consent definitions, it leaves that to an external system (for example a

CMS) so that it can handle user-facing Uls to create, update, internationalize and present consent

definitions to end users.

The only thing that is import to Apache Unomi to manage visitor consents is a globally unique key, that
is called the consent type.

5.1.3. CREATING / UPDATE A VISITOR CONSENT

A new built-in event type called "modifyConsent" can be sent to Apache Unomi to update a consent for

the current profile.

Here is an example of such an event:

Apache Unomi 1.x - Documentation - 55

"events": [
{
"scope": "example",
"eventType": "modifyConsent",
"source": {
"itemType": "page",
"scope": "example",

"itemld": "anltemId"
1
"target": {
"itemType": "anyType",

"scope”: "example",
"itemld": "anyltemld"

b
"properties": {
"consent": {
"typeldentifier": "newsletter",
"scope": "example”,
"status™: "GRANTED",
"statusDate™: "2018-05-22T09:27:09.473Z",
"revokeDate": "2020-05-21T09:27:09.4732"
}
}
}

S [T [T M M > M T T T T T T T T T T T T T T T T M T mp

You could send it using the following curl request:

Apache Unomi 1.x - Documentation - 56

curl -X POST http://localhost:8181/context.json?sessionld=1234 \
-H "Content-Type: application/json" \
-d @- <<'EOF'

"source"{
"itemld":"homepage",
"itemType":"page",
"scope":"example”
h
"events": [
{
"scope":"example”,
"eventType":"modifyConsent",
"source":{

"itemType":"page"”,

"scope":"example”,

“itemld":"anltem|d"

h
"target":{

"itemType":"anyType",

"scope":"example”,

"itemld":"anyltemld"},

"properties":{

"consent":{
"typeldentifier":"newsletter",
"scope":"example",
"status":"GRANTED",
"statusDate":"2018-05-22T09:27:09.473Z",
"revokeDate":"2020-05-21T09:27:09.473Z"

m =~ [T M [T [T T T T [T [T T T T T T T T T T [T [T T T T b T T T T s
—
——
—

o
=

5.1.4. HOW IT WORKS (INTERNALLY)

Upon receiving this event, Apache Unomi will trigger the modifyAnyConsent rule that has the following

definition:

Apache Unomi 1.x - Documentation - 57

"metadata” : {
"id": "modifyAnyConsent",
"name": "Modify any consent",
"description” : "Modify any consent and sets the consent in the profile",
"readOnly":true

m> M My M mp—

ks
E "condition" : {
E "type": "modifyAnyConsentEventCondition",
E "parameterValues": {
E }
E}
E "actions" : [
E {
E "type": "modifyConsentAction",
E "parameterValues": {
E }
E }
E]
}

As we can see this rule is pretty simple it will simply execute the modifyConsentAction that is
implemented by the ModifyConsentAction Java class

This class will update the current visitor profile to add/update/revoke any consents that are included in
the event.

6. PRIVACY MANAGEMENT

Apache Unomi provides an endpoint to manage visitor privacy. You will find in this section information
about what it includes as well as how to use it.

6.1. SETTING UP ACCESS TO THE PRIVACY ENDPOINT

The privacy endpoint is a bit special, because despite being protected by basic authentication as the rest
of the REST API is is actually designed to be available to end-users.

So in effect it should usually be proxied so that public internet users can access the endpoint but the
proxy should also check if the profile ID wasnOt manipulated in some way.

Apache Unomi doesnOt provide (for the moment) such a proxy, but basically it should do the following:
1. check for potential attack activity (could be based on IDS policies or even rate detection), and at the

minimum check that the profile ID cookie seems authentic (for example by checking that it is often
coming from the same IP or the same geographic location)

Apache Unomi 1.x - Documentation - 58

https://github.com/apache/unomi/blob/9f1bab437fd93826dc54d318ed00d3b2e3161437/plugins/baseplugin/src/main/java/org/apache/unomi/plugins/baseplugin/actions/ModifyConsentAction.java

2. proxy to /cxs/privacy

6.2. ANONYMIZING A PROFILE

It is possible to anonymize a profile, meaning it will remove all "identifying" property values from the
profile. Basically all properties with the tag personalldentifierProperties will be purged from the profile.

HereOs an example of a request to anonymize a profile:

curl -X POST http://localhost:8181/cxs/profiles/{profilelD}/anonymize?scope=ASCOPE

where {profileID} must be replaced by the actual identifier of a profile and ASCOPEmust be replaced by
a scope identifier.

6.3. DOWNLOADING PROFILE DATA

It is possible to download the profile data of a user. This will only download the profile for a user using
the specified ID as a cookie value.

Warning: this operation can also be sensitive so it would be better to protected with a proxy that can
perform some validation on the requests to make sure no one is trying to download a profile using some
kind of "guessing" of profile IDs.

curl -X GET http://localhost:8181/client/myprofile.[json,csv,yaml,text] \
--cookie "context-profile-id=PROFILE-ID"

where PROFILE-ID is the profile identifier for which to download the profile.

6.4. DELETING A PROFILE

It is possible to delete a profile, but this works a little differently than you might expect. In all cases the
data contained in the profile will be completely erased. If the withData optional flag is set to true, all past
event and session data will also be detached from the current profile and anonymized.

curl -X DELETE http://localhost:8181/cxs/profiles/{profileID}?withData=false --user karaf:karaf

where {profilelID} must be replaced by the actual identifier of a profile and the withData specifies
whether the data associated with the profile must be anonymized or not

6.5. RELATED

You might also be interested in the Consent API section that describe how to manage profile consents.

Apache Unomi 1.x - Documentation - 59

/. CLUSTER SETUP

7.1. CLUSTER SETUP

Apache Karaf relies on Apache Karaf Cellar, which in turn uses Hazelcast to discover and configure its
cluster.

You can control most of the important clustering settings through the centralized configuration file at
etc/unomi.custom.system.properties
And notably using the following properties:

org.apache.unomi.hazelcast.group.name=%{env:UNOMI_HAZELCAST_GROUP_NAME:-cellar}
org.apache.unomi.hazelcast.group.password=${env:UNOMI_HAZELCAST_GROUP_PASSWORD:-pass}
This list can be comma separated and use ranges such as 192.168.1.0-7,192.168.1.21
org.apache.unomi.hazelcast.tcp-ip.members=${env:UNOMI_HAZELCAST_ TCPIP_MEMBERS:-
127.0.0.1}
org.apache.unomi.hazelcast.tcp-ip.interface=${env:UNOMI_HAZELCAST_TCPIP_INTERFACE:-
127.0.0.1}
org.apache.unomi.hazelcast.network.port=${env:UNOMI_HAZELCAST_NETWORK_PORT:-5701}

If you need more fine-grained control over the Hazelcast configuration you could also edit the following
file:

etc/hazelcast.xml

Note that it would be best to keep all configuration in the centralized custom configuration, for example
by adding placeholders in the hazelcast.xml file if need be and adding the properties to the centralized
configuration file.

8. REFERENCE

8.1. DATA MODEL OVERVIEW

Apache Unomi gathers information about users actions, information that is processed and stored by
Unomi services. The collected information can then be used to personalize content, derive insights on
user behavior, categorize the user profiles into segments along user-definable dimensions or acted upon
by algorithms.

The following data model only contains the classes and properties directly related to the most important

objects of Apache Unomi. There are other classes that are less central to the functionality but all the
major ones are represented in the diagram below:

Apache Unomi 1.x - Documentation - 60

